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Part I: A Short Introduction to Parcimony
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1 A short introduction to parsimony
Early thoughts
Sparsity in the statistics literature from the 60’s and 70’s
Wavelet thresholding in signal processing from 90’s
The modern parsimony and the ℓ1-norm
Structured sparsity
Compressed sensing and sparse recovery

2 Discovering the structure of natural images

3 Sparse models for image processing

4 Optimization for sparse estimation

5 Application cases
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Early thoughts

(a) Dorothy Wrinch
1894–1980

(b) Harold Jeffreys
1891–1989

The existence of simple laws is, then, apparently, to be
regarded as a quality of nature; and accordingly we may infer
that it is justifiable to prefer a simple law to a more complex
one that fits our observations slightly better.

[Wrinch and Jeffreys, 1921]. Philosophical Magazine Series.
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Historical overview of parsimony

14th century: Ockham’s razor;

1921: Wrinch and Jeffreys’ simplicity principle;

1952: Markowitz’s portfolio selection;

60 and 70’s: best subset selection in statistics;

70’s: use of the ℓ1-norm for signal recovery in geophysics;

90’s: wavelet thresholding in signal processing;

1996: Olshausen and Field’s dictionary learning;

1996–1999: Lasso (statistics) and basis pursuit (signal processing);

2006: compressed sensing (signal processing) and Lasso consistency
(statistics);

2006–now: applications of dictionary learning in various scientific
fields such as image processing and computer vision.
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Sparsity in the statistics literature from the 60’s and 70’s

Given some observed data points z1, . . . , zn that are assumed to be
independent samples from a statistical model with parameters θ in R

p,
maximum likelihood estimation (MLE) consists of minimizing

min
θ∈Rp

[

L(θ) △
= −

n∑

i=1

logPθ(zi )

]

.

Example: ordinary least square

Observations zi = (yi , xi ), with yi in R.
Linear model: yi = x⊤i θ + εi , with εi ∼ N (0, 1).

min
θ∈Rp

n∑

i=1

1

2

(

yi − x⊤i θ
)2
.
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Sparsity in the statistics literature from the 60’s and 70’s

Given some observed data points z1, . . . , zn that are assumed to be
independent samples from a statistical model with parameters θ in R

p,
maximum likelihood estimation (MLE) consists of minimizing

min
θ∈Rp

[

L(θ) △
= −

n∑

i=1

logPθ(zi )

]

.

Motivation for finding a sparse solution:

removing irrelevant variables from the model;

obtaining an easier interpretation;

preventing overfitting;
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Sparsity in the statistics literature from the 60’s and 70’s

Given some observed data points z1, . . . , zn that are assumed to be
independent samples from a statistical model with parameters θ in R

p,
maximum likelihood estimation (MLE) consists of minimizing

min
θ∈Rp

[

L(θ) △
= −

n∑

i=1

logPθ(zi )

]

.

Two questions:

1 how to choose k?

2 how to find the best subset of k variables?
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Sparsity in the statistics literature from the 60’s and 70’s

How to choose k?

Mallows’s Cp statistics [Mallows, 1964, 1966];

Akaike information criterion (AIC) [Akaike, 1973];

Bayesian information critertion (BIC) [Schwarz, 1978];

Minimum description length (MDL) [Rissanen, 1978].

These approaches lead to penalized problems

min
θ∈Rp

L(θ) + λ‖θ‖0,

with different choices of λ depending on the chosen criterion.
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Sparsity in the statistics literature from the 60’s and 70’s

How to solve the best k-subset selection problem?

Unfortunately...

...the problem is NP-hard [Natarajan, 1995].

Two strategies

combinatorial exploration with branch-and-bound
techniques [Furnival and Wilson, 1974] → leaps and bounds,
exact algorithm but exponential complexity;

greedy approach: forward selection [Efroymson, 1960] (originally
developed for observing intermediate solutions),
already contains all the ideas of matching pursuit algorithms.

Important reference: [Hocking, 1976]. The analysis and selection of
variables in linear regression. Biometrics.
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Wavelet thresholding in signal processing from the 90’s

A wavelet basis represents a set of functions ϕ1, ϕ2 that are essentially
dilated and shifted versions of each other [see Mallat, 2008].

Concept of parsimony with wavelets

When a signal f is “smooth”, it is close to an expansion
∑

i αiϕi where
only a few coefficients αi are non-zero.
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(b) Morlet’s wavelet
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Wavelet thresholding in signal processing from the 90’s

Wavelets where the topic of a long quest for representing natural images

2D-Gabors [Daugman, 1985];
steerable wavelets [Simoncelli et al., 1992];
curvelets [Candès and Donoho, 2002];
countourlets [Do and Vertterli, 2003];
bandlets [Le Pennec and Mallat, 2005];
⋆-lets (joke).

(a) 2D Gabor filter. (b) With shifted phase. (c) With rotation.
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Wavelet thresholding in signal processing from 90’s

The theory of wavelets is well developed for continuous signals, e.g.,
in L2(R), but also for discrete signals x in R

n.
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Wavelet thresholding in signal processing from 90’s

Given an orthogonal wavelet basis D = [d1, . . . ,dn] in R
n×n, the wavelet

decomposition of x in R
n is simply

β = D⊤x and we have x = Dβ.

The k-sparse approximation problem

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α‖0 ≤ k ,

is not NP-hard here: since D is orthogonal, it is equivalent to

min
α∈Rp

1

2
‖β −α‖22 s.t. ‖α‖0 ≤ k .
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Wavelet thresholding in signal processing from 90’s

Given an orthogonal wavelet basis D = [d1, . . . ,dn] in R
n×n, the wavelet

decomposition of x in R
n is simply

β = D⊤x and we have x = Dβ.

The k-sparse approximation problem

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α‖0 ≤ k ,

The solution is obtained by hard-thresholding:

αht[j ] = δ|β[j ]|≥µβ[j ] =

{
β[j ] if |β[j ]| ≥ µ
0 otherwise

,

where µ the k-th largest value among the set {|β[1]|, . . . , |β[p]|}.
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Wavelet thresholding in signal processing, 90’s

Another key operator introduced by Donoho and Johnstone [1994] is
the soft-thresholding operator:

αst[j ]
△
= sign(β[j ])max(|β[j ]| − λ, 0) =







β[j ]− λ if β[j ] ≥ λ
β[j ] + λ if β[j ] ≤ −λ
0 otherwise

,

where λ is a parameter playing the same role as µ previously.

With β
△
= D⊤x and D orthogonal, it provides the solution of the

following sparse reconstruction problem:

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1,

which will be of high importance later.
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Wavelet thresholding in signal processing, 90’s

β

αst

λ

−λ

(d) Soft-thresholding operator,
αst = sign(β)max(|β| − λ, 0).

β

αht

µ

−µ

(e) Hard-thresholding operator
αht = δ|β|≥µβ.

Figure: Soft- and hard-thresholding operators, which are commonly used for
signal estimation with orthogonal wavelet basis.
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Wavelet thresholding in signal processing, 90’s

Various work tried to exploit the structure of wavelet coefficients.

α1

α2 α3

α4 α5 α6 α7

α8 α9 α10 α11 α12 α13 α14 α15

Figure: Illustration of a wavelet tree with four scales for one-dimensional
signals. We also illustrate the zero-tree coding scheme [Shapiro, 1993].
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Wavelet thresholding in signal processing, 90’s

To model spatial relations, it is possible to define some (non-overlapping)
groups G of wavelet coefficients, and define a group soft-thresholding
operator [Hall et al., 1999, Cai, 1999]. For every group g in G,

αgt[g ]
△
=

{ (

1− λ
‖β[g ]‖2

)

β[g ] if ‖β[g ]‖2 ≥ λ
0 otherwise

,

where β[g ] is the vector of size |g | recording the entries of β in g .

With β
△
= D⊤x and D orthogonal, it is in fact the solution of

min
α∈Rp

1

2
‖x−Dα‖22 + λ

∑

g∈G

‖α[g ]‖2,

which will be of interest later in the lecture.
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The modern parsimony and the ℓ1-norm
Sparse linear models in signal processing

Let x in R
n be a signal.

Let D = [d1, . . . ,dp] ∈ R
n×p be a set of

elementary signals.
We call it dictionary.

D is “adapted” to x if it can represent it with a few elements—that is,
there exists a sparse vector α in R

p such that x ≈ Dα. We call α the
sparse code.



x





︸ ︷︷ ︸

x∈Rn

≈



 d1 d2 · · · dp





︸ ︷︷ ︸

D∈Rn×p








α[1]
α[2]
...

α[p]








︸ ︷︷ ︸

α∈Rp,sparse
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The modern parsimony and the ℓ1-norm
Sparse linear models: machine learning/statistics point of view

Let (yi , xi )
n
i=1 be a training set, where the vectors xi are in R

p and are
called features. The scalars yi are in

{−1,+1} for binary classification problems.

R for regression problems.

We assume there exists a relation y ≈ β⊤x, and solve

min
β∈Rp

1

n

n∑

i=1

L(yi ,β
⊤xi )

︸ ︷︷ ︸

empirical risk

+ λψ(β)
︸ ︷︷ ︸

regularization

.
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The modern parsimony and the ℓ1-norm
Sparse linear models: machine learning/statistics point of view

A few examples:

Ridge regression: min
β∈Rp

1

n

n∑

i=1

1

2
(yi − β⊤xi )

2 + λ‖β‖22.

Linear SVM: min
β∈Rp

1

n

n∑

i=1

max(0, 1− yiβ
⊤xi ) + λ‖β‖22.

Logistic regression: min
β∈Rp

1

n

n∑

i=1

log
(

1 + e−yiβ
⊤xi
)

+ λ‖β‖22.
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The modern parsimony and the ℓ1-norm
Sparse linear models: machine learning/statistics point of view

A few examples:

Ridge regression: min
β∈Rp

1

n

n∑

i=1

1

2
(yi − β⊤xi )

2 + λ‖β‖22.

Linear SVM: min
β∈Rp

1

n

n∑

i=1

max(0, 1− yiβ
⊤xi ) + λ‖β‖22.

Logistic regression: min
β∈Rp

1

n

n∑

i=1

log
(

1 + e−yiβ
⊤xi
)

+ λ‖β‖22.

The squared ℓ2-norm induces “smoothness” in β. When one knows in
advance that β should be sparse, one should use a sparsity-inducing
regularization such as the ℓ1-norm. [Chen et al., 1999, Tibshirani, 1996]
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The modern parsimony and the ℓ1-norm

Originally used to induce sparsity in geophysics [Claerbout and Muir,
1973, Taylor et al., 1979], the ℓ1-norm became popular in statistics with
the Lasso [Tibshirani, 1996] and in signal processing with the Basis
pursuit [Chen et al., 1999].

Three “equivalent” formulations

1

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1;

2

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α‖1 ≤ µ;

3

min
α∈Rp

‖α‖1 s.t. ‖x−Dα‖22 ≤ ε.
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The modern parsimony and the ℓ1-norm

And some variants...

For noiseless problems

min
α∈Rp

‖α‖1 s.t. x = Dα.

Beyond least squares

min
α∈Rp

f (α) + λ‖α‖1,

where f : Rp → R is convex.
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The modern parsimony and the ℓ1-norm

And some variants...

For noiseless problems

min
α∈Rp

‖α‖1 s.t. x = Dα.

Beyond least squares

min
α∈Rp

f (α) + λ‖α‖1,

where f : Rp → R is convex.

