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Context of this presentation

We consider composite optimization problem

min
x∈Rp
{F (x) := f(x) + ψ(x)},

where f is L-smooth and convex, ψ is convex.

Two settings of interest

Particularly interesting structures in machine learning are

f(x) =
1

n

n∑
i=1

fi(x) or f(x) = E[f̃(x, ξ)].

Those can typically be addressed with

variants of SGD for the general stochastic case.

variance-reduced algorithms such as SVRG, SAGA, MISO, SARAH, SDCA, Katyusha. . .
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Part I: A few tricks I learned from Anatoli

and also from reading G. Lan’s papers
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Trick 1: From sub-linear to linear rates with restarts

Consider a µ-strongly convex function F . Assume that an algorithm M produces a sequence
of iterates (xk)k≥0 such that

µ

2
‖xk − x?‖2 ≤

F (xk)− F ? ≤
L‖x0 − x?‖2

2kα
.

With t0 = (2L/µ)1/α iterations, we reduce the error such that ‖xt0 −x?‖2 ≤ 1
2‖x0−x

?‖2.

Basic multi-stage scheme

This suggests a simple restart strategy with frequency t0. Up to a few details, for k = st0,

F (xk)− F ? ≤
F (x0)− F ?

2s
≤
(

1− 1

2t0

)k
(F (x0)− F ?).

Note: with α = 2, we obtain the complexity of accelerated gradient descent methods.
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Trick 1 bis: same idea in a stochastic environment

Consider a µ-strongly convex function F . Assume that an algorithm M produces a sequence
of iterates (xk)k≥0 such that

µ

2
E‖xk − x?‖2 ≤

E[F (xk)− F ?] ≤
L‖x0 − x?‖2

2tα
+
Bσ2

2
.

Basic multi-stage scheme

Same story: With t0 = (2L/µ)1/α and a restarting strategy with frequency t0, with k = st0,

E[F (xk)− F ?] ≤
F (x0)− F ?

2s
≤
(

1− 1

2t0

)k
(F (x0)− F ?) +Bσ2.
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Trick 2: from non-converging to converging algorithms with restarts

Consider a µ-strongly convex function F . Assume that an algorithm M produces a sequence
of iterates (xk)k≥0 such that

E[F (xk)− F ?] ≤ (1− τη)k (F (x0)− F ?) + ησ2,

where η is a parameter (e.g., a step size) with 0 < τη < 1. For instance, a proximal
stochastic gradient descent method, with stepsize η ≤ 1/L and averaging, ≈ yields τ = µ.

Multi-stage scheme

Choose a sequence ηt = η0/2
t, restart, while solving each sub-problem with accuracy 2ηtσ

2.
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E[F (xk)− F ?] ≤ (1− τη)k (F (x0)− F ?) + ησ2,

where η is a parameter (e.g., a step size) with 0 < τη < 1. For instance, a proximal
stochastic gradient descent method, with stepsize η ≤ 1/L and averaging, ≈ yields τ = µ.

Multi-stage scheme

Choose a sequence ηt = η0/2
t, restart, while solving each sub-problem with accuracy 2ηtσ

2.
Then, let us compute the complexity to achieve E[F (xk)− F ?] ≤ ε (with ε ≤ 2η0σ

2).

first stage: to obtain E[F (xk)− F ?] ≤ 2η0σ
2, the complexity is

O

(
1

τη0
log

(
F (x0)− F ?

ε

))
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2.
Then, let us compute the complexity to achieve E[F (xk)− F ?] ≤ ε (with ε ≤ 2η0σ

2).

next stages: each stage reduces the error by a factor 2 and the total complexity
becomes

O

(
1

τη0
log

(
F (x0)− F ?

