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What this talk is about?

Sparse Linear Models

Not only sparse, but also structured!

Solving challenging optimization problems

Developping new applications of sparse models in computer
vision and machine learning

Related publications:

[1] J. Mairal, R. Jenatton, G. Obozinski and F. Bach. Network Flow
Algorithms for Structured Sparsity. NIPS, 2010

[2] R. Jenatton, J. Mairal, G. Obozinski and F. Bach. Proximal Methods for
Hierarchical Sparse Coding. arXiv:1009.2139v1

[3] R. Jenatton, J. Mairal, G. Obozinski and F. Bach. Proximal Methods for
Sparse Hierarchical Dictionary Learning. ICML, 2010

Julien Mairal Recent Advances in Structured Sparse Models 3/46



Sparse Linear Model: Machine Learning Point of View

Let (y i , xi )ni=1 be a training set, where the vectors xi are in R
p and are

called features. The scalars y i are in

{−1,+1} for binary classification problems.

{1, . . . ,N} for multiclass classification problems.

R for regression problems.

In a linear model, on assumes a relation y ≈ w⊤x, and solves

min
w∈Rp

1

n

n∑

i=1

ℓ(y i ,w⊤xi )

︸ ︷︷ ︸

data-fitting

+ λΩ(w)
︸ ︷︷ ︸

regularization

.
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Sparse Linear Models: Machine Learning Point of View

A few examples:

Ridge regression: min
w∈Rp

1

2n

n∑

i=1

(y i −w⊤xi )2 + λ‖w‖22.

Linear SVM: min
w∈Rp

1

n

n∑

i=1

max(0, 1− y iw⊤xi ) + λ‖w‖22.

Logistic regression: min
w∈Rp

1

n

n∑

i=1

log
(

1 + e−y iw⊤xi
)

+ λ‖w‖22.

The squared ℓ2-norm induces smoothness in w. When one knows in
advance that w should be sparse, one should use a sparsity-inducing

regularization such as the ℓ1-norm. [Chen et al., 1999, Tibshirani, 1996]

The purpose of the talk is to add additional a-priori knowledge in the
regularization.
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Sparse Linear Models: Signal Processing Point of View

Let y in R
n be a signal.

Let D = [d1, . . . ,dp] ∈ R
n×p be a set of

normalized “basis vectors”.
We call it dictionary.

D is “adapted” to y if it can represent it with a few basis vectors—that
is, there exists a sparse vector w in R

p such that x ≈ Dw. We call w
the sparse code.



y





︸ ︷︷ ︸

y∈Rn

≈



 d1 d2 · · · dp





︸ ︷︷ ︸

D∈Rn×p








w1

w2

...
wp








︸ ︷︷ ︸

w∈Rp
,sparse
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Sparse Linear Models: the Lasso

Signal processing: D is a dictionary in R
n×p,

min
w∈Rp

1

2
‖y −Dw‖22 + λ‖w‖1.

Machine Learning:

min
w∈Rp

1

2n

n∑

i=1

(y i − xi⊤w)2 + λ‖w‖1 = min
w∈Rp

1

2n
‖y−X⊤w‖22 + λ‖w‖1,

with X
△

= [x1, . . . , xn], and y
△

= [y1, . . . , yn]⊤.

Useful tool in signal processing, machine learning, statistics,
neuroscience,. . . as long as one wishes to select features.
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Why does the ℓ1-norm induce sparsity?
Analysis of the norms in 1D

Ω(w) = w2

Ω′(w) = 2w

Ω(w) = |w |

Ω′
−(w) = −1, Ω′

+(w) = 1

The gradient of the ℓ2-norm vanishes when w get close to 0. On its
differentiable part, the norm of the gradient of the ℓ1-norm is constant.
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Why does the ℓ1-norm induce sparsity?
Geometric explanation

x

y

x

y

min
w∈Rp

1

2
‖y −Dw‖22 + λ‖w‖1

min
w∈Rp

‖y −Dw‖22 s.t. ‖w‖1 ≤ T .
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Other Sparsity-Inducing Norms

min
w∈Rp

data fitting term
︷︸︸︷

f (w) + λ Ω(w)
︸ ︷︷ ︸

sparsity-inducing norm

The most popular choice for Ω:

The ℓ1 norm, ‖w‖1 =
∑p

j=1 |wj |.