An important question remains:

why does the ℓ1-norm induce sparsity?
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The modern parsimony and the ℓ1-norm

Why does the ℓ1-norm induce sparsity?

Can we get some intuition from the simplest isotropic case?

α̂(λ) = argmin
α∈Rp

1

2
‖x−α‖22 + λ‖α‖1,

or equivalently the Euclidean projection onto the ℓ1-ball?

α̃(µ) = argmin
α∈Rp

1

2
‖x−α‖22 s.t. ‖α‖1 ≤ µ.

“equivalent” means that for all λ > 0, there exists µ ≥ 0 such that
α̃(µ) = α̂(λ).
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The modern parsimony and the ℓ1-norm

Why does the ℓ1-norm induce sparsity?

Can we get some intuition from the simplest isotropic case?

α̂(λ) = argmin
α∈Rp

1

2
‖x−α‖22 + λ‖α‖1,

or equivalently the Euclidean projection onto the ℓ1-ball?

α̃(µ) = argmin
α∈Rp

1

2
‖x−α‖22 s.t. ‖α‖1 ≤ µ.

“equivalent” means that for all λ > 0, there exists µ ≥ 0 such that
α̃(µ) = α̂(λ).
The relation between µ and λ is unknown a priori.

Julien Mairal Sparse Estimation for Image and Vision Processing 25/187



Why does the ℓ1-norm induce sparsity?
Regularizing with the ℓ1-norm

ℓ1-ball

‖α‖1 ≤ µ

α[2]

α[1]

The projection onto a convex set is “biased” towards singularities.
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Why does the ℓ1-norm induce sparsity?
Regularizing with the ℓ2-norm

α[2]

α[1]
ℓ2-ball

‖α‖2 ≤ µ

The ℓ2-norm is isotropic.

Julien Mairal Sparse Estimation for Image and Vision Processing 27/187



Why does the ℓ1-norm induce sparsity?
In 3D. (images produced by G. Obozinski)

Julien Mairal Sparse Estimation for Image and Vision Processing 28/187



Why does the ℓ1-norm induce sparsity?
Regularizing with the ℓ∞-norm

α[2]

α[1]
ℓ∞-ball

‖α‖∞ ≤ µ

The ℓ∞-norm encourages |α[1]| = |α[2]|.
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Why does the ℓ1-norm induce sparsity?
Analytical point of view: 1D case

min
α∈R

1

2
(x − α)2 + λ|α|

Piecewise quadratic function with a kink at zero.

Derivative at 0+: g+ = −x + λ and 0−: g− = −x − λ.

Optimality conditions. α is optimal iff:

|α| > 0 and (x − α) + λ sign(α) = 0

α = 0 and g+ ≥ 0 and g− ≤ 0

The solution is a soft-thresholding:

α⋆ = sign(x)(|x | − λ)+.
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Why does the ℓ1-norm induce sparsity?
Comparison with ℓ2-regularization in 1D

ψ(α) = α2

ψ′(α) = 2α

ψ(α) = |α|

ψ′
−(α) = −1, ψ′

+(α) = 1

The gradient of the ℓ2-penalty vanishes when α get close to 0. On its
differentiable part, the norm of the gradient of the ℓ1-norm is constant.
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Why does the ℓ1-norm induce sparsity?
Physical illustration

E1 = 0 E1 = 0

x
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Why does the ℓ1-norm induce sparsity?
Physical illustration

E1 =
k1
2 (x − α)2

E2 =
k2
2 α

2 α

α

E1 =
k1
2 (x − α)2

E2 = mgα
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Why does the ℓ1-norm induce sparsity?
Physical illustration

E1 =
k1
2 (x − α)2

E2 =
k2
2 α

2 α

α = 0 !!

E1 =
k1
2 (x − α)2

E2 = mgα
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Why does the ℓ1-norm induce sparsity?
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Figure: The regularization path of the Lasso.

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1.
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Non-convex sparsity-inducing penalties

Exploiting concave functions with a kink at zero

ψ(α) =
∑p

j=1 ϕ(|α[j ]|).
ℓq-penalty, with 0 < q < 1: ψ(α)

△
=
∑p

j=1 |α[j ]|q, [Frank and
Friedman, 1993];

log penalty, ψ(α)
△
=
∑p

j=1 log(|α[j ]|+ ε), [Candès et al., 2008].

ϕ is any function that looks like this:

α

ϕ(|α|)
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Non-convex sparsity-inducing penalties

(a) ℓ0.5-ball, 2-D (b) ℓ1-ball, 2-D (c) ℓ2-ball, 2-D

Figure: Open balls in 2-D corresponding to several ℓq-norms and pseudo-norms.
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Non-convex sparsity-inducing penalties

α[2]

α[1]
ℓq-ball

‖α‖q ≤ µ with q < 1
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Elastic-net

The elastic net introduced by [Zou and Hastie, 2005]

ψ(α) = ‖α‖1 + γ‖α‖22,

The penalty provides more stable (but less sparse) solutions.

(a) ℓ1-ball, 2-D (b) elastic-net, 2-D (c) ℓ2-ball, 2-D
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The elastic-net
vs other penalties

α[2]

α[1]
ℓq-ball

‖α‖q ≤ µ with q < 1
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The elastic-net
vs other penalties

ℓ1-ball

‖α‖1 ≤ µ

α[2]

α[1]

Julien Mairal Sparse Estimation for Image and Vision Processing 38/187



The elastic-net
vs other penalties

elastic-net

ball

(1− γ)‖α‖1 + γ‖α‖22 ≤ µ

α[2]

α[1]
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The elastic-net
vs other penalties

α[2]

α[1]
ℓ2-ball

‖α‖22 ≤ µ
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Total variation and fused Lasso

The anisotropic total variation [Rudin et al., 1992]

ψ(α) =

p−1
∑

j=1

|α[j + 1]−α[j ]|,

called fused Lasso in statistics [Tibshirani et al., 2005]. The penalty
encourages piecewise constant signals (can be extended to images).

Image borrowed from a talk of J.-P. Vert, representing DNA copy
numbers.
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Group Lasso and mixed norms
[Turlach et al., 2005, Yuan and Lin, 2006, Zhao et al., 2009]
[Grandvalet and Canu, 1999, Bakin, 1999]

the ℓ1/ℓq-norm : ψ(α) =
∑

g∈G

‖α[g ]‖q.

G is a partition of {1, . . . , p};
q = 2 or q =∞ in practice;

can be interpreted as the ℓ1-norm of [‖α[g ]‖q]g∈G .

ψ(α) = ‖α[{1, 2}]‖2 + |α[3]|.
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Spectral sparsity
[Fazel et al., 2001, Srebro et al., 2005]

A natural regularization function for matrices is the rank

rank(A)
△
= |{j : sj(A) 6= 0}| = ‖s(A)‖0,

where sj is the j-th singular value and s is the spectrum of A.

A successful convex relaxation of the rank is the sum of singular values

‖A‖∗ △
=

p
∑

j=1

sj(A) = ‖s(A)‖1,

for A in R
p×k with k ≥ p.

The resulting function is a norm, called the trace or nuclear norm.
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Structured sparsity
images produced by G. Obozinski
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Structured sparsity
images produced by G. Obozinski
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Structured sparsity
Metabolic network of the budding yeast from Rapaport et al. [2007]
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Structured sparsity
Metabolic network of the budding yeast from Rapaport et al. [2007]
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Structured sparsity

Warning: Under the name “structured sparsity” appear in fact
significantly different formulations!

1 non-convex

zero-tree wavelets [Shapiro, 1993];
predefined collection of sparsity patterns: [Baraniuk et al., 2010];
select a union of groups: [Huang et al., 2009];
structure via Markov random fields: [Cehver et al., 2008];

2 convex (norms)

tree-structure: [Zhao et al., 2009];
select a union of groups: [Jacob et al., 2009];
zero-pattern is a union of groups: [Jenatton et al., 2011a];
other norms: [Micchelli et al., 2013].
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Structured sparsity
Group Lasso with overlapping groups [Jenatton et al., 2011a]

ψ(α) =
∑

g∈G

‖α[g ]‖q.

What happens when the groups overlap?

the pattern of non-zero variables is an intersection of groups;

the zero pattern is a union of groups.

ψ(α) = ‖α‖2 + |α[2]|+ |α[3]|.
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Structured sparsity
Group Lasso with overlapping groups [Jenatton et al., 2011a]

Examples of set of groups G

Selection of contiguous patterns on a sequence, p = 6.

G is the set of blue groups.

Any union of blue groups set to zero leads to the selection of a
contiguous pattern.
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Structured sparsity
Group Lasso with overlapping groups [Jenatton et al., 2011a]

Examples of set of groups G

Selection of rectangles on a 2-D grids, p = 25.

G is the set of blue/green groups (with their not displayed
complements).

Any union of blue/green groups set to zero leads to the selection ofJulien Mairal Sparse Estimation for Image and Vision Processing 48/187



Structured sparsity
Group Lasso with overlapping groups [Jenatton et al., 2011a]

Examples of set of groups G

Selection of diamond-shaped patterns on a 2-D grids, p = 25.

It is possible to extent such settings to 3-D space, or more complex
topologies.
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Structured sparsity
Hierarchical norms [Zhao et al., 2009].

A node can be active only if its ancestors are active.
The selected patterns are rooted subtrees.
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Structured sparsity
Hierarchical norms [Zhao et al., 2009].

(d) Sparsity. (e) Group sparsity. (f) Hierarchical sparsity.
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Structured sparsity
the non-convex penalty of Huang et al. [2009]

Warning: different point of view than in the previous three slides

ϕ(α)
△
= min

J⊆G

{∑

g∈J

ηg s.t. Supp(α) ⊆
⋃

g∈J

g
}

.

the penalty is non-convex.

is NP-hard to compute (set cover problem).

The pattern of non-zeroes in α is a union of (a few) groups.

It can be rewritten as a boolean linear program:

ϕ(α) = min
x∈{0,1}|G|

{

η⊤x s.t. Nx ≥ Supp(α)
}

.
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Structured sparsity
convex relaxation and the penalty of Jacob et al. [2009]

The penalty of Huang et al. [2009]:

ϕ(α) = min
x∈{0,1}|G|

{

η⊤x s.t. Nx ≥ Supp(α)
}

.

A convex LP-relaxation:

ψ(α)
△
= min

x∈R
|G|
+

{

η⊤x s.t. Nx ≥ |α|
}

.

Lemma: ψ is the penalty of Jacob et al. [2009] with the ℓ∞-norm:

ψ(α)= min
(βg∈Rp)g∈G

∑

g∈G

ηg‖βg‖∞ s.t. α=
∑

g∈G

βg and ∀g , Supp(βg ) ⊆ g ,

Julien Mairal Sparse Estimation for Image and Vision Processing 52/187



Structured sparsity
The norm of Jacob et al. [2009] in 3D

ψ(α) with G = {{1, 2}, {2, 3}, {1, 3}}.
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Sparse recovery: theoretical results for the Lasso
three upcoming slides are inspired from a lecture of G. Obozinski given at Hólar in 2010

Given some observations (yi , xi )i=1,...,n, with yi in R, assume that the
linear model yi = x⊤i θ + εi is valid, with εi ∼ N (0, σ2).