ε

))
+

T∑
t=1

O

(
1

τηt

)
.
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Trick 3: importance of iterate averaging

Consider for instance proximal SGD with fixed step-size 1/L without averaging

E
[
F (xk)− F ? +

L

2
‖xk − x?‖2

]
≤
(

1− µ

L

)k L‖x0 − x?‖2
2

+
σ2

µ
,

Julien Mairal Stochastic Composite Optimization 8/32
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Consider for instance proximal SGD with fixed step-size 1/L with averaging

E
[
F (x̂k)− F ? +

µ

2
‖xk − x?‖2

]
≤
(

1− µ

L

)k (
F (x0)− F ? +

µ

2
‖x0 − x?‖2

)
+
σ2

L
,
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Trick 3: importance of iterate averaging

Consider for instance proximal SGD with fixed step-size 1/L with averaging

E
[
F (x̂k)− F ? +

µ

2
‖xk − x?‖2

]
≤
(

1− µ

L

)k (
F (x0)− F ? +

µ

2
‖x0 − x?‖2

)
+
σ2

L
,

With restart, we achieve the complexity

O

(
L

µ
log

(
C0

ε

))
+O

(
σ2

µε

)
.

Here, iterate averaging improves the dependence on σ2.

Julien Mairal Stochastic Composite Optimization 8/32



Trick 3: importance of averaging

Consider another algorithm that achieves

E[F (xk)− F ?] ≤
(

1−
√
µ

L

)k (
F (x0)− F ? +

µ

2
‖x0 − x?‖2

)
+

σ2√
µL

,
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Trick 3: importance of averaging

Consider another algorithm that achieves

E[F (xk)− F ?] ≤
(

1−
√
µ

L

)k (
F (x0)− F ? +

µ

2
‖x0 − x?‖2

)
+

σ2√
µL

,

With restart, we achieve the complexity

O

(√
L

µ
log

(
C0

ε

))
+O

(
σ2

µε

)
.

This is the optimal complexity for stochastic first-order optimization (see Ghadimi and Lan,
2013). Note that we did not mention averaging here....
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Part II: Stochastic Composite Optimization
with Estimate Sequences
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Reminder: Context of this presentation

We consider composite optimization problem

min
x∈Rp
{F (x) := f(x) + ψ(x)},

where f is L-smooth and convex, ψ is convex.

Two settings of interest

Particularly interesting structures in machine learning are

f(x) =
1

n

n∑
i=1

fi(x) or f(x) = E[f̃(x, ξ)].

Those can typically be addressed with

variants of SGD for the general stochastic case.

variance-reduced algorithms such as SVRG, SAGA, MISO, SARAH, SDCA, Katyusha. . .
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Complexity of SGD variants for composite functions

We consider the worst-case complexity for finding a point x̄ such that E[F (x̄)− F ?] ≤ ε for

min
x∈Rp
{F (x) := E[f̃(x, ξ)] + ψ(x)},

In this talk, we consider the µ-strongly convex case only.

Complexity of SGD with iterate averaging

O

(
L

µ
log

(
C0

ε

))
+O

(
σ2

µε

)
,

under the (strong) assumption that the gradient estimates have bounded variance σ2.

Complexity of accelerated SGD [Ghadimi and Lan, 2013]

O

(√
L

µ
log

(
C0

ε

))
+O

(
σ2

µε

)
.
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Complexity for (deterministic) finite sums

We consider the worst-case complexity for finding a point x̄ such that E[F (x̄)− F ?] ≤ ε for

min
x∈Rp

{
F (x) :=

1

n

n∑
i=1

fi(x) + ψ(x)

}
,

Complexity of SAGA/SVRG/SDCA/MISO/S2GD

O

((
n+

L̄

µ

)
log

(
C0

ε

))
with L̄ =

1

n

n∑
i=1

Li.

Complexity of GD and acc-GD

O

((
n
L

µ

)
log

(
C0

ε

))
vs. O

((
n

√
L

µ

)
log

(
C0

ε

))
.

see also SDCA [Shalev-Shwartz and Zhang, 2014] and Catalyst [Lin, Mairal, and Harchaoui,
2018].
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ε
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with L̄ =

1

n

n∑
i=1

Li.

Complexity of Katyusha [Allen-Zhu, 2017]

O

n+

√
nL̄

µ

 log

(
C0

ε

) .

see also SDCA [Shalev-Shwartz and Zhang, 2014] and Catalyst [Lin, Mairal, and Harchaoui,
2018].
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Variance reduction

Variance reduction

Consider two random variables X,Y and define

Z = X − Y + E[Y ].

