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Part I: Several Paradigms in Machine Learning
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Common paradigm: optimization for machine learning

Optimization is central to machine learning. For instance, in supervised
learning, the goal is to learn a prediction function f : X → Y given
labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

[Vapnik, 1995, Bottou, Curtis, and Nocedal, 2016]...
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Optimization is central to machine learning. For instance, in supervised
learning, the goal is to learn a prediction function f : X → Y given
labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

The scalars yi are in

{−1,+1} for binary classification problems.

{1, . . . ,K} for multi-class classification problems.

R for regression problems.

Rk for multivariate regression problems.
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Common paradigm: optimization for machine learning

Optimization is central to machine learning. For instance, in supervised
learning, the goal is to learn a prediction function f : X → Y given
labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

Example with linear models: logistic regression, SVMs, etc.

assume there exists a linear relation between y and features x in Rp.

f(x) = w>x+ b is parametrized by w, b in Rp+1;

L is often a convex loss function;

Ω(f) is often the squared `2-norm ‖w‖2.
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Common paradigm: optimization for machine learning

A few examples of linear models with no bias b:

Ridge regression: min
w∈Rp

1

n

n∑

i=1

1

2
(yi − w>xi)2 + λ‖w‖22.

Linear SVM: min
w∈Rp

1

n

n∑

i=1

max(0, 1− yiw>xi) + λ‖w‖22.

Logistic regression: min
w∈Rp

1

n

n∑

i=1

log
(

1 + e−yiw
>xi
)

+ λ‖w‖22.
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Common paradigm: optimization for machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).
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Common paradigm: optimization for machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

A general principle

It underlies many paradigms:

deep neural networks,

kernel methods,

sparse estimation.
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Common paradigm: optimization for machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

Even with simple linear models, it leads to challenging problems in
optimization: develop algorithms that

scale both in the problem size n and dimension p;

are able to exploit the problem structure (sum, composite);

come with convergence and numerical stability guarantees;

come with statistical guarantees.
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Common paradigm: optimization for machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

It is not limited to supervised learning

min
f∈F

1

n

n∑

i=1

L(f(xi)) + λΩ(f).

L is not a classification loss any more;

K-means, PCA, EM with mixture of Gaussian, matrix
factorization,... can be expressed that way.
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Paradigm 1: Deep neural networks

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

The “deep learning” space F is parametrized:

f(x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)).

Finding the optimal A1, A2, . . . , Ak yields an (intractable)
non-convex optimization problem in huge dimension.

Linear operations are either unconstrained (fully connected) or
involve parameter sharing (e.g., convolutions).
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Paradigm 1: Deep neural networks

A quick zoom on convolutional neural networks

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model local stationarity of images at several scales.

state-of-the-art in many fields.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...
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Paradigm 1: Deep neural networks

A quick zoom on convolutional neural networks

What are the main open problems?

very little theoretical understanding;

they require large amounts of labeled data;

they require manual design and parameter tuning;

how to regularize is unclear;

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...
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Paradigm 1: Deep neural networks

A quick zoom on convolutional neural networks

How to use them?

they are the focus of a huge academic and industrial effort;

there is efficient and well-documented open-source software;

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Foundations of DL from a kernel point of view 8/124



Paradigm 2: Kernel methods

min
f∈H

1

n

n∑

i=1

L(yi, f(xi)) + λ‖f‖2H.

map data x in X to a Hilbert space and work with linear forms:

ϕ : X → H and f(x) = 〈ϕ(x), f〉H.

x
x x x

xx xx
-

6

��
��*

.......
.......

.......
.....

I
�
�
�	

QQs

............................................................
.......................................................................................................................................................................................................................................................................... .......................................

....................
..............

.........
........
.......
.......
......
.......
.......
......
......
.......
...

.....

.....

.......

......

.......

.......

......

......

......

.......

......

......

.....

.....

......

......

.......

.......
......
......
......
........
.......
.........
.........

...........
................

........................
..................................................................................................................................................................

...............................................
................................................

..........................................................
....................... ..................................................................................................................................................................................z

.................................................................................................................................................................................................................. ....... ......................................
.................................................

...............................................
...........................:

.................................................................................................................................................................. ...... ....... .....................................
.................................................

...............................................
................................................

....:
...........................

...........................
........................

.............................
.................................

......................... .....................................................................................................................................z

.........................................
........................................

..........................................
................................................