Given an estimate θ̂, three main problems:

1 Regular consistency: convergence of estimator θ̂ to θ, i.e.,
‖θ̂ − θ‖2 tends to zero when n tends to ∞;

2 Model selection consistency: convergence of the sparsity pattern
of θ̂ to the pattern of θ;

3 Efficiency: convergence of predictions with θ̂ to the predictions
with θ, i.e., 1

n
‖Xθ̂ − Xθ‖22 tends to zero.
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Sparse recovery: theoretical results for the Lasso
Conditions on the design for success

Restricted Isometry Property (RIP)

√

1− δk‖θ‖ ≤ ‖Xθ‖ ≤
√

1 + δk for all ‖θ‖0 ≤ k .

Subsets of size k of the columns of X should be close to orthogonal.

Mutual Incoherence Property (MIP)

max
i 6=j
|x⊤i xj | < µ.

Irrepresentable condition (IC)

‖QJcJQ
−1
JJ sign(θJ)‖∞ 6 1− γ with QJJ′ = X⊤

J XJ′ .

Restricted Eigenvalue condition (RE)

κ(k)2 = min
|J|6k

min
∆, ‖∆Jc ‖16‖∆J‖1

∆⊤Q∆

‖∆J‖22
> 0
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Sparse recovery: theoretical results for the Lasso
Model selection consistency (Lasso)

Assume θ sparse and denote J = {j : θ[j ] 6= 0} the nonzero pattern

Irrepresentable Condition(γ) [Zhao and Yu, 2006, Wainwright, 2009]

‖QJcJQ
−1
JJ sign(θJ)‖∞ 6 1− γ

where Q = limn→+∞
1
n

∑n
i=1 xix

⊤
i ∈ R

p×p (covariance matrix).

Note that condition depends on θ and J
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Sparse recovery: theoretical results for the Lasso
Model selection consistency (Lasso)

Assume θ sparse and denote J = {j : θ[j ] 6= 0} the nonzero pattern
Irrepresentable Condition(γ) [Zhao and Yu, 2006, Wainwright, 2009]

‖QJcJQ
−1
JJ sign(θJ)‖∞ 6 1− γ

where Q = limn→+∞
1
n

∑n
i=1 xix

⊤
i ∈ R

p×p (covariance matrix).
Note that condition depends on θ and J

Theorem (Model selection for classical asymptotics (i.e., p fixed))

IC(0) is necessary and IC(γ) for γ > 0 is sufficient for model selection
consistency.

High-dimension (p → +∞): additional requirements

Sample size condition : n > k log p

Requires lower-bound on magnitude of nonzero θ[j ]

see Bühlmann and Van De Geer [2011] for a review.
Julien Mairal Sparse Estimation for Image and Vision Processing 56/187



Compressed sensing

Compressed sensing [Candès et al., 2006] says that

an s-sparse signal α⋆ in R
p can be exactly recovered by

observing x = Dα⋆ and solving the linear program

min
α∈Rp

‖α‖1 s.t. x = Dα,

where D satisfies the RIP assumption with δ2s ≤
√
2− 1.

Moreover, the convex relaxation is exact.

matrices D in R
m×p satisfying the RIP assumption can be obtained

with simple random sampling schemes with

m = O(slog(p/s)).
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Compressed sensing and sparse recovery

Remarks

The theory also admits extensions to approximately sparse signals,
noisy measurements. . .

extensions where D is replaced by Z⊤D where Z is random and D
deterministic;

the dictionaries we are using in this lecture do not satisfy RIP;

sparse estimation and sparse coding is not compressed sensing.
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Sparse recovery and compressed sensing

Some thoughts from Hocking [1976]:

The problem of selecting a subset of independent or
predictor variables is usually described in an idealized
setting. That is, it is assumed that (a) the analyst has data
on a large number of potential variables which include all
relevant variables and appropriate functions of them plus,
possibly, some other extraneous variables and variable
functions and (b) the analyst has available “good” data on
which to base the eventual conclusions. In practice, the lack
of satisfaction of these assumptions may make a detailed
subset selection analysis a meaningless exercise.
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Conclusions from the first part

the sparsity principle has been used for a long time, and this is not
a recent idea;

there are numerous ways of designing sparse regularization functions
adapted to a particular problem. Choosing the best one is not easy
and requires some domain knowledge;

the dictionaries we will use in this literature almost never satisfy
theoretical assumptions ensuring sparse recovery.

Other take-home messages:

sparsity is not always good. If possible, try ℓ2 before trying ℓ1;

convexity is not always good. When trying ℓ1, try also ℓ0.
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Part II: Discovering the structure of
natural images
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1 A short introduction to parsimony

2 Discovering the structure of natural images
Dictionary learning
Pre-processing
Principal component analysis
Clustering or vector quantization
Structured dictionary learning
Other matrix factorization methods

3 Sparse models for image processing

4 Optimization for sparse estimation

5 Application cases
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Dictionary learning

The goal of automatically learning local structures in natural images was
first achieved by neuroscientists.

The model of Olshausen and Field [1996] looks for a dictionary D
adapted to a training set of natural image patches xi , i = 1, . . . , n:

min
D∈C,A∈Rp×n

1

n

n∑

i=1

‖xi −Dαi‖22 + λψ(αi ),

where A = [α1, . . . ,αn] and C △
= {D ∈ R

m×p : ∀ j , ‖dj‖2 ≤ 1}.

Typical settings

n ≈ 100 000;

m = 10× 10 pixels;

p = 256.
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Dictionary learning

Figure: with centering

Julien Mairal Sparse Estimation for Image and Vision Processing 64/187



Dictionary learning

Figure: with whitening
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Dictionary learning

Why was it found impressive by neuroscientists?

since Hubel and Wiesel [1968], it is known that some visual neurons
are responding to particular image features, such as oriented edges.

Later, Daugman [1985] demonstrated that fitting a linear model to
neuronal responses given a visual stimuli may produce filters that
can be well approximated by a two-dimensional Gabor function.

the original motivation of Olshausen and Field [1996] was to
establish a relation between the statistical structure of natural
images and the properties of neurons from area V1.

The results provided some “support” for classical models of V1 based on
Gabor filters.
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Dictionary learning

Why was it found impressive by neuroscientists?

since Hubel and Wiesel [1968], it is known that some visual neurons
are responding to particular image features, such as oriented edges.

Later, Daugman [1985] demonstrated that fitting a linear model to
neuronal responses given a visual stimuli may produce filters that
can be well approximated by a two-dimensional Gabor function.

the original motivation of Olshausen and Field [1996] was to
establish a relation between the statistical structure of natural
images and the properties of neurons from area V1.

Warning

In fact, little is known about the early visual cortex [Olshausen and
Field, 2005, Carandini et al., 2005].
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Dictionary learning
Snippet from Olshausen and Field [2005]

However, [...], there remains a great deal that is still unknown
about how V1 works and its role in visual system function. We
believe it is quite probable that the correct theory of V1
is still far afield from the currently proposed theories.

Julien Mairal Sparse Estimation for Image and Vision Processing 67/187



Dictionary learning
Point of views

Matrix factorization

It is useful to see dictionary learning as a matrix factorization problem

min
D∈C,A∈Rp×n

1

2n
‖X−DA‖2F + λΨ(A).

This is simply a matter of notation:

min
D∈C,A∈Rp×n

1

n

n∑

i=1

‖xi −Dαi‖22 + λψ(αi ),

but the matrix factorization point of view allows us to make connections
with numerous other unsupervised learning techniques, such as K-means,
PCA, NMF, ICA...
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Dictionary learning
Point of views

Empirical risk minimization

min
D∈C

1

n

n∑

i=1

L(xi ,D),

with

L(x,D)
△
= min

α∈Rp

1

2
‖x−Dα‖22 + λψ(α).

Again, this is a matter of notation, but the empirical risk minimization
point of view paves the way to

stochastic optimization [Mairal et al., 2010a];

some theoretical analysis [?Vainsencher et al., 2011, Gribonval
et al., 2013].
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Dictionary learning
Constrained variants

The formulations below are not equivalent

min
D∈C,A∈Rp×n

n∑

i=1

1

2
‖xi −Dαi‖22 s.t. ψ(αi ) ≤ µ.

or

min
D∈C,A∈Rp×n

n∑

i=1

ψ(αi ) s.t. ‖xi −Dαi‖22 ≤ ε.

Using one instead of another is a matter of taste and of the problem
at hand.
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Pre-processing of natural image patches
Centering (also called removing the DC component)

xi ← xi −




1

m

m∑

j=1

xi [j ]



 1m,

(a) Without pre-processing. (b) After centering.
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Pre-processing of natural image patches
Contrast (variance) normalization

xi ←
1

max(‖xi‖2, η)
xi .

ex: η can be 0.2 times the mean value of the ‖xi‖2.

(a) After centering. (b) After contrast normalization.
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Pre-processing of natural image patches
Whitening after centering

xi ← US†U⊤xi ,

where (1/
√
n)X = USV⊤ (SVD). Sometimes, small singular values are

also set to zero. The resulting covariance (1/n)XX⊤ is close to identity.

(a) After centering. (b) After whitening.
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Pre-processing of natural image patches
Treatment of color image patches

Should we use RGB?
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Pre-processing of natural image patches
Treatment of color image patches

Should we use RGB?

RGB dates back to our first understanding of the nature of light:
color spectrum [Newton, 1675], trichromatic vision [Young, 1845],
color composition [Grassmann, 1854, Maxwell, 1860, von
Helmholtz, 1852], biological photoreceptors [Nathans et al., 1986];

other color spaces, such as CIELab, YIQ, YCrBr have less
correlated color channels [Pratt, 1971, Sharma and Trussell, 1997],
and provide a better perceptual distance;

it does not mean that RGB should never be used: changing the
color space will also change the nature of the noise...
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Pre-processing of natural image patches
Treatment of color image patches

Should we use RGB?

RGB dates back to our first understanding of the nature of light:
color spectrum [Newton, 1675], trichromatic vision [Young, 1845],
color composition [Grassmann, 1854, Maxwell, 1860, von
Helmholtz, 1852], biological photoreceptors [Nathans et al., 1986];

other color spaces, such as CIELab, YIQ, YCrBr have less
correlated color channels [Pratt, 1971, Sharma and Trussell, 1997],
and provide a better perceptual distance;

it does not mean that RGB should never be used: changing the
color space will also change the nature of the noise...

how do we perform centering, whitening and normalization?
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Pre-processing of natural image patches
Treatment of color image patches

Should we use RGB?

RGB dates back to our first understanding of the nature of light:
color spectrum [Newton, 1675], trichromatic vision [Young, 1845],
color composition [Grassmann, 1854, Maxwell, 1860, von
Helmholtz, 1852], biological photoreceptors [Nathans et al., 1986];

other color spaces, such as CIELab, YIQ, YCrBr have less
correlated color channels [Pratt, 1971, Sharma and Trussell, 1997],
and provide a better perceptual distance;

it does not mean that RGB should never be used: changing the
color space will also change the nature of the noise...

how do we perform centering, whitening and normalization?

center each R,G,B channel independently.
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Pre-processing of natural image patches

(a) Without pre-processing. (b) After centering.

(c) Centering and normalization. (d) After whitening.
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Principal component analysis (PCA)

Also known has the Karhunen-Loève or Hotelling transform [Hotelling,
1933], it is often presented as an iterative process finding orthogonal
directions maximizing variance in the data.

In fact, it can be cast as a low-rank matrix factorization problem:

min
U∈Rm×k ,V∈Rn×k

∥
∥
∥X−UV⊤

∥
∥
∥

2

F
s.t. U⊤U = Ik ,

where the rows of X are centered.

