Generic Acceleration Schemes for Gradient-Based Optimization

Julien Mairal

Inria, Grenoble

Amazon Berlin, February 2017

Collaborators

Hongzhou Lin

Zaid Harchaoui

Publications

H. Lin, J. Mairal and Z. Harchaoui. A Universal Catalyst for First-Order Optimization. Adv. NIPS 2015.

H. Lin, J. Mairal and Z. Harchaoui. QuickeNing: A Generic

Quasi-Newton Algorithm for Faster Gradient-Based Optimization. 2017.

Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$\min_{x\in\mathbb{R}^p}\left\{F(x)\stackrel{\scriptscriptstyle \triangle}{=}\frac{1}{n}\sum_{i=1}^n f_i(x)+\psi(x)\right\},\,$$

where each f_i is **smooth and convex** and ψ is a convex but not necessarily differentiable penalty, e.g., the ℓ_1 -norm.

Goal of this work

- Design accelerated methods for minimizing large finite sums.
- Give a generic acceleration schemes which can be applied to previously un-accelerated algorithms.

Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$\min_{x\in\mathbb{R}^p}\left\{F(x)\stackrel{\scriptscriptstyle \triangle}{=}\frac{1}{n}\sum_{i=1}^n f_i(x)+\psi(x)\right\},\,$$

where each f_i is **smooth and convex** and ψ is a convex but not necessarily differentiable penalty, e.g., the ℓ_1 -norm.

Goal of this work

- Design accelerated methods for minimizing large finite sums.
- Give a generic acceleration schemes which can be applied to previously un-accelerated algorithms.

Two solutions: (1) Catalyst (Nesterov's acceleration);

Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$\min_{x\in\mathbb{R}^p}\left\{F(x)\stackrel{\scriptscriptstyle \triangle}{=}\frac{1}{n}\sum_{i=1}^n f_i(x)+\psi(x)\right\},\,$$

where each f_i is **smooth and convex** and ψ is a convex but not necessarily differentiable penalty, e.g., the ℓ_1 -norm.

Goal of this work

- Design accelerated methods for minimizing large finite sums.
- Give a generic acceleration schemes which can be applied to previously un-accelerated algorithms.

Two solutions: (2) QuickeNing (Quasi Newton);

Why do large finite sums matter?

Empirical risk minimization

$$\min_{x\in\mathbb{R}^p}\left\{F(x)\triangleq\frac{1}{n}\sum_{i=1}^n f_i(x)+\psi(x)\right\},\,$$

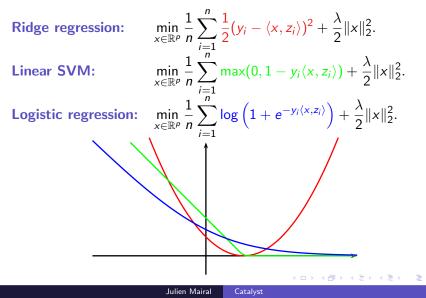
- Typically, x represents model parameters.
- Each function f_i measures the fidelity of x to a data point.
- ψ is a regularization function to prevent overfitting.

For instance, given training data $(y_i, z_i)_{i=1,...,n}$ with features z_i in \mathbb{R}^p and labels y_i in $\{-1, +1\}$, we may want to predict y_i by sign $(\langle z_i, x \rangle)$. The functions f_i measure how far the prediction is from the true label.

This would be a classification problem with a linear model.

Why large finite sums matter?

A few examples



Why does the composite problem matter?

A few examples

Ridge regression:

Linear SVM:

Logistic regression:

$$\begin{split} \min_{\mathbf{x}\in\mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \frac{1}{2} (y_i - \langle \mathbf{x}, z_i \rangle)^2 + \frac{\lambda}{2} \|\mathbf{x}\|_2^2.\\ \min_{\mathbf{x}\in\mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \max(0, 1 - y_i \langle \mathbf{x}, z_i \rangle) + \frac{\lambda}{2} \|\mathbf{x}\|_2^2.\\ \min_{\mathbf{x}\in\mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \log\left(1 + e^{-y_i \langle \mathbf{x}, z_i \rangle}\right) + \frac{\lambda}{2} \|\mathbf{x}\|_2^2. \end{split}$$

The squared ℓ_2 -norm penalizes large entries in x.

Why does the composite problem matter?

A few examples

Ridge regression:

Linear SVM:

Logistic regression:

$$\begin{split} \min_{\mathbf{x}\in\mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \frac{1}{2} (y_i - \langle \mathbf{x}, \mathbf{z}_i \rangle)^2 + \lambda \|\mathbf{x}\|_1.\\ \min_{\mathbf{x}\in\mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \max(0, 1 - y_i \langle \mathbf{x}, \mathbf{z}_i \rangle)^2 + \lambda \|\mathbf{x}\|_1.\\ \min_{\mathbf{x}\in\mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \log\left(1 + e^{-y_i \langle \mathbf{x}, \mathbf{z}_i \rangle}\right) + \lambda \|\mathbf{x}\|_1. \end{split}$$

When one knows in advance that x should be sparse, one should use a **sparsity-inducing** regularization such as the ℓ_1 -norm.

[Chen et al., 1999, Tibshirani, 1996].

Gradient descent methods

Let us consider the composite problem

$$\min_{x\in\mathbb{R}^p}\left\{F(x)=f(x)+\psi(x)\right\},\,$$

where f is convex, differentiable with *L*-Lipschitz continuous gradient and ψ is convex, but not necessarily differentiable.

The classical forward-backward/ISTA algorithm

$$x_k \leftarrow \operatorname*{arg\,min}_{x \in \mathbb{R}^p} \frac{1}{2} \left\| x - \left(x_{k-1} - \frac{1}{L} \nabla f(x_{k-1}) \right) \right\|_2^2 + \frac{1}{L} \psi(x).$$

• $F(x_k) - F^* = O(1/k)$ for convex problems;

• $F(x_k) - F^* = O((1 - \mu/L)^k)$ for μ -strongly convex problems;

[Nowak and Figueiredo, 2001, Daubechies et al., 2004, Combettes and Wajs, 2006, Beck and Teboulle, 2009, Wright et al., 2009, Nesterov, 2013]...