.......... ....... .............................................................................................................................................................................................................................................................z

ϕ

X H

[Shawe-Taylor and Cristianini, 2004, Schölkopf and Smola, 2002]...
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Paradigm 2: Kernel methods

min
f∈H

1

n

n∑

i=1

L(yi, f(xi)) + λ‖f‖2H.

First purpose: embed data in a vectorial space where

many geometrical operations exist (angle computation, projection
on linear subspaces, definition of barycenters....).

one may learn potentially rich infinite-dimensional models.

regularization is natural (see next...)

The principle is generic and does not assume anything about the nature
of the set X (vectors, sets, graphs, sequences).
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Paradigm 2: Kernel methods

Second purpose: unhappy with the current Euclidean structure?

lift data to a higher-dimensional space with nicer properties (e.g.,
linear separability, clustering structure).

then, the linear form f(x) = 〈ϕ(x), f〉H in H may correspond to a
non-linear model in X .

R

x1

x2

x1

x2

2

2

Julien Mairal Foundations of DL from a kernel point of view 11/124



Paradigm 2: Kernel methods

How does it work? representation by pairwise comparisons

Define a “comparison function”: K : X × X 7→ R.
Represent a set of n data points S = {x1, . . . , xn} by the n× n
matrix:

Kij := K(xi, xj).

1    0.5  0.3
0.5  1    0.6
0.3  0.6  1

K=

X

S

(S)=(aatcgagtcac,atggacgtct,tgcactact)φ
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Paradigm 2: Kernel methods

Theorem (Aronszajn, 1950)

K : X × X → R is a positive definite kernel if and only if there exists a
Hilbert space H and a mapping ϕ : X → H, such that

for any x, x′ in X , K(x, x′) = 〈ϕ(x), ϕ(x′)〉H.
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Paradigm 2: Kernel methods

Mathematical details

the only thing we require about K is symmetry and positive
definiteness

∀x1, . . . , xn ∈ X , α1, . . . , αn ∈ R,
∑

ij

αiαjK(xi, xj) ≥ 0.

then, there exists a Hilbert space H of functions f : X → R, called
the reproducing kernel Hilbert space (RKHS) such that

∀f ∈ H, x ∈ X , f(x) = 〈ϕ(x), f〉H,

and the mapping ϕ : X → H (from Aronszajn’s theorem) satisfies

ϕ(x) : y 7→ K(x, y).

Julien Mairal Foundations of DL from a kernel point of view 14/124



Paradigm 2: Kernel methods

Why mapping data in X to the functional space H?

it becomes feasible to learn a prediction function f ∈ H:

min
f∈H

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ λ‖f‖2H︸ ︷︷ ︸
regularization

.

(why? the solution lives in a finite-dimensional hyperplane).

non-linear operations in X become inner-products in H since

∀f ∈ H, x ∈ X , f(x) = 〈ϕ(x), f〉H.

the norm of the RKHS is a natural regularization function:

|f(x)− f(x′)| ≤ ‖f‖H‖ϕ(x)− ϕ(x′)‖H.
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Paradigm 2: Kernel methods

What are the main features of kernel methods?

builds well-studied functional spaces to do machine learning;

decoupling of data representation and learning algorithm;

typically, convex optimization problems in a supervised context;

versatility: applies to vectors, sequences, graphs, sets,. . . ;

natural regularization function to control the learning capacity;

But...

decoupling of data representation and learning may not be a good
thing, according to recent supervised deep learning success.

requires kernel design.

O(n2) scalability problems.

[Shawe-Taylor and Cristianini, 2004, Schölkopf and Smola, 2002, Müller et al., 2001]
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Paradigm 3: The sparsity principle (because of CoSIP)

Let us consider again the classical scientific paradigm:
1 observe the world (gather data);
2 propose models of the world (design and learn);
3 test on new data (estimate the generalization error).

But...

it is not always possible to distinguish the generalization error of
various models based on available data.

when a complex model A performs slightly better than a simple
model B, should we prefer A or B?

generalization error requires a predictive task: what about
unsupervised learning? which measure should we use?

we are also leaving aside the problem of non i.i.d. train/test data,
biased data, testing with counterfactual reasoning...

[Corfield et al., 2009].

[Corfield et al., 2009, Bottou et al., 2013, Schölkopf et al., 2012].
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Paradigm 3: The sparsity principle (because of CoSIP)

(a) Dorothy Wrinch
1894–1980

(b) Harold Jeffreys
1891–1989

The existence of simple laws is, then, apparently, to be
regarded as a quality of nature; and accordingly we may infer
that it is justifiable to prefer a simple law to a more complex
one that fits our observations slightly better.