As a consequence of the theorem of Eckart and Young [1936], the
matrix U contains the principal components of X corresponding to the k
largest singular values.
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Principal component analysis (PCA)

(e) DCT Dictionary. (f) Principal components.

Figure: On the right, we visualize the principal components of 400 000
randomly sampled natural image patches of size 16× 16. On the left, we
display a discrete cosine transform (DCT) dictionary [Ahmed et al., 1974].
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Principal component analysis (PCA)

(a) Original Image. (b) Principal components.

Figure: Visualization of the principal components of all overlapping patches
from the image tiger. Even though the image is not natural, its principal
components are similar to the previous ones.
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Principal component analysis (PCA)
[Bossomaier and Snyder, 1986, Simoncelli and Olshausen, 2001, Hyvärinen et al., 2009].

Warning

The sinusoids produced by PCA have nothing to do with the structure
of natural images, but are due to a property of shift invariance.
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Principal component analysis (PCA)
[Bossomaier and Snyder, 1986, Simoncelli and Olshausen, 2001, Hyvärinen et al., 2009].

Warning

The sinusoids produced by PCA have nothing to do with the structure
of natural images, but are due to a property of shift invariance.

Consider an infinite 1D signal with covariance Σ[k , l ] = σ(k − l),
where σ is even. Then, for all ω and ϕ,

∑

l

Σ(k , l)e i(ωl+ϕ) =
∑

l

σ(l − k)e i(ωl+ϕ) =

(
∑

l ′

σ(l ′)e iωl
′

)

e i(ωk+ϕ),

Since the function σ is even, the infinite sum
(
∑

l ′ σ(l
′)e iωl

′
)

is real,

and the signals [sin(ωk + ϕ)]k∈Z are all eigenvectors of Σ.
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Principal component analysis (PCA)
[Bossomaier and Snyder, 1986, Simoncelli and Olshausen, 2001, Hyvärinen et al., 2009].

Warning

The sinusoids produced by PCA have nothing to do with the structure
of natural images, but are due to a property of shift invariance.

Consider an infinite 1D signal with covariance Σ[k , l ] = σ(k − l),
where σ is even. Then, for all ω and ϕ,

∑

l

Σ(k , l)e i(ωl+ϕ) =
∑

l

σ(l − k)e i(ωl+ϕ) =

(
∑

l ′

σ(l ′)e iωl
′

)

e i(ωk+ϕ),

Since the function σ is even, the infinite sum
(
∑

l ′ σ(l
′)e iωl

′
)

is real,

and the signals [sin(ωk + ϕ)]k∈Z are all eigenvectors of Σ.

Note that controlling the approximation of the PCs by the discrete
Fourier transform for finite signals is non-trivial [Pearl, 1973].
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Clustering or vector quantization

First used on natural image patches for compression and
communication purposes [Nasrabadi and King, 1988, Gersho and Gray,
1992]. The goal is to find p clusters in the data, by minimizing the
following objective:

min
D∈Rm×p

∀i , li∈{1,...,p}

n∑

i=1

‖xi − dli‖22, (1)

This is again a matrix factorization problem

min
D∈Rm×p

A∈{0,1}p×n

1

2n
‖X−DA‖2F s.t. ∀i ,

p
∑

j=1

αi [j ] = 1.
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Clustering or vector quantization

(a) With centering. (b) With whitening.

Figure: Visualization of p = 256 centroids computed with the algorithm
K-means on n = 400 000 image patches of size m = 16× 16 pixels.
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Dictionary learning on color image patches

(a) With centering - RGB. (b) With whitening - RGB.

Figure: Dictionaries learned on RGB patches.
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Dictionary learning with structured sparsity

Formulation

min
D∈C,A∈Rp×n

1

2n
‖X−DA‖2F +

λ

n

n∑

i=1

∑

g∈G

‖αi [g ]‖q.

Group structures

hierarchical: organize the dictionary elements in a tree [Jenatton
et al., 2010, 2011b];

topographic: organize the elements on a 2D grid [Kavukcuoglu
et al., 2009, Mairal et al., 2011]. The groups are 3× 3 or 4× 4
spatial neighborhoods.

The second group structure is inspired by topographic ICA [Hyvärinen
et al., 2001].
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Dictionary learning with structured sparsity
Hierarchical dictionary learning

(a) Tree structure 1. (b) Tree structure 2.

Figure: Hierarchical dictionaries learned on natural image patches of
size 16× 16 pixels.

Julien Mairal Sparse Estimation for Image and Vision Processing 84/187



Dictionary learning with structured sparsity
Topographic dictionary learning

(a) With 3× 3 neighborhoods. (b) With 4× 4 neighborhood.

Figure: Topographic dictionaries learned on whitened natural image patches of
size 12× 12 pixels.
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Other matrix factorization methods
Independent component analysis (ICA)

Assume that x is a random variable—here a natural image patch— and
the columns of X = [x1, . . . , xn] are random realizations of x.

ICA is principle looking for a factorization x = Dα, where D is
orthogonal and α is a random vector whose entries are statistically
independent [Bell and Sejnowski, 1997, Hyvärinen et al., 2009].
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Other matrix factorization methods
Independent component analysis (ICA)

Assume that x is a random variable—here a natural image patch— and
the columns of X = [x1, . . . , xn] are random realizations of x.

ICA is principle looking for a factorization x = Dα, where D is
orthogonal and α is a random vector whose entries are statistically
independent [Bell and Sejnowski, 1997, Hyvärinen et al., 2009].

Warning

Because ICA is only a principle, there is not a unique ICA formulation.
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Other matrix factorization methods
Independent component analysis (ICA)

Assume that x is a random variable—here a natural image patch— and
the columns of X = [x1, . . . , xn] are random realizations of x.

ICA is principle looking for a factorization x = Dα, where D is
orthogonal and α is a random vector whose entries are statistically
independent [Bell and Sejnowski, 1997, Hyvärinen et al., 2009].

How do we measure independence?

Compare p(α) with the product of its marginals
∏p

j=1 p(α[j ]):

KL



p(α),

p
∏

j=1

p(α[j ])




△
=

∫

Rp

p(α) log

(

p(α)
∏p

j=1 p(α[j ])

)

dα,

which is zero iff the α[j ]′s are independent [Cover and Thomas, 2006].
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Other matrix factorization methods
Independent component analysis (ICA)

We can rewrite the Kullback-Leibler distance with entropies

KL



p(α),

p
∏

j=1

p(α[j ])



 =

p
∑

j=1

H(α[j ])− H(α).

The entropy H(α) can be shown to be independent of D when D is
orthogonal and x is whitened. Minimizing KL amounts to minimizing

p
∑

j=1

H(α[j ]) =

p
∑

j=1

H(d⊤j x).

We are close to an ICA “formulation” but not yet there.

The entropy is an abstract quantity that is not computable.
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Other matrix factorization methods
Independent component analysis (ICA)

Strategies leading to concrete formulations/algorithms for solving the
following problem after whitening the data

min
D

p
∑

j=1

H(d⊤j x) s.t. D⊤D = I.

parameterizing the densities p(d⊤j x), leading to maximum
likelihood estimation [see Hyvärinen et al., 2004];

plug in non-parametric estimators of the entropy [Pham, 2004];

encourage the distributions of the α[j ]’s to be
“non-Gaussian” [Cardoso, 2003].

Among all probability distributions with same variance, the Gaussian
ones are known to maximize entropy [Cover and Thomas, 2006].

Julien Mairal Sparse Estimation for Image and Vision Processing 88/187



Other matrix factorization methods

Non-negative matrix factorization [Paatero and Tapper, 1994].

min
D∈Rm×p ,A∈Rp×n

‖X−DA‖2F s.t. D ≥ 0 and A ≥ 0.
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Other matrix factorization methods

Non-negative matrix factorization [Paatero and Tapper, 1994].

min
D∈Rm×p ,A∈Rp×n

‖X−DA‖2F s.t. D ≥ 0 and A ≥ 0.

Archetypal analysis [Cutler and Breiman, 1994].

for all dictionary element j , dj = Xβj , where βj is in the simplex

∆n
△
= {β ∈ R

n s.t. β ≥ 0 and
∑n

i=1 β[i ] = 1} .
for all data point i , xi is close to Dαi , where αi is in ∆p;

formulation:
min

αi∈∆p for 1≤i≤n
βj∈∆n for 1≤j≤p

‖X− XBA‖2F,

where A = [α1, . . . ,αn], B = [β1, . . . ,βp] and the matrix of
archetypes D is equal to the product XB.
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Other matrix factorization methods
Convolutional sparse coding [Zhu et al., 2005, Zeiler et al., 2010]

Main idea

Decompose directly the full image x using small dictionary elements
placed at all possible positions in the image.

Given a dictionary Dm×p where m is a patch size, and an image x in R
l ,

the image decomposition can be written.

min
A∈Rp×l

1

2

∥
∥
∥
∥
∥
x−

l∑

k=1

R⊤
k Dαk

∥
∥
∥
∥
∥

2

2

+ λ
l∑

i=1

‖αk‖1,

Model with effective applications to visual recognition [Zeiler et al.,
2010, Rigamonti et al., 2013, Kavukcuoglu et al., 2010].

Then, the extension to dictionary learning is easy.
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Other matrix factorization methods
Convolutional sparse coding [Zhu et al., 2005, Zeiler et al., 2010]

Figure: Visualization of p = 100 dictionary elements learned on 30 whitened
natural images.
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Conclusions from the second part

intriguing structures naturally emerge from natural images;

matrix factorization is an effective tool to find these structures;

Advertisement

some matlab code will be provided upon publication of the
monograph for generating most of the figures from this lecture.

the SPAMS toolbox already contains lots of code (C++ interfaced
with Matlab, Python, R) for learning dictionaries, factorizing
matrices (NMF, archetypal analysis), solving sparse estimation
problems. http://spams-devel.gforge.inria.fr/.
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Conclusions from the second part

intriguing structures naturally emerge from natural images;

matrix factorization is an effective tool to find these structures;

Advertisement

some matlab code will be provided upon publication of the
monograph for generating most of the figures from this lecture.

the SPAMS toolbox already contains lots of code (C++ interfaced
with Matlab, Python, R) for learning dictionaries, factorizing
matrices (NMF, archetypal analysis), solving sparse estimation
problems. http://spams-devel.gforge.inria.fr/.

Question

Is unsupervised learning on natural image patches useful for any
prediction task?
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Part III: Sparse models for image processing
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1 A short introduction to parsimony

2 Discovering the structure of natural images

3 Sparse models for image processing
Image denoising
Image inpainting
Image demosaicking
Video processing
Image up-scaling
Inverting nonlinear local transformations
Other patch modeling approaches

4 Optimization for sparse estimation

5 Application cases
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Image denoising

y
︸︷︷︸

measurements

= xorig
︸︷︷︸

original image

+ w︸︷︷︸
noise
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Image denoising
Classical image models

y
︸︷︷︸

measurements

= xorig
︸︷︷︸

original image

+ w
︸︷︷︸

noise

.

Energy minimization problem - MAP estimation

E (x) =
1

2
‖y − x‖22
︸ ︷︷ ︸

relation to measurements

+ ψ(x)
︸︷︷︸

image model

.