However, the ℓ1 norm encodes poor information, just cardinality!

Another popular choice for Ω:

The ℓ1-ℓq norm [Yuan and Lin, 2006], with q = 2 or q =∞

∑

g∈G

‖wg‖q with G a partition of {1, . . . , p}.

The ℓ1-ℓq norm sets to zero groups of non-overlapping variables

(as opposed to single variables for the ℓ1 norm).
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Sparsity-Inducing Norms

Ω(w) =
∑

g∈G

‖wg‖q

Applications of group sparsity:

Selecting groups of features instead of individual variables.

Multi-task learning.

Multiple kernel learning.

Drawbacks:

Requires a partition of the features.

Encodes fixed/static information.

What happens when the groups overlap? [Jenatton et al., 2009]

Inside the groups, the ℓ2-norm (or ℓ∞) does not promote sparsity.

Variables belonging to the same groups are encouraged to be set to
zero together.
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Examples of set of groups G (1/3)
[Jenatton et al., 2009]

Selection of contiguous patterns on a sequence, p = 6.

G is the set of blue groups.

Any union of blue groups set to zero leads to the selection of a
contiguous pattern.
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Examples of set of groups G (2/3)
[Jenatton et al., 2009]

Selection of rectangles on a 2-D grids, p = 25.

G is the set of blue/green groups (with their not displayed
complements).

Any union of blue/green groups set to zero leads to the selection of
a rectangle.
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Examples of set of groups G (3/3)
[Jenatton et al., 2009]

Selection of diamond-shaped patterns on a 2-D grids, p = 25.

It is possible to extent such settings to 3-D space, or more complex
topologies.
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Hierarchical Norms
[Zhao et al., 2009, Bach, 2009]

A node can be active only if its ancestors are active.
The selected patterns are rooted subtrees.
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Group Lasso + Sparsity
[Sprechmann et al., 2010]
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Application 1:

Wavelet denoising with hierarchical norms
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Wavelet denoising with hierarchical norms
[Jenatton, Mairal, Obozinski, and Bach, 2010b]

Classical wavelet denoising [Donoho and Johnstone, 1995]:

min
w∈Rp

1

2
‖x−Dw‖22 + λ‖w‖1,

When D is orthogonal, the solution is obtained via soft-thresholding.
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Wavelet denoising with hierarchical norms
[Jenatton, Mairal, Obozinski, and Bach, 2010b]

Wavelet with hierarchical norm: Add a-priori knowledge that the
coefficients are embedded in a tree.

(a) Barb., σ = 50, ℓ1 (b) Barb., σ = 50, tree
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Wavelet denoising with hierarchical norms
[Jenatton, Mairal, Obozinski, and Bach, 2010b]

Benchmark on a database of 12 standard images:

Haar
σ ℓ0 ℓ1 Ωℓ2 Ωℓ∞

PSNR

5 34.48 35.52 35.89 35.79
10 29.63 30.74 31.40 31.23
25 24.44 25.30 26.41 26.14
50 21.53 20.42 23.41 23.05
100 19.27 19.43 20.97 20.58

IPSNR

5 - 1.04± .31 1.41± .45 1.31± .41
10 - 1.10± .22 1.76± .26 1.59± .22
25 - .86± .35 1.96± .22 1.69± .21
50 - .46± .28 1.87± .20 1.51± .20
100 - .15± .23 1.69± .19 1.30± .19
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Application 2:

Hierarchical Dictionary Learning
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Hierarchical Dictionary Learning
[Olshausen and Field, 1997, Elad and Aharon, 2006, Mairal et al., 2010a]

We now consider a sequence {yi}mi=1, of signals in R
n.

min
W∈Rp×m,D∈C

m∑

i=1

1

2
‖yi −Dwi‖22 + λ‖wi‖1,

This can be rewritten as a matrix factorization problem

min
W∈Rp×m,D∈C

1

2
‖Y −DW‖2F + λ‖W‖1,1.