Then,

E[Z] = E[X]

Var(Z) = Var(X) + Var(Y )− 2cov(X,Y ).

The variance of Z may be smaller if X and Y are positively correlated.

Why is it useful for stochastic optimization?

step-sizes for SGD have to decrease to ensure convergence.

with variance reduction, one may use larger constant step-sizes.
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Contributions of our work without acceleration

We extend and generalize the concept of estimate sequences introduced by Y. Nesterov to

provide a unified proof of convergence for SAGA/random-SVRG/MISO.

provide them adaptivity for unknown µ (known before for SAGA only).

make them robust to stochastic noise, e.g., for solving

f(x) =
1

n

n∑
i=1

fi(x) with fi(x) = E[f̃i(x, ξ)].

with complexity

O

((
n+

L̄

µ

)
log

(
C0

ε

))
+O

(
σ̃2

µε

)
with σ̃2 � σ2,

where σ̃2 is the variance due to small perturbations.

obtain new variants of the above algorithms with the same guarantees.
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Contributions of our work with acceleration

we propose a simple accelerated SGD algorithm for composite optimization with
optimal complexity

O

(√
L

µ
log

(
C0

ε

))
+O

(
σ2

µε

)
,

we propose an accelerated variant of SVRG for the stochastic finite-sum problem with
complexity

O

n+

√
nL̄

µ

 log

(
C0

ε

)+O

(
σ̃2

µε

)
with σ̃2 � σ2.

When σ̃ = 0, the complexity matches that of Katyusha.
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Estimate sequences

Definition [Nesterov].

A pair of sequences (ϕk)t≥0 and (λk)t≥0, with λk ≥ 0 and ϕk : Rp → R, is called an
estimate sequence of function f if λk → 0 and

for any x ∈ Rp and all k ≥ 0, ϕk(x) ≤ (1− λk)f(x) + λkϕ0(x).

In addition, if for some sequence (xk)k≥0 we have

f(xk) ≤ ϕ?k
M
= min

x∈Rp
ϕk(x),

then
f(xk)− f? ≤ λk(ϕ0(x

?)− f?),

where x? is a minimizer of f .
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Estimate sequences

In summary, we need two properties

1 ϕk(x) ≤ (1− λk)f(x) + λkϕ0(x);

2 f(xk) ≤ ϕ?k
M
= minx∈Rp ϕk(x).

Remarks

ϕk is neither an upper-bound, nor a lower-bound;

Finding the right estimate sequence is often nontrivial.
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Estimate sequences

In summary, we need two properties

1 ϕk(x) ≤ (1− λk)f(x) + λkϕ0(x);

2 f(xk) ≤ ϕ?k
M
= minx∈Rp ϕk(x).

How to build an estimate sequence?

Define ϕk recursively

ϕk(x)
M
= (1− αk)ϕk−1(x) + αkdk(x),

where dk is a lower-bound, e.g., if f is smooth,

dk(x)
M
= f(yk) +∇f(yk)

>(x− yk) +
µ

2
‖x− yk‖22,

Then, work hard to choose αk as large as possible, and yk and xk such that property 2
holds. Subsequently, λk =

∏t
t=1(1− αk).
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Estimate sequences

In summary, we need two properties

1 ϕk(x) ≤ (1− λk)f(x) + λkϕ0(x);

2 f(xk) ≤ ϕ?k
M
= minx∈Rp ϕk(x).

Example: if αk = 2
k+2 , then λk =

∏t
t=1(1− αt) = 2

(k+1)(k+2) = O(1/k2).

Proofs based on estimates sequences are typically constructive and build the algorithm
at the same time as they prove convergence, while describing the underlying model ϕk.

But they lead to tedious calculations (about 2 pages).

What we will need to do is to handle stochastic estimates of the gradients.
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A classical iteration

xk ← Proxηkψ [xk−1 − ηkgk] with E[gk|Fk] = ∇f(xk−1),

covers SGD, SAGA, SVRG, and composite variants.