Some classical priors

Smoothness λ‖Lx‖22;
total variation λ‖∇x‖21 [Rudin et al., 1992];

Markov random fields [Zhu and Mumford, 1997];

wavelet sparsity λ‖Wx‖1.
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Image denoising
The method of Elad and Aharon [2006]

Given a fixed dictionary D, a patch yi is denoised as follows:

1 center yi ,

yci
△
= yi − µi1m with µi

△
=

1

n
1⊤myi ;

2 find a sparse linear combination of dictionary elements that
approximates yci up to the noise level:

min
αi∈Rp

‖αi‖0 s.t. ‖yci −Dαi‖22 ≤ ε, (2)

where ε is proportional to the noise variance σ2;

3 add back the mean component to obtain the clean estimate x̂i :

x̂i
△
= Dα⋆

i + µi1m,
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Image denoising
The method of Elad and Aharon [2006]

An adaptive approach

1 extract all overlapping
√
m ×√m patches yi .

2 dictionary learning: learn D on the set of centered noisy
patches [yc1, . . . , y

c
n].

3 final reconstruction: find an estimate x̂i for every patch using the
approach of the previous slide;

4 patch averaging:

x̂ =
1

m

n∑

i=1

R⊤
i x̂i ,

Remark

Like other state-of-the-art denoising approaches, it is patch-based
[Buades et al., 2005, Dabov et al., 2007].
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Practical tricks

use larger patches when the noise level is high;

choose ε = m(1.15σ)2 or take the 0.9-quantile of
the χ2

m-distribution.

always use the ℓ0 regularization for the final reconstruction;

using ℓ1 for learning the dictionary seems to yield better results.
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Image inpainting
[Mairal et al., 2008a,b]

For removing small holes in the image, a natural extension consists in
introducing a binary mask Mi in the formulation:

min
D∈C,A∈Rp×n

1

n

n∑

i=1

1

2
‖Mi (yi −Dαi )‖22 + λψ(αi ),

The approach assumes that

the noise is not structured;

the holes are smaller than the patch size.

The problem is called inpainting [Bertalmio et al., 2000].
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Image inpainting
[Mairal et al., 2008a,b]
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Image inpainting
[Mairal et al., 2008a,b]
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Image inpainting
[Mairal et al., 2008a,b]
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Image inpainting
Inpainting a 12-Mpixel photograph [Mairal et al., 2009a]
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Image inpainting
Inpainting a 12-Mpixel photograph [Mairal et al., 2009a]
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Image inpainting
Inpainting a 12-Mpixel photograph [Mairal et al., 2009a]
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Image inpainting
Inpainting a 12-Mpixel photograph [Mairal et al., 2009a]
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Image demoisaicking
RAW Image Processing

G R G R G R

GB GB GB

G R G R G R

GB GB GB

G R G R G R

GB GB GB

White
balance.
Black

substraction.
Denoising

Demosaicking

Conversion
to sRGB.
Gamma

correction.

Problem

The noise pattern is very structured: the previous inpainting scheme
needs to be modified [Mairal et al., 2008a].
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Image demoisaicking

(a) Mosaicked image (b) Demosaicked image A (c) Demosaicked image B

Figure: Demosaicked image A is with the approach previously described; image
B is with an extension called non-local sparse model [Mairal et al., 2009b].
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Image demoisaicking

(a) Zoom (b) Zoom (c) Zoom

Figure: Demosaicked image A is with the approach previously described; image
B is with an extension called non-local sparse model [Mairal et al., 2009b].
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Video processing

Extension developed by Protter and Elad [2009]:

Key ideas for video processing

Using a 3D dictionary.

Processing of many frames at the same time.

Dictionary propagation.
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Video processing
Inpainting, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Inpainting, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Inpainting, [Mairal et al., 2008b]
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Video processing
Inpainting, [Mairal et al., 2008b]
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Video processing
Inpainting, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Color video denoising, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Color video denoising, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Color video denoising, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Color video denoising, [Mairal et al., 2008b]

Figure: Inpainting results.
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Video processing
Color video denoising, [Mairal et al., 2008b]

Figure: Inpainting results.
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Image up-scaling
The main recipe of Yang et al. [2010]

The approach requires a database of pairs of training patches (xli , x
h
i )

n
i=1,

where xli in R
ml is a low-resolution version of the patch xhi in R

mh .

Training step:

min
Dl∈Cl
Dh∈Ch
A∈Rp×n

1

n

n∑

i=1

1

2ml

∥
∥
∥xli −Dlαi

∥
∥
∥

2

2
+

1

2mh

∥
∥
∥xhi −Dhαi

∥
∥
∥

2

2
+ λ ‖αi‖1 ,

Dl and Dh are jointly learned such that the pairs (xli , x
h
i ) “share” the

same sparse decompositions on the dictionaries.

Reconstruction step given a low-resolution image:

min
βi∈R

p

1

2ml

∥
∥
∥yli −Dlβi

∥
∥
∥

2

2
+

1

2mh

‖zi −Dhβi‖22 + λ ‖βi‖1 ,
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Image up-scaling
Variant with regression [Zeyde et al., 2012, Couzinie-Devy et al., 2011, Yang et al., 2012]

1 compute Dl and A with a classical dictionary learning formulation,

min
Dl∈Cl ,A∈Rp×n

1

n

n∑

i=1

1

2
‖xli −Dlαi‖22 + λ‖αi‖1.

2 obtain Dh by solving a multivariate regression problem:

min
Dh∈R

mh×p

1

n

n∑

i=1

1

2
‖xhi −Dhαi‖22,

where the αi ’s are fixed after the first step. See also Zeyde et al.
[2012] for other variants.

Main difference with Yang et al. [2010]

, testing and training is more consistent;

/ Dh and Dl are not learned jointly anymore.
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Image up-scaling
Variant with task-driven dictionary learning [Couzinie-Devy et al., 2011, Yang et al.,
2012]

Define

α⋆(x,D)
△
= argmin

α∈Rp

[
1

2
‖x−Dα‖22 + λ‖α‖1

]

,

Then, the joint dictionary learning formulation consists of minimizing

min
Dl∈Cl

Dh∈R
mh×p

1

n

n∑

i=1

1

2

∥
∥
∥xhi −Dhα

⋆(xli ,Dl)
∥
∥
∥

2

2
. (3)

Pros and Cons

, testing and training is still consistent;

, Dh and Dl are learned jointly;

/ optimization looks horribly difficult.
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Image up-scaling
Scheme with regression

Pipeline:

Output xh

Sparse codes αDictionary Dl

Dictionary Dh

Input vector xl
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Image up-scaling
Scheme with regression

First step: dictionary learning

Output xh

Sparse codes αDictionary Dl

Dictionary Dh

Input vector xl

Sparse Coding Layer
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Image up-scaling
Scheme with regression

Second step: regression

Output xh

Sparse codes αDictionary Dl

Weights Wh

Input vector xl

Supervised Learning
Layer
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Image up-scaling
Scheme with task-driven dictionary learning

A single step: supervised (task-driven) dictionary learning

Output xh

Sparse codes αDictionary Dl

Weights Dh

Input vector xl

Supervised Dictionary
Learning?

In the neural network language, we need back-propagation [LeCun
et al., 1998].
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Image up-scaling
Scheme with task-driven dictionary learning [Couzinie-Devy et al., 2011]

Proposition

In the asymptotic regime, the cost function is differentiable and its
gradient admits a simple form [Mairal et al., 2012].

Main recipe of the optimization

initialize with the regression variant;

use stochastic gradient descent.

use classical heuristics from the neural network literature [LeCun
et al., 1998].
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Image up-scaling
Image from Couzinie-Devy et al. [2011]

Figure: Original
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Image up-scaling
Image from Couzinie-Devy et al. [2011]

Figure: Bicubic interpolation
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Image up-scaling
Image from Couzinie-Devy et al. [2011]

Figure: from Couzinie-Devy et al. [2011].
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Image up-scaling
Image from Couzinie-Devy et al. [2011]
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Image up-scaling
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Image up-scaling
Image from Couzinie-Devy et al. [2011]
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Image up-scaling
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Image up-scaling
Image from Couzinie-Devy et al. [2011]

Figure: Bicubic interpolation
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Image up-scaling
Image from Couzinie-Devy et al. [2011]

Figure: from Couzinie-Devy et al. [2011].
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Inverting nonlinear local transformations

Remark

The previous up-scaling approaches are generic and can work for other
types of local image transformations.

Example: inverse half-toning consists of reconstructing grayscale images
from (probably old) binary ones, see, e.g., [Dabov et al., 2006]. A
classical algorithm for producing binary images is the one of Floyd and
Steinberg [1976].
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Inverting nonlinear local transformations

Remark

The previous up-scaling approaches are generic and can work for other
types of local image transformations.

Example: inverse half-toning consists of reconstructing grayscale images
from (probably old) binary ones, see, e.g., [Dabov et al., 2006]. A
classical algorithm for producing binary images is the one of Floyd and
Steinberg [1976].

Warning

Inverse half-toning is probably not a hot topic in image processing
nowadays.
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]

Figure: Original
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]

Figure: Binary image
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]

Figure: Reconstructed.
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]

Figure: Binary image
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]

Figure: Reconstructed.
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]
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Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]

Julien Mairal Sparse Estimation for Image and Vision Processing 127/187



Inverting nonlinear local transformations
Inverse half-toning [Mairal et al., 2012]
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Other patch modeling approaches

Non-local means and non-parametric approaches

Image pixels are well explained by a Nadaraya-Watson estimator:

x̂[i ] =
n∑

j=1

Kh(yi − yj)
∑n

l=1 Kh(yi − yl)
y[j ], (4)

with successful application to

texture synthesis: [Efros and Leung, 1999]

image denoising (Non-local means): [Buades et al., 2005]

image demosaicking: [Buades et al., 2009].
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Other patch modeling approaches

BM3D

state-of-the-art image denoising approach [Dabov et al., 2007]:

block matching: for each patch, find similar ones in the image;

3D wavelet filtering: denoise blocks of patches with 3D-DCT;

patch averaging: average estimates of overlapping patches;

second step with Wiener filtering: use the first estimate to
perform again and improve the previous steps.

Further refined by Dabov et al. [2009] with shape-adaptive patches and
PCA filtering.
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Other patch modeling approaches

Non-local sparse models [Mairal et al., 2009b]

Exploit some ideas of BM3D to combine the non-local means principle
with dictionary learning.

The main idea is that similar patches should admit similar
decompositions by using group sparsity:

The approach uses a block matching/clustering step, followed by group
sparse coding and patch averaging.
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Other patch modeling approaches
Non-local sparse image models
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Other patch modeling approaches
Non-local sparse image models
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Conclusions from the third part

many inverse problems in image processing can be tackled by
modeling natural image patches;

dictionary learning is one effective way to do it, among others.
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Part IV: Optimization for sparse estimation
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1 A short introduction to parsimony

2 Discovering the structure of natural images

3 Sparse models for image processing

4 Optimization for sparse estimation
Sparse reconstruction with the ℓ0-penalty
Introduction of a few optimization principles
Sparse reconstruction with the ℓ1-norm
Sparse reconstruction with the ℓ1-norm
Iterative reweighted ℓ1-algorithms
Optimization for dictionary learning

5 Application cases
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993] α = (0, 0, 0)

d1

d2

d3

rz

x

y
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993] α = (0, 0, 0)

z

x

y

d1

d2

d3

r

< r,d3 > d3

Julien Mairal Sparse Estimation for Image and Vision Processing 136/187



Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993] α = (0, 0, 0)
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993] α = (0, 0, 0.75)
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993] α = (0, 0, 0.75)
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993] α = (0, 0, 0.75)
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993] α = (0, 0.24, 0.75)
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993] α = (0, 0.24, 0.75)
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993] α = (0, 0.24, 0.75)
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993] α = (0, 0.24, 0.65)
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993]

min
α∈Rp

‖ x−Dα
︸ ︷︷ ︸

r

‖22 s.t. ‖α‖0 ≤ k .