[Jenatton, Mairal, Obozinski, and Bach, 2010a]:
What about replacing the ℓ1-norm by a hierarchical norm?
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Hierarchical Dictionary Learning
Dictionaries learned with the ℓ1-norm
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Hierarchical Dictionary Learning
[Jenatton, Mairal, Obozinski, and Bach, 2010a]
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Application to patch reconstrution
[Jenatton, Mairal, Obozinski, and Bach, 2010a]

Reconstruction of 100,000 8× 8 natural images patches

Remove randomly subsampled pixels
Reconstruct with matrix factorization and structured sparsity

noise 50 % 60 % 70 % 80 % 90 %

flat 19.3± 0.1 26.8± 0.1 36.7± 0.1 50.6± 0.0 72.1± 0.0

tree 18.6± 0.1 25.7± 0.1 35.0± 0.1 48.0± 0.0 65.9± 0.3

16 21 31 41 61 81 121 161 181 241 301 321 401
50

60

70

80
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Hierarchical Topic Models for text corpora
[Jenatton, Mairal, Obozinski, and Bach, 2010a]

Each document is modeled through word counts

Low-rank matrix factorization of word-document matrix

Probabilistic topic models such as Latent Dirichlet Allocation [Blei
et al., 2003]

Organise the topics in a tree.

Previously approached using non-parametric Bayesian
methods (Hierarchical Chinese Restaurant Process and nested
Dirichlet Process): [Blei et al., 2010]

Can we achieve similar performance with simple matrix

factorization formulation?
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Tree of Topics
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Classification based on topics

Comparison on predicting newsgroup article subjects

20 newsgroup articles (1425 documents, 13312 words)
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PCA + SVM

NMF + SVM

LDA + SVM

SpDL + SVM

SpHDL + SVM
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Application 3:

Background Subtraction
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Background Subtraction

Given a video sequence, how can we remove foreground objects?

video sequence 1 video sequence 2
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Background Subtraction

x
︸︷︷︸

frame

≈ Dw
︸︷︷︸

linear combination of background frames

+ e
︸︷︷︸

error term

.

Solved by

min
w∈Rp ,e∈Rm

1

2
‖x−Dw − e‖22 + λ1‖w‖+ λ2Ω(e).

Same idea as Wright et al. [2009] for robust face recognition,
where Ω = ℓ1.

We are going to use overlapping groups with 3× 3 neighborhoods to add
spatial consistency. See also Cehver et al. [2008] for structured sparsity
+ background subtraction.
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Background Subtraction

(a) input (b) estimated background (c) foreground, ℓ1

(d) foreground, ℓ1+struct (e) other example
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Background Subtraction

(a) input (b) estimated background (c) foreground, ℓ1

(d) foreground, ℓ1+struct (e) other example
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How do we optimize all that?
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First-order/proximal methods

min
w∈Rp

f (w) + λΩ(w)

f is strictly convex and differentiable with a Lipshitz gradient.

Generalizes the idea of gradient descent

wk+1←argmin
w∈Rp

f (wk)+∇f (wk)⊤(w −wk)
︸ ︷︷ ︸

linear approximation

+
L

2
‖w − wk‖22

︸ ︷︷ ︸

quadratic term

+λΩ(w)

← argmin
w∈Rp

1

2
‖w − (wk −

1

L
∇f (wk))‖22 +

λ

L
Ω(w)

When λ = 0, wk+1 ← wk − 1
L
∇f (wk), this is equivalent to a

classical gradient descent step.
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First-order/proximal methods

They require solving efficiently the proximal operator

min
w∈Rp

1

2
‖u−w‖22 + λΩ(w)

For the ℓ1-norm, this amounts to a soft-thresholding:

w⋆
i = sign(ui )(ui − λ)+.