Interpretation

xk minimizes the quadratic function ϕk, defined as

ϕk(x) = (1− δk)ϕk−1(x) + δk

(
f(xk−1) + g>k (x− xk−1) +

µ

2
‖x− xk−1‖2

. . .+ ψ(xk) + ψ′(xk)
>(x− xk)

)
,

where δk = µηk, ψ′(xk) is a subgradient in ∂ψ(xk), and ϕ0(x) = ϕ?0 + µ
2‖x− x0‖

2.

This is similar to the construction of estimate sequences by Y. Nesterov.

see also [Devolder, 2011, Lin et al., 2014] for stochastic problems.
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xk ← Proxηkψ [xk−1 − ηkgk] with E[gk|Fk] = ∇f(xk−1),

covers SGD, SAGA, SVRG, and composite variants.

Interpretation

xk minimizes the quadratic function ϕk, defined as

ϕk(x) = (1− δk)ϕk−1(x) + δk

(
f(xk−1) + g>k (x− xk−1) +

µ

2
‖x− xk−1‖2

. . .+ ψ(xk) + ψ′(xk)
>(x− xk)

)
,

where δk = µηk, ψ′(xk) is a subgradient in ∂ψ(xk), and ϕ0(x) = ϕ?0 + µ
2‖x− x0‖

2.

This is similar to the construction of estimate sequences by Y. Nesterov.

see also [Devolder, 2011, Lin et al., 2014] for stochastic problems.
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A less classical iteration

xk = Proxψ/µ [x̄k] with x̄k ← (1− δk)x̄k–1 + δkxk − ηkgk and E[gk|Fk] = ∇f(xk–1),

covers MISO/Finito/primal SDCA with δk = µηk.

Interpretation

xk minimizes the function ϕk, defined as

ϕk(x) = (1 − δk)ϕk−1(x) + δk

(
f(xk−1) + g>k (x − xk−1) +

µ

2
‖x − xk−1‖2 + ψ(x)

)
.

Estimate sequences will provide identical convergence proofs for both types of iterations.
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Our convergence result with stochastic estimate sequences

General convergence result (no acceleration yet)

if ηt ≤ 1/L for all t ≥ 0, then for all k ≥ 1,

E
[
F (x̂k)− F ? +

µ

2
‖xk − x?‖2

]
≤ Γk

(
F (x0)− F ? +

µ

2
‖x0 − x?‖2 +

k∑
t=1

δtηtσ
2
t

Γt

)
.

where Γk =
∏k
t=1(1− δt), x̂k = (1− δk)x̂k−1 + δkxk, and σ2t = E[‖gt −∇f(xt−1)‖2].
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∏k
t=1(1− δt), x̂k = (1− δk)x̂k−1 + δkxk, and σ2t = E[‖gt −∇f(xt−1)‖2].

Corollary: SGD with constant step size ηk = 1/L, with averaging

E
[
F (x̂k)− F ? +

µ

2
‖xk − x?‖2

]
≤ 2

(
1− µ

L

)k
(F (x0)− F ?) +

σ2

L
.

Julien Mairal Stochastic Composite Optimization 21/32



Our convergence result with stochastic estimate sequences

General convergence result (no acceleration yet)
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[
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2
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]
≤ Γk
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2
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t
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)
.

where Γk =
∏k
t=1(1− δt), x̂k = (1− δk)x̂k−1 + δkxk, and σ2t = E[‖gt −∇f(xt−1)‖2].

Corollary: SGD with constant step size ηk = 1/L, with averaging

#Comp = O

(
L

µ
log

(
C0

ε

))
with Bias =

σ2

L
.
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Our convergence result with stochastic estimate sequences

General convergence result (no acceleration yet)

if ηt ≤ 1/L for all t ≥ 0, then for all k ≥ 1,
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2
‖xk − x?‖2

]
≤ Γk

(
F (x0)− F ? +

µ

2
‖x0 − x?‖2 +

k∑
t=1

δtηtσ
2
t

Γt

)
.

where Γk =
∏k
t=1(1− δt), x̂k = (1− δk)x̂k−1 + δkxk, and σ2t = E[‖gt −∇f(xt−1)‖2].