1: α← 0
2: r← x (residual).
3: while ‖α‖0 < k do
4: Select the predictor with maximum inner-product with the residual

̂← argmax
j=1,...,p

|d⊤j r|

5: Update the residual and the coefficients

α[̂] ← α[̂] + d⊤̂ r

r ← r − (d⊤̂ r)d̂

6: end while
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Sparse reconstruction with the ℓ0-penalty
Matching pursuit [Mallat and Zhang, 1993]

Remarks

Matching pursuit is a coordinate descent algorithm. It greedily
selects one coordinate at a time and optimizes the cost function
with respect to that coordinate.

α[̂]← argmin
α∈R

∥
∥
∥
∥
∥
∥

x−
∑

l 6=̂

α[l ]dl − αd̂

∥
∥
∥
∥
∥
∥

2

2

.

Each coordinate can be selected several times during the process.

The roots of this algorithm can be found in the statistics
literature [Efroymson, 1960].
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Sparse reconstruction with the ℓ0-penalty
Orthogonal matching pursuit [Pati et al., 1993] α = (0, 0, 0)

Γ = ∅
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y
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x

y
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Sparse reconstruction with the ℓ0-penalty
Orthogonal matching pursuit [Pati et al., 1993] α = (0, 0, 0.75)

Γ = {3}
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Sparse reconstruction with the ℓ0-penalty
Orthogonal matching pursuit [Pati et al., 1993] α = (0, 0.29, 0.63)

Γ = {3, 2}
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Sparse reconstruction with the ℓ0-penalty
Orthogonal matching pursuit [Pati et al., 1993]

min
α∈Rp

‖x−Dα‖22 s.t. ‖α‖0 ≤ k

1: Γ = ∅.
2: for iter = 1, . . . , k do
3: Select the variable that most reduces the objective

(̂, β̂)← argmin
j∈Γ∁,β

‖x−DΓ∪{j}β‖22.

4: Update the active set: Γ← Γ ∪ {̂}.
5: Update the coefficients:

α[Γ]← β and α[Γ∁]← 0.

6: end for
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Sparse reconstruction with the ℓ0-penalty
Orthogonal matching pursuit [Pati et al., 1993]

Remarks

this is an active-set algorithm.

when a new variable is selected, the coefficients for the full set Γ are
re-optimized:

α[Γ] = (D⊤
Γ DΓ)

−1D⊤
Γ x,

and the residual is always orthogonal to the matrix DΓ of previously
selected dictionary elements:

D⊤
Γ (x−Dα) = D⊤

Γ (x−DΓα[Γ]) = 0.

several variants of OMP exist regarding the selection rule of ̂. The
one we use appears in Cotter et al. [1999].
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Sparse reconstruction with the ℓ0-penalty
Orthogonal matching pursuit [Pati et al., 1993]

Keys for a fast implementation

If available, use the Gram matrix G = D⊤D;

Maintain the computation of D⊤(x−Dα),

Update the Cholesky decomposition of (D⊤
Γ DΓ)

−1.

The total complexity for decomposing n k-sparse signals of size m with a
dictionary of size p is

O(p2m)
︸ ︷︷ ︸

Gram matrix

+O(nk3)
︸ ︷︷ ︸

Cholesky

+O(n(pm + pk2))
︸ ︷︷ ︸

D⊤(x−Dα)

= O(np(m + k2))

It is also possible to use the matrix inversion lemma instead of a
Cholesky decomposition.
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Sparse reconstruction with the ℓ0-penalty
Orthogonal matching pursuit [Pati et al., 1993]

Example with the software SPAMS

Software available at http://spams-devel.gforge.inria.fr/.

>> I=double(imread(’data/lena.eps’))/255;

>> %extract all patches of I

>> X=im2col(I,[8 8],’sliding’);

>> %load a dictionary of size 64 x 256

>> D=load(’dict.mat’);

>>

>> %set the sparsity parameter L to 10

>> param.L=10;

>> alpha=mexOMP(X,D,param);

On this dual-core laptop: 110000 signals processed per second!
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Sparse reconstruction with the ℓ0-penalty
Iterative hard-thresholding [Herrity et al., 2006, Blumensath and Davies, 2009]

Require: Signal x in R
m, dictionary D in R

m×p, target sparsity k ,
gradient descent step size η, number of iterations T .

1: Initialize α← α0;
2: for t = 1, . . . ,T do
3: perform one step of gradient descent:

α← α+ ηD⊤(x−Dα);

4: choose τ to be the k-th largest entry of {|α[1]|, . . . , |α[p]|};
5: for j = 1, . . . , p do
6: hard-thresholding:

α[j ]←
{

α[j ] if |α[j ]| ≥ τ
0 otherwise.

7: end for
8: end for
9: return the sparse decomposition α in R

p.
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Sparse reconstruction with the ℓ0-penalty
Iterative hard-thresholding [Herrity et al., 2006, Blumensath and Davies, 2009]

Remarks

This is a projected gradient algorithm;

α← Π‖.‖0≤k [α− η∇f (α)] .

It performs one gradient descent step, followed by a Euclidean
projection onto the non-convex set of k-sparse vectors.

it can be easily extended to the (approximate) minimization of

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖0.

In that case, it is as a proximal gradient algorithm.

it can be seen to iteratively decreases the value of the objective
function from the majorization-minimization point of view.
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Sparse reconstruction with the ℓ0-penalty
Majorization-minimization principle [Lange et al., 2000]

The principle for (approximately) minimizing a general cost function f :

min
α∈A

f (α).

f (α)
gβ(α)

b

b

β = αold

αnew
f (α) ≤ gβ(α)

Figure: At each step, we update α ∈ argminα∈A gβ(α)
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Sparse reconstruction with the ℓ0-penalty
Majorization-minimization principle [Lange et al., 2000]

The principle for (approximately) minimizing a general cost function f :

min
α∈A

f (α).

f (α)
gβ(α)

b

b

β = αold

αnew
f (α) ≤ gβ(α)

Figure: At each step, we update α ∈ argminα∈A gβ(α)

What is the surrogate for the iterative hard-thresholding
algorithm?
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Sparse reconstruction with the ℓ0-penalty
Majorization-minimization principle [Lange et al., 2000]

The principle for (approximately) minimizing a general cost function f :

min
α∈A

f (α).

f (α)
gβ(α)

b

b

β = αold

αnew
f (α) ≤ gβ(α)

Figure: At each step, we update α ∈ argminα∈A gβ(α)

We need to introduce a few principles first...
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Introduction of a few optimization principles
Convex Functions

Why do we care about convexity?

α

f (α)

Julien Mairal Sparse Estimation for Image and Vision Processing 147/187



Introduction of a few optimization principles
Convex Functions

Local observations give information about the global optimum

α

f (α)

α⋆

b

b

b

∇f (α) = 0 is a necessary and sufficient optimality condition for
differentiable convex functions;

it is often easy to upper-bound f (α)− f ⋆.
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Introduction of a few optimization principles
An important inequality for smooth convex functions

If f is convex

α⋆

α

f (α)

b

b

b

b
α0

f (α) ≥ f (α0) +∇f (α0)⊤(α−α0)
︸ ︷︷ ︸

linear approximation

;

this is an equivalent definition of convexity for smooth functions.
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Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

α⋆

α

f (α)g(α)

b

b

b

bb

b

α0α1

f (α) ≤ g(α) = f (α0) +∇f (α0)⊤(α−α0)
︸ ︷︷ ︸

linear approximation

+L
2‖α−α0‖22;
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Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

α⋆

α

f (α)g(α)

b

b

b

bb

b

α0α1

f (α) ≤ g(α) = f (α0) +∇f (α0)⊤(α−α0)
︸ ︷︷ ︸

linear approximation

+L
2‖α−α0‖22;

g(α) = Cα0 + L
2‖α0 − (1/L)∇f (α0)−α‖22.
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Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

α⋆

α

f (α)g(α)

b

b

b

bb

b

α0α1

f (α) ≤ g(α) = f (α0) +∇f (α0)⊤(α−α0)
︸ ︷︷ ︸

linear approximation

+L
2‖α−α0‖22;

α1 = α0 − 1
L
∇f (α0). (gradient descent step).
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Introduction of a few optimization principles
Gradient Descent Algorithm

Assume that f is convex and differentiable, and that ∇f is L-Lipschitz.

Theorem

Consider the algorithm

αt ← αt−1 − 1
L
∇f (αt−1).

Then,

f (αt)− f ⋆ ≤ L‖α0 −α⋆‖22
2t

.

Remarks

the convergence rate improves under additional assumptions on f
(strong convexity);

some variants have a O(1/t2) convergence rate [Nesterov, 2004].
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Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all α and β,

f (α) ≤ f (β) +∇f (β)⊤(α− β) +
L

2
‖α− β‖22.

By using Taylor’s theorem with integral form,

f (α)− f (β) =

∫ 1

0

∇f (tα+ (1− t)β)⊤(α− β)dt.

Then,

f (α)−f (β)−∇f (β)⊤(α−β) ≤

∫ 1

0

(∇f (tα+(1−t)β)−∇f (β))⊤(α−β)dt

≤

∫ 1

0

|(∇f (tα+(1−t)β)−∇f (β))⊤(α−β)|dt

≤

∫ 1

0

‖∇f (tα+(1−t)β)−∇f (β)‖2‖α−β‖2dt (C.-S.)

≤

∫ 1

0

Lt‖α−β‖22dt =
L

2
‖α−β‖22.
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Proof (2/2)
Proof of the theorem

We have shown that for all α,

f (α) ≤ gt(α) = f (αt−1) +∇f (αt−1)⊤(α−α
t−1) +

L

2
‖α−α

t−1‖22.

gt is minimized by αt ; it can be rewritten gt(α) = gt(α
t) + L

2
‖α−αt‖22. Then,

f (αt) ≤ gt(α
t) = gt(α

⋆)−
L

2
‖α⋆ −α

t‖22

= f (αt−1) +∇f (αt−1)⊤(α⋆ −α
t−1) +

L

2
‖α⋆ −α

t−1‖22 −
L

2
‖α⋆ −α

t‖22

≤ f
⋆ +

L

2
‖α⋆ −α

t−1‖22 −
L

2
‖α⋆ −α

t‖22.

By summing from t = 1 to T , we have a telescopic sum

T (f (αT )− f
⋆) ≤

T∑
t=1

f (αt)− f
⋆ ≤

L

2
‖α⋆ −α

0‖22 −
L

2
‖α⋆ −α

T‖22.
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Sparse reconstruction with the ℓ0-penalty
iterative hard-thresholding [Herrity et al., 2006, Blumensath and Davies, 2009]

What is the surrogate gβ(α)?
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Sparse reconstruction with the ℓ0-penalty
iterative hard-thresholding [Herrity et al., 2006, Blumensath and Davies, 2009]

Simply the same as for the gradient descent algorithm:

gβ(α)
△
= f (α) +∇f (β)⊤(α− β) +

L

2
‖β −α‖22,

with β = αold, L = (1/η) and f (α) = (1/2)‖x−Dα‖22. Indeed,

gβ(α) = Cβ +
L

2
‖β + ηD⊤(x−Dβ)−α‖22.

and the update can be rewritten

α← argmin
α∈Rp :‖α‖0≤k

gβ(α)

= Π‖.‖0≤k

[

β + ηD⊤(x−Dβ)
]

.
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Sparse reconstruction with the ℓ1-norm

For the ℓ0-penalty, we have seen

1 a coordinate descent algorithm (matching pursuit);

2 a gradient descent algorithm (iterative hard-thresholding);

3 an active-set algorithm (orthogonal matching pursuit);

For ℓ1, the same three classes of methods play an important role.