Accelerated gradient descent methods

Nesterov introduced in the 80's an acceleration scheme for the gradient descent algorithm. It was generalized later to the composite setting.

FISTA [Beck and Teboulle, 2009]

$$\begin{aligned} x_{k} &\leftarrow \operatorname*{arg\,min}_{x \in \mathbb{R}^{p}} \frac{1}{2} \left\| x - \left(y_{k-1} - \frac{1}{L} \nabla f(y_{k-1}) \right) \right\|_{2}^{2} + \frac{1}{L} \psi(x); \end{aligned}$$

Find $\alpha_{k} > 0$ s.t. $\alpha_{k}^{2} = (1 - \alpha_{k}) \alpha_{k-1}^{2} + \frac{\mu}{L} \alpha_{k}; \end{aligned}$
 $y_{k} \leftarrow x_{k} + \beta_{k} (x_{k} - x_{k-1}) \quad \text{with} \quad \beta_{k} = \frac{\alpha_{k-1} (1 - \alpha_{k-1})}{\alpha_{k-1}^{2} + \alpha_{k}}. \end{aligned}$

• $F(x_k) - F^* = O(1/k^2)$ for convex problems;

• $F(x_k) - F^* = O((1 - \sqrt{\mu/L})^k)$ for μ -strongly convex problems;

Acceleration works in many practical cases.

see also [Nesterov, 1983, 2004, 2013]

What do we mean by "acceleration"?

Complexity analysis for large finite sums

Since f is a sum of n functions, computing ∇f requires computing n gradients ∇f_i . The complexity to reach an ε -solution is given below

$$\begin{array}{c|c} \mu > 0 & \mu = 0 \\ \hline \text{ISTA} & O\left(n\frac{L}{\mu}\log\left(\frac{1}{\varepsilon}\right)\right) & O\left(\frac{nL}{\varepsilon}\right) \\ \hline \text{FISTA} & O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right) & O\left(\frac{n\sqrt{L}}{\sqrt{\varepsilon}}\right) \end{array}$$

Remarks

- ε -solution means here $f(x_k) f^* \leq \varepsilon$.
- For *n* = 1, the rates of FISTA are optimal for a "first-order local black box" [Nesterov, 2004].
- For n > 1, the sum structure of f is not exploited.

Can we do better for large finite sums?

Several **randomized** algorithms are designed with one ∇f_i computed per iteration, which yields a better **expected** computational complexity.

	$\mu > 0$
FISTA	$O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right)$
SVRG, SAG, SAGA, SDCA, MISO, Finito	$O\left(\max\left(n, \frac{L}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$

SVRG, SAG, SAGA, SDCA, MISO, Finito improve upon FISTA when

$$\max\left(n,rac{L}{\mu}
ight)\leq n\sqrt{rac{L}{\mu}}\quad\Leftrightarrow\sqrt{rac{L}{\mu}}\leq n,$$

but they are not "accelerated" in the sense of Nesterov.

[Schmidt et al., 2013, Xiao and Zhang, 2014, Defazio et al., 2014a,b, Shalev-Shwartz and Zhang, 2012, Mairal, 2015, Zhang and Xiao, 2015]

Can we do even better for large finite sums?

Without vs with acceleration

	$\mu > 0$
FISTA	$O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right) ight)$
SVRG, SAG, SAGA, SDCA, MISO, Finito	$O\left(\max\left(n,\frac{L}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right) ight)$
Acc-SDCA	$\tilde{O}\left(\max\left(n,\sqrt{n\frac{L}{\mu}}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$

Acc-SDCA is due to Shalev-Shwartz and Zhang [2014].

- Acceleration occurs when $n \leq \frac{L}{\mu}$.
- see [Agarwal and Bottou, 2015] for discussions about optimality.

Challenge: can we accelerate these algorithms by a universal scheme for both convex and strongly convex objectives ?

Catalyst is coming

Main idea

Catalyst, a meta-algorithm

Given an algorithm ${\mathcal M}$ that can solve a convex problem "appropriately".

• At iteration k, rather than minimizing F, we use \mathcal{M} to minimize a function G_k , defined as follows,

$$G_k(x) \stackrel{\scriptscriptstyle \Delta}{=} F(x) + \frac{\kappa}{2} \|x - y_{k-1}\|_2^2,$$

up to accuracy ε_k , i.e., such that $G_k(x_k) - G_k^\star \leq \varepsilon_k$.

• Then compute the next prox-center y_k using an extrapolation step

$$y_k = x_k + \beta_k (x_k - x_{k-1}).$$

The choices of $\beta_k, \epsilon_k, \kappa$ are driven by the theoretical analysis.

Main idea

Catalyst, a meta-algorithm

Given an algorithm ${\mathcal M}$ that can solve a convex problem "appropriately".

• At iteration k, rather than minimizing F, we use \mathcal{M} to minimize a function G_k , defined as follows,

$$G_k(x) \stackrel{\scriptscriptstyle \Delta}{=} F(x) + \frac{\kappa}{2} \|x - y_{k-1}\|_2^2,$$

up to accuracy ε_k , i.e., such that $G_k(x_k) - G_k^\star \leq \varepsilon_k$.

• Then compute the next prox-center y_k using an extrapolation step

$$y_k = x_k + \beta_k (x_k - x_{k-1}).$$

The choices of $\beta_k, \epsilon_k, \kappa$ are driven by the theoretical analysis.

Catalyst is a wrapper of \mathcal{M} that yields an **accelerated** algorithm \mathcal{A} .

Sources of inspiration

In addition to accelerated proximal algorithms [Beck and Teboulle, 2009, Nesterov, 2013], several works have inspired Catalyst.

The inexact accelerated proximal point algorithm of Güler [1992].

- Catalyst is a variant of inexact accelerated PPA.
- Complexity analysis for **outer-loop only** with non practical inexactness criterion.

Accelerated SDCA of Shalev-Shwartz and Zhang [2014].

- Accelerated SDCA is an instance of inexact accelerated PPA.
- Complexity analysis limited to *µ*-strongly convex objectives.