Corollary: two-stage SGD with (i) constant step size; then (ii) decreasing step sizes

#Comp = O

(
L

µ
log

(
C0

ε

))
+O

(
σ2

µε

)
.
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An accelerated SGD algorithm

An algorithm derived from the estimate sequence method.

xk = Proxηkψ [yk−1 − ηkgk] with E[gk|Fk–1] = ∇f(yk–1)

yk = xk + βk(xk − xk–1) with βk =
δk(1− δk)ηk+1

ηkδk+1 + ηk+1δ
2
k

,

Interpretation

xk minimizes the quadratic function ϕk, defined as

ϕk(x) = (1− δk)ϕk−1(x) + δk

(
f(yk−1) + g>k (x− yk−1) +

µ

2
‖x− yk−1‖2

. . .+ ψ(xk) + ψ′(xk)
>(x− xk)

)
,

where δk = µηk, ψ′(xk) is a subgradient in ∂ψ(xk), and ϕ0(x) = ϕ?0 + µ
2‖x− x0‖

2.
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An accelerated SGD algorithm

An algorithm derived from the estimate sequence method.

xk = Proxηkψ [yk−1 − ηkgk] with E[gk|Fk–1] = ∇f(yk–1)

yk = xk + βk(xk − xk–1) with βk =
δk(1− δk)ηk+1

ηkδk+1 + ηk+1δ
2
k

,

Complexity: acc-SGD with constant step size ηk = 1/L

E [F (xk)− F ?] ≤ 2

(
1−

√
µ

L

)k
(F (x0)− F ?) +

σ2√
µL

.

Note that the bias is larger than regular SGD by
√
L/µ.
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An algorithm derived from the estimate sequence method.
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yk = xk + βk(xk − xk–1) with βk =
δk(1− δk)ηk+1

ηkδk+1 + ηk+1δ
2
k

,

Corollary: acc-SGD with constant step size ηk = 1/L, without averaging

#Comp = O

(√
L

µ
log

(
C0

ε

))
with Bias =

σ2√
µL

.
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yk = xk + βk(xk − xk–1) with βk =
δk(1− δk)ηk+1

ηkδk+1 + ηk+1δ
2
k

,

Corollary: two-stage acc-SGD with (i) constant step size; then (ii) decreasing step sizes

#Comp = O

(√
L

µ
log

(
C0

ε

))
+O

(
σ2

µε

)
.
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An accelerated SVRG algorithm for stochastic finite-sum problems

Choose the extrapolation point

yk–1 = θkvk–1 + (1− θk)x̃k–1;

Compute the noisy gradient estimator

gk = ∇̃fik(yk–1)− ∇̃fik(x̃k–1) + ∇̃f(x̃k–1);

Obtain the new iterate
xk ← Proxηkψ [yk–1 − ηkgk] ;

Find the minimizer vk of the estimate sequence:

vk = (1− δk) vk–1 + δkyk–1 +
δk
γkηk

(xk − yk–1);

Update the anchor point x̃k with prob 1/n.

Output xk (no averaging needed).
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An accelerated SVRG algorithm for stochastic finite-sum problems

Remarks

design of the algorithm and convergence proofs are based on estimate sequences.

with two stages, the algorithm achieves the optimal complexity

O

n+

√
nL̄

µ

 log

(
C0

ε

)+O

(
σ̃2

µε

)
with σ̃2 � σ2.
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A few experiments

0 50 100 150 200 250 300
Effective passes over data, Dataset alpha

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

lo
g(

F
/F

* -1
)

rand-SVRG 1/12L
rand-SVRG 1/3L
acc-SVRG 1/3L
SGD 1/L
SGD-d
acc-SGD-d
acc-mb-SGD-d 0 50 100 150 200 250 300

Effective passes over data, Dataset ckn-cifar

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

lo
g(

F
/F

* -1
)

`2-logistic regression on two datasets, with µ = 1/10n.

no big difference between the variants of SGD with decreasing step sizes;

variance reduction makes a huge difference.