Julien Mairal Sparse Estimation for Image and Vision Processing 154/187



Sparse reconstruction with the ℓ1-norm
Projected gradient descent

Suppose we want to solve

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α1‖1 ≤ µ.

Julien Mairal Sparse Estimation for Image and Vision Processing 155/187



Sparse reconstruction with the ℓ1-norm
Projected gradient descent

Suppose we want to solve

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α1‖1 ≤ µ.

The following update with η small enough converges to a solution

α← Π‖.‖1≤µ

[

α+ ηD⊤(x−Dα)
]

.
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Sparse reconstruction with the ℓ1-norm
Projected gradient descent

Suppose we want to solve

min
α∈Rp

1

2
‖x−Dα‖22 s.t. ‖α1‖1 ≤ µ.

The following update with η small enough converges to a solution

α← Π‖.‖1≤µ

[

α+ ηD⊤(x−Dα)
]

.

Remarks

the convergence rate is the same as the gradient descent method
for smooth convex functions;

when L is unknown, efficient line-search scheme can be used.

the principle is the same as for the iterative hard-thresholding
algorithm.

see [Nesterov, 2004, Bertsekas, 1999, Boyd and Vandenberghe, 2004].
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Sparse reconstruction with the ℓ1-norm
The proximal gradient method

We consider a smooth convex function f and a non-smooth
regularizer ψ.

min
α∈Rp

f (α) + ψ(α)

For example,

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1.

the objective function is not differentiable.

an extension of gradient descent for such a problem is called
“proximal gradient descent”
[Beck and Teboulle, 2009, Nesterov, 2013].
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Sparse reconstruction with the ℓ1-norm
An important inequality for composite functions

If ∇f is L-Lipschitz continuous

α⋆

α

f (α) + ψ(α)g(α) + ψ(α)

b

b

bb

b

α0α1

f (α) + ψ(α) ≤
f (α0) +∇f (α0)⊤(α−α0) + L

2‖α−α0‖22 + ψ(α);

α1 minimizes g + ψ.
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Sparse reconstruction with the ℓ1-norm
The proximal gradient method

Gradient descent for minimizing f consists of

αt ← argmin
α∈Rp

gt(α) ⇐⇒ αt ← αt−1 − 1

L
∇f (αt−1).

The proximal gradient method for minimizing f + ψ consists of

αt ← argmin
α∈Rp

gt(α) + ψ(α),

which is equivalent to

αt ← argmin
α∈Rp

1

2

∥
∥
∥
∥
αt−1 − 1

L
∇f (αt−1)−α

∥
∥
∥
∥

2

2

+
1

L
ψ(α).

It requires computing efficiently the proximal operator of ψ.

α 7→ argmin
α∈Rp

1

2
‖β −α‖22 + ψ(α).
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Sparse reconstruction with the ℓ1-norm
The proximal gradient method

Remarks

also known as forward-backward algorithm;

has similar convergence rates as the gradient descent method.

there exists line search schemes to automatically tune L;

there exists accelerated schemes [Beck and Teboulle, 2009,
Nesterov, 2013].

The case of ℓ1
The proximal operator of λ‖.‖1 is the soft-thresholding operator

α[j ] = sign(β[j ])(|β[j ]| − λ)+.

The resulting algorithm is called iterative soft-thresholding [Nowak
and Figueiredo, 2001, Figueiredo and Nowak, 2003, Starck et al., 2003,
Daubechies et al., 2004].
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Sparse reconstruction with the ℓ1-norm
The proximal gradient method

The proximal operator for the group Lasso penalty

min
α∈Rp

1

2
‖β −α‖22 + λ

∑

g∈G

‖α[g ]‖q.

For q = 2,

α[g ] =
β[g ]

‖β[g ]‖2
(‖β[g ]‖2 − λ)+, ∀g ∈ G.

For q =∞,

α[g ] = β[g ]− Π‖.‖1≤λ[β[g ]], ∀g ∈ G.

These formula generalize soft-thresholding to groups of variables.
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Sparse reconstruction with the ℓ1-norm
The proximal gradient method

A few proximal operators:

ℓ0-penalty: hard-thresholding;

ℓ1-norm: soft-thresholding;

group-Lasso: group soft-thresholding;

fused-lasso (1D total variation): [Hoefling, 2010];

hierarchical norms: [Jenatton et al., 2011b], O(p) complexity;

overlapping group Lasso with ℓ∞-norm: [Mairal et al., 2010b],
(link with network flow optimization);
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Sparse reconstruction with the ℓ1-norm
Coordinate descent for the Lasso [Fu, 1998]

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1.

The coordinate descent method consists of iteratively fixing all variables
and optimizing with respect to one:

α[j ]← argmin
α∈R

1

2
‖ x−

∑

l 6=j

α[l ]dl

︸ ︷︷ ︸

r

−αdj‖22 + λ|α|.

Assume the columns of D to have unit ℓ2-norm,

αj ← sign(d⊤j r)(|d⊤j r| − λ)+

This involves again the soft-thresholding operator.

Julien Mairal Sparse Estimation for Image and Vision Processing 162/187



Sparse reconstruction with the ℓ1-norm
Coordinate descent for the Lasso [Fu, 1998]

Remarks

no parameter to tune!

several strategies are possible for selecting the variable to update.

impressive performance with five lines of code.

coordinate descent + nonsmooth objective is not convergent in
general. Here, the problem is equivalent to a convex smooth
optimization problem with separable constraints

min
α+,α−

1

2
‖x−D+α++D−α−‖22+λαT

+1+λα
T
−1 s.t. α−,α+ ≥ 0.

For this specific problem, the algorithm is convergent.

can be extended to group-Lasso, or other loss functions.

j can be picked up at random, or by cycling (harder to analyze).
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Sparse reconstruction with the ℓ1-norm
Smoothing techniques: reweighted ℓ2 [Daubechies et al., 2010, Bach et al., 2012]

Let us start from something simple

a2 − 2ab + b2 ≥ 0.
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Sparse reconstruction with the ℓ1-norm
Smoothing techniques: reweighted ℓ2 [Daubechies et al., 2010, Bach et al., 2012]

Let us start from something simple

a2 − 2ab + b2 ≥ 0.

Then

a ≤ 1

2

(a2

b
+ b
)

with equality iff a = b

and

‖α‖1 = min
ηj≥0

1

2

p
∑

j=1

α[j ]2

ηj
+ ηj .

The formulation becomes

min
α,ηj≥ε

1

2
‖x−Dα‖22 +

λ

2

p
∑

j=1

α[j ]2

ηj
+ ηj .
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Sparse reconstruction with the ℓ1-norm
Homotopy [Osborne et al., 2000b, Efron et al., 2004, Ritter, 1962]
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Figure: The regularization path of the Lasso is piecewise linear.

min
α∈Rp

1

2
‖x−Dα‖22 + λ‖α‖1.

property discoved by Markowitz [1952].
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Sparse reconstruction with the ℓ1-norm
Homotopy [Osborne et al., 2000b, Efron et al., 2004, Ritter, 1962]

Theorem

α is a solution of the Lasso if and only if

{ |d⊤j (x−Dα)| ≤ λ if α[j ] = 0

d⊤j (x−Dα) = λ sign(α[j ]) otherwise.

Consequence

α⋆[Γ] = (DT
Γ DΓ)

−1(DT
Γ x− λ sign(α⋆[Γ])) = A+ λB,

where Γ = {j s.t. α[j ] 6= 0}. If we know Γ and the signs of α⋆ in
advance, we have a closed form solution.

Following the piecewise linear regularization path is called the
homotopy method [Osborne et al., 2000a, Efron et al., 2004].
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Sparse reconstruction with the ℓ1-norm
Homotopy [Osborne et al., 2000b, Efron et al., 2004, Ritter, 1962]

The regularization path (λ,α⋆(λ)) is piecewise linear.

1 Start from the trivial solution (λ = ‖DTx‖∞,α⋆(λ) = 0).

2 Define Γ = {j s.t. |d⊤j x| = λ},
3 Follow the regularization path: α⋆

Γ(λ) = A+ λB, keeping α⋆
Γc = 0,

decreasing the value of λ, until one of the following event occurs:
∃j /∈ Γ such that |d⊤j (x−Dα⋆(λ))| = λ, then Γ← Γ ∪ {j}.
∃j ∈ Γ such that α⋆(λ) = 0, then Γ← Γ \ {j}.

4 Update the direction of the path and go back to 3.

Hidden assumptions

the regularization path is unique.

variables enter the path one at a time.

Extremely efficient for small/medium scale problems (p ≤ 10 000)
and/or very sparse problems (when implemented correctly). Robust to
correlated features. Can solve the elastic-net.
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Sparse reconstruction with the ℓ1-norm
Homotopy [Osborne et al., 2000b, Efron et al., 2004, Ritter, 1962]

Theorem - worst case analysis [Mairal and Yu, 2012]

In the worst-case, the regularization path of the Lasso has exactly
(3p + 1)/2 linear segments.
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Sparse reconstruction with the ℓ1-norm
Lasso empirical comparison: Lasso, small scale (n = 200,p = 200)

reg: low reg: high
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Sparse reconstruction with the ℓ1-norm
Empirical comparison: Lasso, medium scale (n = 2000,p = 10000)

reg: low reg: high
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Sparse reconstruction with the ℓ1-norm
Empirical comparison: conclusions

Lasso

Generic methods (subgradient descent, QP/CP solvers) are slow;

homotopy fastest in low dimension and/or for high correlation

Proximal methods are competitive

esp. larger setting and/or weak corr. and/or weak reg. and/or low
precision

Coordinate descent

usually dominated by LARS;
but much simpler to implement!

Smooth Losses and other regularization

LARS not available → (block) coordinate descent, proximal
gradient methods are good candidates.
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Iterative reweighted ℓ1-algorithms
DC (difference of convex) - Programming

Remember? Concave functions with a kink at zero

ψ(α) =
∑p

j=1 ϕ(|α[j ]|).
ℓq-“pseudo-norm”, with 0 < q < 1: ψ(w)

△
=
∑p

j=1(|α[j ]|+ ε)q,

log penalty, ψ(w)
△
=
∑p

j=1 log(|α[j ]|+ ε),

ϕ is any function that looks like this:

α

ϕ(α)
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|αt |

f (α)
|αt |

ϕ(α) = log(|α|+ ε)

ϕ′(|αt |)|α|+ C

|αk |

f (α) + ϕ(|α|)

f (α) + ϕ′(|αt |)|α|+ C

Figure: Illustration of the DC-programming approach. The non-convex part ofJulien Mairal Sparse Estimation for Image and Vision Processing 173/187



DC (difference of convex) - Programming

min
α∈Rp

f (α) + λ

p
∑

j=1

ϕ(|α[j ]|).