Sources of inspiration

In addition to accelerated proximal algorithms [Beck and Teboulle, 2009, Nesterov, 2013], several works have inspired Catalyst.

The inexact accelerated proximal point algorithm of Güler [1992].

- Catalyst is a variant of inexact accelerated PPA.
- Complexity analysis for **outer-loop only** with non practical inexactness criterion.

Accelerated SDCA of Shalev-Shwartz and Zhang [2014].

- Accelerated SDCA is an instance of inexact accelerated PPA.
- Complexity analysis limited to *µ*-strongly convex objectives.

Other related work

[Frostig et al., 2015, Schmidt et al., 2011, Salzo and Villa, 2012, He and Yuan, 2012, Lan, 2015, Devolder et al., 2014].

This work

Contributions

- Generic acceleration scheme, which applies to previously unaccelerated algorithms such as SVRG, SAG, SAGA, SDCA, MISO, or Finito, and which is not taylored to finite sums.
- Provides explicit support to non-strongly convex objectives.
- Complexity analysis for μ -strongly convex objectives.
- Complexity analysis for non-strongly convex objectives.

Example of application

Garber and Hazan [2015] have used Catalyst to accelerate new principal component analysis algorithms based on convex optimization.

Appropriate $\mathcal{M} = \text{Linear}$ convergence rate when $\mu > 0$

Linear convergence rate

Consider a strongly convex minimization problem

 $\min_{z\in\mathbb{R}^p}H(z).$

We say that an algorithm \mathcal{M} has a **linear convergence rate** if \mathcal{M} generates a sequence of iterates $(z_t)_{t\in\mathbb{N}}$ such that there exists $\tau_{\mathcal{M},H}$ in (0,1) and a constant $C_{\mathcal{M},H}$ in \mathbb{R} satisfying

$$H(z_t) - H^* \le C_{\mathcal{M},H} (1 - \tau_{\mathcal{M},H})^t.$$
(1)

- $\tau_{\mathcal{M},H}$ depends usually on the condition number L/μ , e.g., $\tau_{\mathcal{M},H} = \mu/L$ for ISTA and $\tau_{\mathcal{M},H} = \sqrt{\mu/L}$ for FISTA.
- $C_{\mathcal{M},H}$ depends usually on $H(z_0) H^*$.

Appropriate $\mathcal{M} = \text{Linear}$ convergence rate when $\mu > 0$

Linear convergence rate

Consider a strongly convex minimization problem

 $\min_{z\in\mathbb{R}^p}H(z).$

We say that an algorithm \mathcal{M} has a **linear convergence rate** if \mathcal{M} generates a sequence of iterates $(z_t)_{t\in\mathbb{N}}$ such that there exists $\tau_{\mathcal{M},H}$ in (0,1) and a constant $C_{\mathcal{M},H}$ in \mathbb{R} satisfying

$$H(z_t) - H^* \le C_{\mathcal{M},H} (1 - \tau_{\mathcal{M},H})^t.$$
(1)

Important message: we do not make any assumption for non strongly convex objectives. It is possible that \mathcal{M} is not even defined for $\mu = 0$.

Catalyst action

Catalyst action

$$G_k(x) \stackrel{\scriptscriptstyle \Delta}{=} F(x) + \frac{\kappa}{2} ||x - y_{k-1}||_2^2,$$

- G_k is always strongly convex as long as F is convex.
- When F is strongly convex, the condition number of G_k is better than that of F since $\frac{L+\kappa}{\mu+\kappa} < \frac{L}{\mu}$.

Catalyst action

Catalyst action

$$G_k(x) \stackrel{\scriptscriptstyle \Delta}{=} F(x) + \frac{\kappa}{2} ||x - y_{k-1}||_2^2,$$

- G_k is always strongly convex as long as F is convex.
- When F is strongly convex, the condition number of G_k is better than that of F since $\frac{L+\kappa}{\mu+\kappa} < \frac{L}{\mu}$.

Minimizing G_k is easier than minimizing F !

Catalyst action

Catalyst action

$$G_k(x) \stackrel{\scriptscriptstyle \Delta}{=} F(x) + \frac{\kappa}{2} ||x - y_{k-1}||_2^2,$$

- G_k is always strongly convex as long as F is convex.
- When F is strongly convex, the condition number of G_k is better than that of F since $\frac{L+\kappa}{\mu+\kappa} < \frac{L}{\mu}$.

Minimizing G_k is easier than minimizing F !

- If $\kappa \gg 1$, then minimizing G_k is easy;
- If $\kappa \approx 0$, then G_k is a good approximation of F.
- We will choose κ to optimize the computational complexity.

Convergence analysis

An analysis in two stages

$$G_k(x) \stackrel{\scriptscriptstyle riangle}{=} F(x) + rac{\kappa}{2} \|x - y_{k-1}\|_2^2,$$

 x_k is a approximate minimizer of G_k such that $G_k(x_k) - G_k^* \le \epsilon_k$.

- Outer loop: once we obtain the sequence (x_k)_{k∈N}, what can we say about the convergence rate of F(x_k) F*?
 ⇒ Wisely choose (y_k) and control the accumulation of errors.
- Inner loop: how much effort do we need to obtain a x_k with accuracy ε_k?

 \Rightarrow Wisely choose the starting point.

Choice of $(y_k)_{k \in \mathbb{N}}$

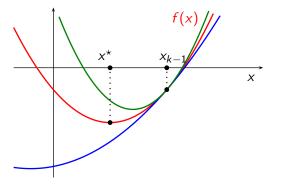
Extrapolation

$$y_k = x_k + \beta_k (x_k - x_{k-1})$$
 with $\beta_k = \frac{\alpha_{k-1}(1 - \alpha_{k-1})}{\alpha_{k-1}^2 + \alpha_k}$

- This update is identical to Nesterov's accelerated gradient descent or FISTA.
- Unfortunately, the literature does not provide any simple geometric explanation why it yields an acceleration...
- The construction is purely theoretical by using a mechanism introduced by Nesterov, called "estimate sequence".

How does "acceleration" work?