There exists accelerated versions based on Nesterov optimal
first-order method (gradient method with “extrapolation”) [Beck
and Teboulle, 2009, Nesterov, 2007, 1983]

suited for large-scale experiments.
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Tree-structured groups

Proposition [Jenatton, Mairal, Obozinski, and Bach, 2010a]

If G is a tree-structured set of groups, i.e., ∀g , h ∈ G,

g ∩ h = ∅ or g ⊂ h or h ⊂ g

For q = 2 or q =∞, we define Proxg and ProxΩ as

Proxg :u→ argmin
w∈Rp

1

2
‖u−w‖+ λ‖wg‖q,

ProxΩ :u→ argmin
w∈Rp

1

2
‖u−w‖+ λ

∑

g∈G

‖wg‖q,

If the groups are sorted from the leaves to the root, then

ProxΩ = Proxgm ◦ . . . ◦ Proxg1 .

→ Tree-structured regularization : Efficient linear time algorithm.
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General Overlapping Groups for q =∞

Dual formulation [Jenatton, Mairal, Obozinski, and Bach, 2010a]

The solutions w⋆ and ξ⋆ of the following optimization problems

min
w∈Rp

1

2
‖u−w‖+ λ‖wg‖∞, (Primal)

min
ξ∈Rp×|G|

1

2
‖u−

∑

g∈G

ξg‖22 s.t. ∀g ∈ G, ‖ξg‖1 ≤ λ and ξ
g
j = 0 if j /∈ g ,

(Dual)
satisfy

w⋆ = u−
∑

g∈G

ξ⋆g . (Primal-dual relation)

The dual formulation has more variables, but no overlapping

constraints.
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General Overlapping Groups for q =∞
[Mairal, Jenatton, Obozinski, and Bach, 2010b]

First Step: Flip the signs of u

The dual is equivalent to a quadratic min-cost flow problem.

min
ξ∈R

p×|G|
+

1

2
‖u−

∑

g∈G

ξg‖22 s.t. ∀g ∈ G,
∑

j∈g

ξ
g
j ≤ λ and ξ

g
j = 0 if j /∈ g ,
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General Overlapping Groups for q =∞
Example: G = {g = {1, . . . , p}}

min
ξg∈R

p
+

1

2
‖u− ξg‖22 s.t.

p
∑

j=1

ξ
g
j ≤ λ.

s

g

ξ
g
1+ξ

g
2+ξ

g
3 ≤λ

u2

ξ
g
2

u1

ξ
g
1

u3

ξ
g
3

t

ξ̄1, c1 ξ̄2, c2 ξ̄3, c3

Figure: G={g={1, 2, 3}}, ∀j , cj =
1
2 (uj − ξ̄j)

2.
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General Overlapping Groups for q =∞
Example with two overlapping groups

min
ξ∈R

p×|G|
+

1

2
‖u−

∑

g∈G

ξg‖22 s.t. ∀g ∈ G,
∑

j∈g

ξ
g
j ≤ λ and ξ

g
j = 0 if j /∈ g ,

s

g

ξ
g
1+ξ

g
2 ≤λ

h

ξh2+ξh3≤λ

u2

ξh2ξ
g
2

u1

ξ
g
1

u3

ξh3

t

ξ̄1, c1 ξ̄2, c2 ξ̄3, c3

Figure: G={g={1, 2}, h={2, 3}}, ∀j , cj =
1
2 (uj − ξ̄j)

2.
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General Overlapping Groups for q =∞
[Mairal, Jenatton, Obozinski, and Bach, 2010b]

Main ideas of the algorithm: Divide and conquer

1 Solve a relaxed problem in linear time.

2 Test the feasability of the solution for the “non-relaxed” problem
with a max-flow.

3 If the solution is feasible, it is optimal and stop the algorithm.

4 If not, find a minimum cut and removes the arcs along the cut.

5 Recursively process each part of the graph.

The algorithm is guaranteed to converge to the solution.

See more details in the paper
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Conclusions

We have developed efficient and large-scale algorithmic tools for
solving structured sparse decomposition problems.

These tools are related to network flow optimization.

The hierarchical case can be solved at the same cost as ℓ1.

There are preliminary applications in computer vision, there should
be more!
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