This problem is non-convex. f is convex, and ϕ is concave on R
+.

if αk is the current estimate at iteration t, the algorithm solves

αt+1 ← argmin
α∈Rp

[

f (α) + λ

p
∑

j=1

ϕ′(|αt [j ]|)|α[j ]|
]

,

which is a reweighted-ℓ1 problem [Figueiredo and Nowak, 2005,
Figueiredo et al., 2007, Candès et al., 2008].
Warning: It does not solve the non-convex problem, only provides
a stationary point.
In practice, each iteration sets to zero small coefficients. After 2− 3
iterations, the result does not change much.
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Optimization for Dictionary Learning

min
α∈Rp×n

D∈C

n∑

i=1

1

2
‖xi −Dαi‖22 + λψ(αi )

C △
= {D ∈ R

m×p s.t. ∀j = 1, . . . , p, ‖dj‖2 ≤ 1}.

Classical approach

Alternate minimization between D and α (MOD with ψ = ℓ0
[Engan et al., 1999], K-SVD with ψ = ℓ0 [Aharon et al., 2006], [Lee
et al., 2007] with ψ = ℓ1);

good results, reliable, but can be slow when n is large!
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Optimization for Dictionary Learning

Empirical risk minimization point of view

min
D∈C

fn(D) = min
D∈C

1

n

n∑

i=1

L(xi ,D),

where

L(x,D)
△
= min

α∈Rp

1

2
‖x−Dα‖22 + λψ(α).

Which formulation are we interested in?

min
D∈C

{

f (D) = Ex[L(x,D)] ≈ lim
n→+∞

1

n

n∑

i=1

L(xi ,D)
}

[Bottou and Bousquet, 2008]: Online learning can

handle potentially infinite or dynamic datasets,

be dramatically faster than batch algorithms.
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Optimization for Dictionary Learning
Stochastic gradient descent

Recipe

draw a single point xt (or a mini-batch) at each iteration;

update
D← ΠC[D− ηt∇DL(xt ,D)],

which is equivalent (up to some assumptions) to

αt ← argmin
α∈Rp

1

2
‖xt −Dα‖22 + λ‖α‖1,

D← ΠC[D+ ηt(xt −Dαt)α
⊤
t ].
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Optimization for Dictionary Learning
Stochastic gradient descent

Recipe

draw a single point xt (or a mini-batch) at each iteration;

update
D← ΠC[D− ηt∇DL(xt ,D)],

which is equivalent (up to some assumptions) to

αt ← argmin
α∈Rp

1

2
‖xt −Dα‖22 + λ‖α‖1,

D← ΠC[D+ ηt(xt −Dαt)α
⊤
t ].

Remark

historically, this is very close to the original algorithm of Olshausen
and Field [1996].
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Optimization for Dictionary Learning
Stochastic gradient descent

Recipe

draw a single point xt (or a mini-batch) at each iteration;

update
D← ΠC[D− ηt∇DL(xt ,D)],

which is equivalent (up to some assumptions) to

αt ← argmin
α∈Rp

1

2
‖xt −Dα‖22 + λ‖α‖1,

D← ΠC[D+ ηt(xt −Dαt)α
⊤
t ].

Pros and cons

, can be effective in practice;

/ difficult to tune.
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Optimization for Dictionary Learning
Online dictionary learning [Mairal et al., 2010a]

Recipe

stochastic majorization-minimization algorithm;

relies on a fast dictionary update;

easier to tune (the implementation of SPAMS has been successfully
used by others in plenty of “exotic” unexpected scenarios.
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Optimization for Dictionary Learning
Online dictionary learning [Mairal et al., 2010a]

Require: D0 ∈ R
m×p (initial dictionary); λ ∈ R

1: C0 = 0, B0 = 0.
2: for t=1,. . . ,T do
3: Draw xt

4: Sparse Coding: αt ← argmin
α∈Rp

1

2
‖xt −Dt−1α‖22 + λ‖α‖1,

5: Aggregate sufficient statistics
Ct ← Ct−1 +αtα

T
t , Bt ← Bt−1 + xtα

T
t

6: Dictionary update

Dt ← argminD∈C
1
t

∑t
i=1

(
1
2‖xi −Dαi‖22 + λ‖αi‖1

)

.

= argminD∈C
1
t

(
1
2 Tr(D

TDCt)− Tr(DTBt)
)

.

7: end for
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Optimization for Dictionary Learning
Fast dictionary udpate [Mairal et al., 2010a]

Require: D0 ∈ C (input dictionary); X ∈ R
m×n (dataset); A ∈ R

p×n

(sparse codes);
1: Initialization: D← D0; B← XA⊤; C← AA⊤;
2: repeat
3: for j = 1, . . . , p do
4: update the j-th column:

dj ←
1

C[j , j ]
(bj −Dcj) + dj ,

dj ←
1

max(‖dj‖2, 1)
dj .

5: end for
6: until convergence;
7: return D (updated dictionary).
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Optimization for Dictionary Learning
Fast dictionary udpate [Mairal et al., 2010a]

Minimizing with respect to one column dj when keeping the other
columns fixed can be formulated as

dj ← argmin
d∈Rm,‖d‖2≤1





n∑

i=1

1

2

∥
∥
∥
∥
∥
∥

xi −
∑

l 6=j

αi [l ]dl −αi [j ]d

∥
∥
∥
∥
∥
∥

2

2



 .
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Optimization for Dictionary Learning
Fast dictionary udpate [Mairal et al., 2010a]

Minimizing with respect to one column dj when keeping the other
columns fixed can be formulated as

dj ← argmin
d∈Rm,‖d‖2≤1





n∑

i=1

1

2

∥
∥
∥
∥
∥
∥

xi −
∑

l 6=j

αi [l ]dl −αi [j ]d

∥
∥
∥
∥
∥
∥

2

2



 .

Then, in a matrix form

dj ← argmin
d∈Rm,‖d‖2≤1

[
1

2

∥
∥X−DA+ djα

j − dαj
∥
∥
2

F

]

,

Julien Mairal Sparse Estimation for Image and Vision Processing 181/187



Optimization for Dictionary Learning
Fast dictionary udpate [Mairal et al., 2010a]

Minimizing with respect to one column dj when keeping the other
columns fixed can be formulated as

dj ← argmin
d∈Rm,‖d‖2≤1





n∑

i=1

1

2

∥
∥
∥
∥
∥
∥

xi −
∑

l 6=j

αi [l ]dl −αi [j ]d

∥
∥
∥
∥
∥
∥

2

2



 .

After expanding the Frobenius norm and removing the constant term,

dj ← argmin
d∈Rm,‖d‖2≤1

[

−d⊤(X−DA+ djα
j)αj⊤ +

1

2

∥
∥dαj

∥
∥
2

F

]

= argmin
d∈Rm,‖d‖2≤1

[

−d⊤(bj −Dcj + djC[j , j ]) +
1

2
‖d‖22 C[j , j ]

]

= argmin
d∈Rm,‖d‖2≤1

[

1

2

∥
∥
∥
∥

1

C[j , j ]
(bj −Dcj) + dj − d

∥
∥
∥
∥

2

2

]

,
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Optimization for Dictionary Learning
[Mairal et al., 2010a]

Which guarantees do we have?

Under a few reasonable assumptions,

we build a surrogate function ĝt of the expected cost f verifying

lim
t→+∞

ĝt(Dt)− f (Dt) = 0,

Dt is asymptotically close to a stationary point.

Extensions (all implemented in SPAMS)

non-negative matrix decompositions;

sparse PCA (sparse dictionaries);

fused-lasso regularizations (piecewise constant dictionaries);

non-convex regularization, structured regularization.
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Optimization for Dictionary Learning
Experimental results, batch vs online

m = 8× 8, p = 256
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Optimization for Dictionary Learning
Experimental results, batch vs online

m = 12× 12× 3, p = 512
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Conclusions from the fourth part

there are a few algorithms for sparse estimation that are efficient
and easy to implement;

there is no algorithm that wins all the time;

designing an evaluation benchmark that makes sense is hard.
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Conclusions from the fourth part

there are a few algorithms for sparse estimation that are efficient
and easy to implement;

there is no algorithm that wins all the time;

designing an evaluation benchmark that makes sense is hard.

What was not covered

stochastic optimization for sparse estimation;

proximal splitting algorithms.

Advertisement again

the SPAMS toolbox already contains lots of code (C++ interfaced
with Matlab, Python, R) for learning dictionaries, factorizing
matrices (NMF, archetypal analysis), solving sparse estimation
problems, including most of the algorithms we have presented.
http://spams-devel.gforge.inria.fr/.
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Part V: Application cases
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Application cases

Case 1

use of dictionary learning for processing electrophysiological data
from the visual cortex.

Case 2

use of structured sparse models for next-generation DNA/RNA
sequencing.
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Basic convex optimization tools: subgradients

α

(a) Smooth case

α

(b) Non-smooth case

Figure: Gradients and subgradients for smooth and non-smooth functions.

∂f (α)
△
= {κ ∈ R

p | f (α) + κ⊤(α′ −α) ≤ f (α′) for all α′ ∈ R
p}.
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Basic convex optimization tools: subgradients
Some nice properties

∂f (α) = {g} iff f differentiable at α and g = ∇f (α).

many calculus rules: ∂(γf + µg) = γ∂f + µ∂g for γ, µ > 0.

for more details, see Boyd and Vandenberghe [2004], Bertsekas [1999],
Borwein and Lewis [2006] and S. Boyd’s course at Stanford.

Optimality conditions

For g : Rp → R convex,

g differentiable: α⋆ minimizes g iff ∇g(α⋆) = 0.

g nondifferentiable: α⋆ minimizes g iff 0 ∈ ∂g(α⋆).

Careful: the concept of subgradient requires a function to be
above its tangents. It does only make sense for convex functions!
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Basic convex optimization tools: dual-norm

Definition

Let κ be in R
p,

‖κ‖∗ △
= max

α∈Rp :‖α‖≤1
α⊤κ.

Exercises

‖α‖∗∗ = ‖α‖ (true in finite dimension)

ℓ2 is dual to itself.

ℓ1 and ℓ∞ are dual to each other.

ℓq and ℓ′q are dual to each other if 1
q
+ 1

q′
= 1.

similar relations for spectral norms on matrices.

∂‖α‖ = {κ ∈ R
p s.t. ‖κ‖∗ ≤ 1 and κ⊤α = ‖α‖}.
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Optimality conditions

Let f : Rp → R be convex differentiable and ‖.‖ be any norm.

min
α∈Rp

f (α) + λ‖α‖.

α is solution if and only if

0 ∈ ∂(f (α) + λ‖α‖) = ∇f (α) + λ∂‖α‖

Since ∂‖α‖ = {κ ∈ R
p s.t. ‖κ‖∗ ≤ 1 and κ⊤α = ‖α‖},

General optimality conditions:

‖∇f (α)‖∗ ≤ λ and −∇f (α)⊤α = λ‖α‖.
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Convex Duality

Strong Duality

α⋆

α κ

κ⋆

f (α), primal

g(κ), dual

b

b

b

b

Strong duality means that maxκ g(κ) = minα f (α)
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Convex Duality

Duality Gaps

α̃

α

κ̃

κ

f (α), primal

g(κ), dual

b

b

b

b
δ(α̃, κ̃)

Strong duality means that maxκ g(κ) = minα f (α)

The duality gap guarantees us that 0 ≤ f (α̃)− f (α⋆) ≤ δ(α̃, κ̃).
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