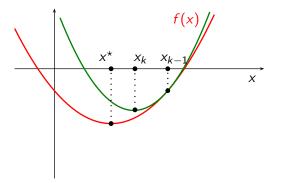
If f is μ -strongly convex and ∇f is L-Lipschitz continuous



• $f(x) \le f(x_{k-1}) + \nabla f(x_{k-1})^\top (x - x_{k-1}) + \frac{L}{2} ||x - x_{k-1}||_2^2;$ • $f(x) \ge f(x_{k-1}) + \nabla f(x_{k-1})^\top (x - x_{k-1}) + \frac{L}{2} ||x - x_{k-1}||_2^2;$

How does "acceleration" work?

If ∇f is *L*-Lipschitz continuous



•
$$f(x) \leq f(x_{k-1}) + \nabla f(x_{k-1})^{\top} (x - x_{k-1}) + \frac{L}{2} ||x - x_{k-1}||_2^2;$$

• $x_k = x_{k-1} - \frac{1}{L} \nabla f(x_{k-1})$ (gradient descent step).

How does "acceleration" work?

Definition of estimate sequence [Nesterov].

A pair of sequences $(\varphi_k)_{k\geq 0}$ and $(\lambda_k)_{k\geq 0}$, with $\varphi_k : \mathbb{R}^p \to \mathbb{R}$ and $\lambda_k \geq 0$, is called an **estimate sequence** of function F if

- $\lambda_k
 ightarrow 0;$
- $\varphi_k(x) \leq (1 \lambda_k)F(x) + \lambda_k \varphi_0(x)$, for any k, x;
- There exists a sequence $(x_k)_{k\geq 0}$ such that

$$F(x_k) \leq \varphi_k^{\star} \stackrel{\Delta}{=} \min_{x \in \mathbb{R}^p} \varphi_k(x).$$

Remarks

- φ_k is neither an upper-bound, nor a lower-bound;
- Finding the right estimate sequence is often nontrivial.

Convergence of outer-loop algorithm

Analysis for μ -strongly convex objective functions Choose $\alpha_0 = \sqrt{q}$ with $q = \mu/(\mu + \kappa)$ and

$$\epsilon_k = rac{2}{9}(F(x_0) - F^*)(1-
ho)^k \quad ext{with} \quad
ho < \sqrt{q}.$$

Then, the algorithm generates iterates $(x_k)_{k\geq 0}$ such that

$$F(x_k) - F^* \leq C(1-\rho)^{k+1}(F(x_0) - F^*)$$
 with $C = \frac{8}{(\sqrt{q}-\rho)^2}.$

In practice

- Choice of ρ can safely be set to $\rho = 0.9\sqrt{q}$.
- Choice of $(\varepsilon_k)_{k\geq 0}$ typically follows from a duality gap at x_0 . When F is non-negative, we can set $\varepsilon_k = (2/9)F(x_0)(1-\rho)^k$.

Convergence of outer-loop algorithm

Analysis for non-strongly convex objective functions, $\mu=0$ Choose $\alpha_0=(\sqrt{5}-1)/2$ and

$$\epsilon_k = rac{2(F(x_0)-F^*)}{9(k+2)^{4+\eta}} \quad ext{with } \eta > 0.$$

Then, the meta-algorithm generates iterates $(x_k)_{k\geq 0}$ such that

$$F(x_k) - F^* \leq \frac{8}{(k+2)^2} \left(\left(1 + \frac{2}{\eta} \right)^2 (F(x_0) - F^*) + \frac{\kappa}{2} \|x_0 - x^*\|^2 \right).$$
(2)

In practice

• Choice of η can be set to $\eta = 0.1$.

How many iterates of \mathcal{M} do we need to obtain x_k ?

Control of inner-loop complexity

For minimizing G_k , consider a method \mathcal{M} generating iterates $(z_t)_{t\geq 0}$ with linear convergence rate

$$G_k(z_t) - G_k^\star \leq A(1-\tau_{\mathcal{M}})^t (G_k(z_0) - G_k^\star).$$

Then by choosing $z_0 = x_{k-1}$, the precision ε_k is reached with at most

- A constant number of iterations $T_{\mathcal{M}}$ when $\mu > 0$;
- A logarithmic increasing number of iterations T_M log(k + 2) when μ = 0.

where $T_{\mathcal{M}} = \tilde{O}(1/\tau_{\mathcal{M}})$ is independent of k.

Global computational complexity

Analysis for μ -strongly convex objective functions

The global convergence rate of the accelerated algorithm ${\mathcal A}$ is

$$F_{s}-F^{\star} \leq C\left(1-\frac{\rho}{T_{\mathcal{M}}}\right)^{s}(F(x_{0})-F^{*}).$$
(3)

where F_s is the objective function value obtained after performing $s = kT_M$ iterations of the method M. As a result,

$$\tau_{\mathcal{A},F} = \frac{\rho}{T_{\mathcal{M}}} = \tilde{O}(\tau_{\mathcal{M}}\sqrt{\mu}/\sqrt{\mu+\kappa}),$$

where $\tau_{\mathcal{M}}$ typically depends on κ (the greater, the faster).

 κ will be chosen to maximize the ratio $\tau_{\mathcal{M}}/\sqrt{\mu+\kappa}.$

Global computational complexity

Analysis for μ -strongly convex objective functions

The global convergence rate of the accelerated algorithm $\ensuremath{\mathcal{A}}$ is

$$F_{s}-F^{\star} \leq C\left(1-\frac{\rho}{T_{\mathcal{M}}}\right)^{s}(F(x_{0})-F^{*}).$$
(3)

where F_s is the objective function value obtained after performing $s = kT_M$ iterations of the method M. As a result,

$$\tau_{\mathcal{A},F} = \frac{\rho}{T_{\mathcal{M}}} = \tilde{O}(\tau_{\mathcal{M}}\sqrt{\mu}/\sqrt{\mu+\kappa}),$$

where $\tau_{\mathcal{M}}$ typically depends on κ (the greater, the faster).

e.g.,
$$\kappa = L - 2\mu$$
 when $\tau_{\mathcal{M}} = \frac{\mu + \kappa}{L + \kappa} \Rightarrow \tau_{\mathcal{A}} = \tilde{O}\left(\sqrt{\frac{\mu}{L}}\right)$.