acceleration helps on ckn-cifar.
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A few experiments
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Effective passes over data, Dataset alpha
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rand-SVRG 1/3L
acc-SVRG 1/3L
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SGD-d
acc-SGD-d
acc-mb-SGD-d

0 50 100 150 200 250 300
Effective passes over data, Dataset ckn-cifar
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10 -4

10 -3

10 -2

10 -1

10 0
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g(

F
/F

* -1
)

`2-logistic regression on two datasets, with µ = 1/100n.

as conditioning worsens, the benefits of acceleration are larger.

accelerated SGD with mini-batches take the lead among SGD methods.
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A few experiments

0 50 100 150 200 250 300

Effective passes over data
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-5

10
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*
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acc-SVRG 1/3L

SGD 1/L

SGD-d

acc-SGD-d

acc-mb-SGD-d
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Effective passes over data
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0

lo
g
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/F
*
-1

)

SVM with squared hinge loss on two datasets, with µ = 1/10n.

here, gradients are potentially unbounded and accelerated SGD diverges!

accelerated SGD with mini-batches is stable and faster than SGD.
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Remark about accelerated SGD

It does not always work. Why?

the bounded noise variance assumption is not safe.

the accelerated algorithm with constant step size (which is used to forget the initial
condition) has much worth dependency in σ2 (see next slide).
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condition) has much worth dependency in σ2 (see next slide).

Convergence of SGD with ηt = 1/L

E[f(x̂t)− f?] ≤ 2
(

1− µ

L

)t
(f(x0)− f?) +

σ2

L
.

Convergence of accelerated SGD with ηt = 1/L
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√
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L
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Remark about accelerated SGD

It does not always work. Why?

the bounded noise variance assumption is not safe.

the accelerated algorithm with constant step size (which is used to forget the initial
condition) has much worth dependency in σ2 (see next slide).

Is it worthless?

removing the need for averaging is great for sparse problems.

with a mini-batch of size
√
L/µ, we obtain the same complexity as the unaccelerated

algorithm and the same stability w.r.t. σ2, and we can parallelize for free!
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References from this talk

The botany of incremental methods

SAG [Schmidt et al., 2017].

SAGA [Defazio et al., 2014a].

SVRG [Xiao and Zhang, 2014].

SDCA [Shalev-Shwartz and Zhang, 2014].

Finito [Defazio et al., 2014b].

MISO [Mairal, 2015].

S2GD [Konečnỳ and Richtárik, 2017].

SARAH [Nguyen et al., 2017].

MiG [Zhou et al., 2018].

Katyusha [Allen-Zhu, 2017].

Catalyst [Lin et al., 2018].

. . .
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Conclusion

The estimate sequence method is a generic tool, which can be applied to stochastic
optimization problems, including finite-sums.

We use it to develop and analyze algorithms without and with acceleration.

We discuss empirical findings regarding the stability of accelerated stochastic
algorithms.

. . . but stability issues can be fixed with mini-batching.
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Variance reduction for finite sums (2/2)

SVRG (non-composite variante)

xt = xt−1 − γ (∇fit(xt−1)−∇fit(y) +∇f(y)) ,

where y is updated every epoch and E[∇fit(y)|Ft−1] = ∇f(y).

SAGA

xt = xt−1 − γ
(
∇fit(xt−1)− yt−1it

+ 1
n

∑n
i=1 y

t−1
i

)
,

where E[yt−1it
|Ft−1] = 1

n

∑n
i=1 y

t−1
i and yti =

{
∇fi(xt−1) if i = it
yt−1i otherwise.

MISO/Finito: for n ≥ L/µ, same form as SAGA but

1
n

∑n
i=1 y

t−1
i = −µxt−1 and yti =

{
∇fi(xt−1)− µxt−1 if i = it
yt−1i otherwise.

Julien Mairal Stochastic Composite Optimization 31/32



The stochastic finite sum problem

min
x∈Rp

{
F (x) :=

1

n

n∑
i=1

fi(x) + ψ(x)

}
with fi(x) = E[f̃i(x, ξ)],

Data augmentation on digits (left); Dropout on text (right).
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