Global computational complexity

Analysis for non-strongly convex objective functions The global convergence rate of the accelerated algorithm \mathcal{A} is

$$F_{s} - F^{*} \leq \frac{8T_{\mathcal{M}}^{2}\log^{2}(s)}{s^{2}} \left(\left(1 + \frac{2}{\eta}\right)^{2} (F(x_{0}) - F^{*}) + \frac{\kappa}{2} \|x_{0} - x^{*}\|^{2} \right)$$

If \mathcal{M} is a first-order method, this rate is **near-optimal**, up to a logarithmic factor, when compared to the optimal rate $O(1/s^2)$, which may be the price to pay for using a generic acceleration scheme.

 κ will be chosen to maximize the ratio $\tau_{\mathcal{M}}/\sqrt{L+\kappa}$

Applications

Expected computational complexity in the regime $n \leq L/\mu$ when $\mu > 0$,

	$\mu > 0$	$\mu = 0$	Catalyst $\mu > 0$	Cat. $\mu = 0$
FG	$O\left(n\left(\frac{L}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$		$\tilde{O}\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right)$	
SAG		$O\left(n\frac{L}{\varepsilon}\right)$		
SAGA	$O\left(\frac{L}{\mu}\log\left(\frac{1}{\varepsilon}\right)\right)$		$\tilde{O}\left(\sqrt{rac{nL}{\mu}}\log\left(rac{1}{arepsilon} ight) ight)$	$\tilde{O}\left(n\frac{\sqrt{L}}{\sqrt{\varepsilon}}\right)$
Finito/MISO	$(\mu \log(\varepsilon))$		$\left(\sqrt{\frac{\mu}{\mu} \log(\varepsilon)} \right)$	$(n\sqrt{\varepsilon})$
SDCA		NA		
SVRG	$O\left(rac{L'}{\mu}\log\left(rac{1}{arepsilon} ight) ight)$		$ ilde{O}\left(\sqrt{rac{nL'}{\mu}}\log\left(rac{1}{arepsilon} ight) ight)$	
Acc-FG	$O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right)$	$O\left(n\frac{\sqrt{L}}{\sqrt{\varepsilon}}\right)$	no acceleration	
Acc-SDCA	$ ilde{O}\left(\sqrt{rac{nL}{\mu}}\log\left(rac{1}{arepsilon} ight) ight)$	NA		

The Moreau-Yosida regularization of a convex function f is defined as

$$F(x) = \min_{z \in \mathbb{R}^p} \left\{ f(x) + \frac{\kappa}{2} \|x - z\|^2 \right\},$$

and call p(x) the unique solution of the problem.

The equivalence property

F is convex and minimizing f and F are equivalent in the sense that

$$\min_{x\in\mathbb{R}^p}F(x)=\min_{x\in\mathbb{R}^p}f(x).$$

The minimizers of *f* and *F* coincide with each other.

The Moreau-Yosida regularization of a convex function f is defined as

$$F(x) = \min_{z \in \mathbb{R}^p} \left\{ f(x) + \frac{\kappa}{2} \|x - z\|^2 \right\},$$

and call p(x) the unique solution of the problem.

The smoothness properties

• F is continuously differentiable even when f is not and

$$\nabla F(x) = \kappa(x - p(x)),$$

The gradient ∇F is Lipschitz continuous with constant $L_F = \kappa$.

- When f is μ -strongly convex, F is μ_F -strongly convex with constant $\mu_F = \frac{\mu\kappa}{\mu+\kappa}$.
- \Rightarrow When $\mu > 0$, the condition number of F is $1 + \frac{\kappa}{\mu}$.

A naive approach consists of minimizing F instead of f with a method designed for smooth optimization. Consider indeed

$$x_{k+1} = x_k - \frac{1}{\kappa} \nabla F(x_k).$$

By rewriting the gradient $\nabla F(x_k)$ as $\kappa(x_k - p(x_k))$, we obtain

$$x_{k+1} = p(x_k) = \operatorname*{arg\,min}_{z \in \mathbb{R}^p} \left\{ f(z) + \frac{\kappa}{2} ||z - x_k||^2 \right\}.$$

This is exactly the proximal point algorithm.

Consider now

$$x_{k+1} = y_k - \frac{1}{\kappa} \nabla F(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$,

where β_{k+1} is a Nesterov-like extrapolation parameter. We may now rewrite the update using the value of ∇F , which gives:

$$x_{k+1} = p(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$

This is the accelerated proximal point algorithm of Güler [1992].

Consider now

$$x_{k+1} = y_k - \frac{1}{\kappa} \nabla F(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$,

where β_{k+1} is a Nesterov-like extrapolation parameter. We may now rewrite the update using the value of ∇F , which gives:

$$x_{k+1} = p(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$

This is the accelerated proximal point algorithm of Güler [1992]. What is the advantage of these approaches? *F* may be better conditioned than *f* when $1 + \kappa/\mu \le L/\mu$;

Consider now

$$x_{k+1} = y_k - \frac{1}{\kappa} \nabla F(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$,

where β_{k+1} is a Nesterov-like extrapolation parameter. We may now rewrite the update using the value of ∇F , which gives:

$$x_{k+1} = p(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$

This is the accelerated proximal point algorithm of Güler [1992].

What is the advantage of these approaches?

F may be better conditioned than f when $1 + \kappa/\mu \leq L/\mu$;

But... Computing $p(y_k)$ has a cost!

Catalyst is a particular accelerated proximal point algorithm with inexact gradients [Güler, 1992].

$$x_{k+1} \approx p(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$

The quantity x_{k+1} is obtained by approximately solving using an optimization method M:

$$x_{k+1} \approx \operatorname*{arg\,min}_{x \in \mathbb{R}^p} \left\{ h_k(x) \stackrel{\scriptscriptstyle \Delta}{=} f(x) + \frac{\kappa}{2} \|x - y_k\|^2 \right\},$$

such that $h_k(x_{k+1}) - h_k^* \leq \epsilon_k$.

Catalyst is a particular accelerated proximal point algorithm with **inexact gradients** [Güler, 1992].

$$x_{k+1} \approx p(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$

The quantity x_{k+1} is obtained by approximately solving using an optimization method \mathcal{M} :

$$x_{k+1} \approx \operatorname*{arg\,min}_{x \in \mathbb{R}^p} \left\{ h_k(x) \stackrel{\scriptscriptstyle riangle}{=} f(x) + \frac{\kappa}{2} \|x - y_k\|^2
ight\},$$

such that $h_k(x_{k+1}) - h_k^* \leq \epsilon_k$.

Catalyst provides Nesterov's acceleration to ${\mathcal M}$ with...

- the right κ , sequence $(\varepsilon_k)_{k\geq 0}$, and restart strategy for \mathcal{M} .
- global complexity analysis resulting in theoretical acceleration.

QuickeNing

QuickeNing is a **limited memory Quasi-Newton algorithm with inexact gradients** applied to the smoothed function *F*.

Main features

- ullet uses an optimization method $\mathcal M$ to solve the sub-problems.
- \bullet if ${\mathcal M}$ is compatible with prox, so is QuickeNing.
- linear convergence rate for strongly-convex functions.
- no need for a line-search and easy initialization of B_0 .

QuickeNing

QuickeNing is a **limited memory Quasi-Newton algorithm with inexact gradients** applied to the smoothed function *F*.

Main features

- ullet uses an optimization method $\mathcal M$ to solve the sub-problems.
- \bullet if ${\mathcal M}$ is compatible with prox, so is QuickeNing.
- linear convergence rate for strongly-convex functions.
- no need for a line-search and easy initialization of B_0 .

Theory vs practice

- global theoretical complexity is not as good as Catalyst.
- in practice, outperforms Catalyst for ill-conditioned problems.

QuickeNing

Related work

- L-BFGS with inexact gradients [Friedlander and Schmidt, 2012].
- Quasi-Newton on Moreau-Yosida regularization [Burke and Qian, 2000, Chen and Fukushima, 1999, Fuentes et al., 2012, Fukushima and Qi, 1996].

Our contributions

- practical inexactness criterion and dedicated L-BFGS rule with no line search.
- global complexity with both inner- and outer-loop analysis.
- parameter choices that ensure linear convergence rate for strongly-convex problems.

Experiments about Catalyst

Experiments with MISO/SAG/SAGA

$\ell_2\text{-}\text{logistic}$ regression formulation

Given some data (y_i, z_i) , with y_i in $\{-1, +1\}$ and z_i in \mathbb{R}^p , minimize

$$\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \log(1 + e^{-y_i x^\top z_i}) + \frac{\mu}{2} \|x\|_2^2,$$

 μ is the regularization parameter and the strong convexity modulus.

Datasets

name	rcv1	real-sim	covtype	ocr	alpha
n	781 265	72 309	581012	2 500 000	250 000
р	47 152	20 958	54	1 155	500

Experiments with MISO/SAG/SAGA

The complexity analysis is not just a theoretical exercise since it provides the values of $\kappa, \varepsilon_k, \beta_k$, which are required in concrete implementations.

Here, theoretical values match practical ones.

Restarting

The theory tells us to restart \mathcal{M} with x_{k-1} . For SDCA/Finito/MISO, the theory tells us to use instead $x_{k-1} + \frac{\kappa}{\mu+\kappa}(y_{k-1} - y_{k-2})$. We also tried this as a heuristic for SAG and SAGA.

One-pass heuristic

constrain \mathcal{M} to always perform at most *n* iterations in inner loop; we call this variant AMISO2 for MISO, whereas AMISO1 refers to the regular "vanilla" accelerated variant; idem to accelerate SAG and SAGA.

Experiments without strong convexity, $\mu=0$

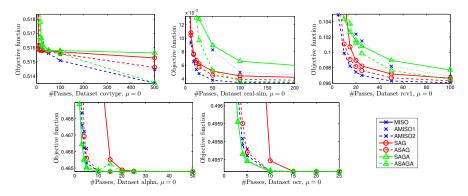


Figure: Objective function value for different number of passes on data.

Conclusions

- SAG, SAGA are accelerated when they do not perform well already;
- AMISO2 \geq AMISO1 (vanilla), MISO does not apply.

Experiments without strong convexity, $\mu = 10^{-1}/n$

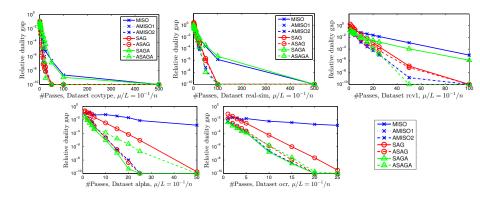


Figure: Relative duality gap (log-scale) for different number of passes on data.

Conclusions

- SAG, SAGA are not always accelerated, but often.
- AMISO2, AMISO1 \gg MISO.

Experiments without strong convexity, $\mu = 10^{-3}/n$

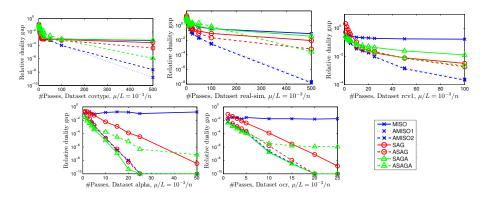


Figure: Relative duality gap (log-scale) for different number of passes on data. Conclusions

- same conclusions as $\mu = 10^{-1}/n$;
- μ is so small that (unaccelerated) MISO becomes numerically unstable.

General conclusions about Catalyst

Summary: lots of nice features

- Simple acceleration scheme with broad application range.
- Recover near-optimal rates for known algorithms.
- Effortless implementation.

... but also lots of unsolved problems

- Acceleration occurs when n ≤ L/μ; otherwise, the "unaccelerated" complexity O(n log(1/ε)) seems unbeatable.
- μ is an estimate of the true strong convexity parameter $\mu' \ge \mu$.
- μ is the global strong convexity parameter, not a local one $\mu^* \ge \mu$.
- When $n \leq L/\mu$, but $n \geq L/(\mu' \text{ or } \mu^*)$, a method \mathcal{M} that adapts to the unknown strong convexity may be impossible to accelerate.
- The optimal restart for \mathcal{M} is not yet fully understood.

Thank you for your attention!

Catalyst, the algorithm

Algorithm 1 Catalyst

input initial estimate $x_0 \in \mathbb{R}^p$, parameters κ and α_0 , sequence $(\varepsilon_k)_{k \ge 0}$, optimization method \mathcal{M} ; initialize $q = \mu/(\mu + \kappa)$ and $y_0 = x_0$;

- 1: while the desired stopping criterion is not satisfied do
- 2: Find an approx. solution x_k using \mathcal{M} s.t. $G_k(x_k) G_k^{\star} \leq \varepsilon_k$

$$x_k pprox rgmin_{x \in \mathbb{R}^p} \left\{ G_t(x) \stackrel{\scriptscriptstyle riangle}{=} F(x) + rac{\kappa}{2} \|x - y_{k-1}\|^2
ight\}$$

3: Compute $\alpha_k \in (0, 1)$ from equation $\alpha_k^2 = (1 - \alpha_k)\alpha_{k-1}^2 + q\alpha_k$; 4: Compute

$$y_k = x_k + \beta_k(x_k - x_{k-1})$$
 with $\beta_k = \frac{\alpha_{k-1}(1 - \alpha_{k-1})}{\alpha_{k-1}^2 + \alpha_k}$.

5: end while output x_k (final estimate).

Ideas of the proofs

Main theorem

Let us denote

$$\lambda_k = \prod_{i=0}^{k-1} (1 - \alpha_i), \tag{4}$$

where the α_i 's are defined in Catalyst. Then, the sequence $(x_k)_{k\geq 0}$ satisfies

$$F(x_k) - F^* \le \lambda_k \left(\sqrt{S_k} + 2\sum_{i=1}^k \sqrt{\frac{\epsilon_i}{\lambda_i}} \right)^2, \tag{5}$$

where F^{\star} is the minimum value of F and

$$S_{k} = F(x_{0}) - F^{*} + \frac{\gamma_{0}}{2} \|x_{0} - x^{*}\|^{2} + \sum_{i=1}^{k} \frac{\epsilon_{i}}{\lambda_{i}} \quad \text{where} \quad \gamma_{0} = \frac{\alpha_{0} \left((\kappa + \mu)\alpha_{0} - \mu\right)}{1 - \alpha_{0}},$$
(6)
where x^{*} is a minimizer of F .

Ideas of the proofs

Then, the theorem will be used with the following lemma to control the convergence rate of the sequence $(\lambda_k)_{k\geq 0}$, whose definition follows the classical use of estimate sequences. This will provide us convergence rates both for the strongly convex and non-strongly convex cases.

Lemma 2.2.4 from Nesterov [2004]

If in the quantity γ_0 defined in (6) satisfies $\gamma_0 \ge \mu$, then the sequence $(\lambda_k)_{k\ge 0}$ from (4) satisfies

$$\lambda_k \leq \min\left\{ \left(1 - \sqrt{q}\right)^k, \frac{4}{\left(2 + k\sqrt{\frac{\gamma_0}{\kappa + \mu}}\right)^2} \right\},$$
(7)

where $q \stackrel{\scriptscriptstyle riangle}{=} \mu/(\mu + \kappa)$.

Ideas of proofs

Step 1: build an approximate estimate sequence

• Remember that in general, we build φ_k from φ_{k-1} as follows

$$\varphi_k(\mathbf{x}) \stackrel{\scriptscriptstyle \Delta}{=} (1 - \alpha_k) \varphi_{k-1}(\mathbf{x}) + \alpha_k \mathbf{d}_k(\mathbf{x}),$$

where d_k is a lower bound.

• Here, a natural lower bound would be

$$F(x) \geq d_k(x) \stackrel{\scriptscriptstyle \Delta}{=} F(x_k^*) + \langle \kappa(y_{k-1} - x_k^*), x - x_k^* \rangle + \frac{\mu}{2} \|x - x_k^*\|^2,$$

where
$$x_k^{\star} \stackrel{\scriptscriptstyle \Delta}{=} \arg\min_{x \in \mathbb{R}^p} \Big\{ G_k(x) \stackrel{\scriptscriptstyle \Delta}{=} F(x) + \frac{\kappa}{2} \|x - y_{k-1}\|_2^2 \Big\}.$$

• But x_k^* is unknown! Then, use instead $d'_k(x)$ defined as

$$d'_k(x) \stackrel{\scriptscriptstyle \Delta}{=} F(x_k) + \langle \kappa(y_{k-1}-x_k), x-x_k \rangle + \frac{\mu}{2} \|x-x_k\|^2.$$

Ideas of proofs

Step 2: Relax the condition $F(x_k) \leq \varphi_k^{\star}$.

• We can show that Catalyst generates iterates $(x_k)_{k\geq 0}$ such that

$$F(x_k) \leq \phi_k^* + \xi_k,$$

where the sequence $(\xi_k)_{k\geq 0}$ is defined by $\xi_0 = 0$ and

$$\xi_k = (1 - \alpha_{k-1})(\xi_{k-1} + \varepsilon_k - (\kappa + \mu)\langle x_k - x_k^*, x_{k-1} - x_k \rangle).$$

- The sequences (α_k)_{k≥0} and (y_k)_{k≥0} are chosen in such a way that all the terms involving y_{k-1} − x_k are cancelled.
- We will control later the quantity $x_k x_k^*$ by strong convexity of G_k :

$$\frac{\kappa+\mu}{2}\|x_k-x_k^*\|_2^2 \leq G_k(x_k)-G_k^* \leq \varepsilon_k.$$

Ideas of proofs

Step 3: Control how this errors sum up together.

• Do cumbersome calculus.

Catalyst in practice

General strategy and application to randomized algorithms

Calculating the iteration-complexity decomposes into three steps:

- When F is μ -strongly convex, find κ that maximizes the ratio $\tau_{\mathcal{M}, \mathcal{G}_k}/\sqrt{\mu + \kappa}$ for algorithm \mathcal{M} . When F is non-strongly convex, maximize instead the ratio $\tau_{\mathcal{M}, \mathcal{G}_k}/\sqrt{L + \kappa}$.
- Output the upper-bound of the number of outer iterations k_{out} using the theorems.
- Compute the upper-bound of the expected number of inner iterations

$$\max_{k=1,\ldots,k_{\rm out}} \mathbb{E}[T_{\mathcal{M},G_k}(\varepsilon_k)] \leq k_{\rm in},$$

Then, the expected iteration-complexity denoted Comp. is given by

$$\mathsf{Comp} \leq k_{\mathsf{in}} \times k_{\mathsf{out}}$$
.

Applications

Deterministic and Randomized Incremental Gradient methods

- Stochastic Average Gradient (SAG and SAGA) [Schmidt et al., 2013, Defazio et al., 2014a];
- Finito and MISO [Mairal, 2015, Defazio et al., 2014b];
- Semi-Stochastic/Mixed Gradient [Konečný et al., 2014, Zhang et al., 2013];
- Stochastic Dual coordinate Ascent [Shalev-Shwartz and Zhang, 2012];
- Stochastic Variance Reduced Gradient [Xiao and Zhang, 2014].

But also, randomized coordinate descent methods, and more generally first-order methods with linear convergence rates.

References I

- A. Agarwal and L. Bottou. A lower bound for the optimization of finite sums. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2015.
- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.
- J.V. Burke and Maijian Qian. On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating. *Mathematical Programming*, 88(1):157–181, 2000.
- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. *SIAM Journal on Scientific Computing*, 20:33–61, 1999.
- Xiaojun Chen and Masao Fukushima. Proximal quasi-Newton methods for nondifferentiable convex optimization. *Mathematical Programming*, 85(2): 313–334, 1999.
- P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. *SIAM Multiscale Modeling and Simulation*, 4(4):1168–1200, 2006.

References II

- I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. *Communications on Pure and Applied Mathematics*, 57(11):1413–1457, 2004.
- A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In Advances in Neural Information Processing Systems (NIPS), 2014a.
- A. J. Defazio, T. S. Caetano, and J. Domke. Finito: A faster, permutable incremental gradient method for big data problems. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2014b.
- Olivier Devolder, F. Glineur, and Yurii Nesterov. First-order methods of smooth convex optimization with inexact oracle. *Mathematical Programming*, 146 (1-2):37–75, 2014.
- Michael P Friedlander and Mark Schmidt. Hybrid deterministic-stochastic methods for data fitting. *SIAM Journal on Scientific Computing*, 34(3): A1380–A1405, 2012.

References III

- R. Frostig, R. Ge, S. M. Kakade, and A. Sidford. Un-regularizing: approximate proximal point algorithms for empirical risk minimization. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2015.
- Marc Fuentes, Jérôme Malick, and Claude Lemaréchal. Descentwise inexact proximal algorithms for smooth optimization. *Computational Optimization and Applications*, 53(3):755–769, 2012.
- Masao Fukushima and Liqun Qi. A globally and superlinearly convergent algorithm for nonsmooth convex minimization. *SIAM Journal on Optimization*, 6(4):1106–1120, 1996.
- Dan Garber and Elad Hazan. Fast and simple pca via convex optimization. *arXiv preprint arXiv:1509.05647*, 2015.
- O. Güler. New proximal point algorithms for convex minimization. SIAM Journal on Optimization, 2(4):649–664, 1992.
- B. He and X. Yuan. An accelerated inexact proximal point algorithm for convex minimization. *Journal of Optimization Theory and Applications*, 154(2): 536–548, 2012.

프 (프)

References IV

- Jakub Konečný, Jie Liu, Peter Richtárik, and Martin Takáč. ms2gd: Mini-batch semi-stochastic gradient descent in the proximal setting. *arXiv preprint arXiv:1410.4744*, 2014.
- Guanghui Lan. An optimal randomized incremental gradient method. arXiv preprint arXiv:1507.02000, 2015.
- J. Mairal. Incremental majorization-minimization optimization with application to large-scale machine learning. *SIAM Journal on Optimization*, 25(2): 829–855, 2015.
- Y. Nesterov. *Introductory lectures on convex optimization: a basic course*. Kluwer Academic Publishers, 2004.
- Y. Nesterov. Gradient methods for minimizing composite objective function. *Mathematical Programming*, 140(1):125–161, 2013.
- Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o (1/k2). In *Doklady an SSSR*, volume 269, pages 543–547, 1983.

문에 세종에

References V

- R. D. Nowak and M. A. T. Figueiredo. Fast wavelet-based image deconvolution using the EM algorithm. In *Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers.*, 2001.
- S. Salzo and S. Villa. Inexact and accelerated proximal point algorithms. *Journal of Convex Analysis*, 19(4):1167–1192, 2012.
- M. Schmidt, N. Le Roux, and F. Bach. Convergence rates of inexact proximal-gradient methods for convex optimization. In *Advances in Neural Information Processing Systems (NIPS)*, 2011.
- M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient. *arXiv:1309.2388*, 2013.
- S. Shalev-Shwartz and T. Zhang. Proximal stochastic dual coordinate ascent. arXiv:1211.2717, 2012.
- S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization. *Mathematical Programming*, pages 1–41, 2014.
- R. Tibshirani. Regression shrinkage and selection via the Lasso. *Journal of the Royal Statistical Society Series B*, 58(1):267–288, 1996.

References VI

- S.J. Wright, R.D. Nowak, and M.A.T. Figueiredo. Sparse reconstruction by separable approximation. *IEEE Transactions on Signal Processing*, 57(7): 2479-2493. 2009.
- L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization, 24(4):2057-2075, 2014.
- Lijun Zhang, Mehrdad Mahdavi, and Rong Jin. Linear convergence with condition number independent access of full gradients. In Advances in Neural Information Processing Systems, pages 980–988, 2013.
- Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for regularized empirical risk minimization. In Proceedings of the International Conference on Machine Learning (ICML), 2015.