[Wrinch and Jeffreys, 1921].
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Paradigm 3: The sparsity principle (because of CoSIP)

Remarks: sparsity is...

appealing for experimental sciences for model interpretation;

(too-)well understood in some mathematical contexts:

min
w∈Rp

1

n

n∑

i=1

L
(
yi, w

>xi
)

︸ ︷︷ ︸
empirical risk, data fit

+ λ‖w‖1︸ ︷︷ ︸
regularization

.

extremely powerful for unsupervised learning in the context of
matrix factorization, and simple to use.

Today’s challenges

Develop sparse and stable (and invariant?) models.

Go beyond clustering / low-rank / union of subspaces.

[Olshausen and Field, 1996, Chen, Donoho, and Saunders, 1999, Tibshirani, 1996]...
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Some references

On kernel methods

B. Schölkopf and A. J. Smola. Learning with kernels: support
vector machines, regularization, optimization, and beyond. 2002.

J. Shawe-Taylor and N. Cristianini. An introduction to support
vector machines and other kernel-based learning methods. 2004.

635 slides: http://members.cbio.mines-paristech.fr/

~jvert/svn/kernelcourse/course/2017mva/index.html

On sparse estimation

M. Elad. Sparse and Redundant Representations: From Theory to
Applications in Signal and Image Processing. 2010.

J. Mairal, F. Bach, and J. Ponce. Sparse Modeling for Image and
Vision Processing. 2014. free online.
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Part II: Convolutional Kernel Networks
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Challenges of deep kernel machines

Build functional spaces for deep learning, where we can quantify
invariance and stability to perturbations, signal recovery
properties, and the complexity of the function class.

do deep learning with a geometrical interpretation (learn
collections of linear subspaces, perform projections).

exploit kernels for structured objects (graph, sequences) within
deep architectures.

show that end-to-end learning is natural with kernel methods.
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Convolutional Kernel Networks

The (happy?) marriage of kernel methods and CNNs

1 a multilayer convolutional kernel for images: A hierarchy of
kernels for local image neighborhoods (aka, receptive fields).

2 unsupervised scheme for large-scale learning: the kernel beeing
too computationally expensive, the Nyström approximation at each
layer yields a new type of unsupervised deep neural network.

3 end-to-end learning: learning subspaces in the RKHSs can be
achieved with a supervised loss function.
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1 a multilayer convolutional kernel for images: A hierarchy of
kernels for local image neighborhoods (aka, receptive fields).

2 unsupervised scheme for large-scale learning: the kernel beeing
too computationally expensive, the Nyström approximation at each
layer yields a new type of unsupervised deep neural network.

3 end-to-end learning: learning subspaces in the RKHSs can be
achieved with a supervised loss function.

First proof of concept with unsupervised learning
J. Mairal, P. Koniusz, Z. Harchaoui and C. Schmid. Convolutional Kernel
Networks. NIPS 2014.

Application to image retrieval
M. Paulin, J. Mairal, M. Douze, Z. Harchaoui, F. Perronnin, and C. Schmid.
Convolutional Patch Representations for Image Retrieval: an Unsupervised
Approach. IJCV. 2017.

Julien Mairal Foundations of DL from a kernel point of view 23/124



Convolutional Kernel Networks

The (happy?) marriage of kernel methods and CNNs

1 a multilayer convolutional kernel for images: A hierarchy of
kernels for local image neighborhoods (aka, receptive fields).

2 unsupervised scheme for large-scale learning: the kernel beeing
too computationally expensive, the Nyström approximation at each
layer yields a new type of unsupervised deep neural network.

3 end-to-end learning: learning subspaces in the RKHSs can be
achieved with a supervised loss function.

Conceptually better model, with supervised learning
J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel
Networks. NIPS 2016.

Application to biological sequences
D. Chen, L. Jacob, and J. Mairal. Predicting Transcription Factor Binding Sites
with Convolutional Kernel Networks. preprint BiorXiv. 2017.
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Convolutional Kernel Networks

x : Ω → A
x(u) ∈ A P0x(v1) ∈ P0 (patch)

x0 : Ω0 → H0

x0(v1) = ϕ0(P0x(v1)) ∈ H0

domain-specific kernel
P1x0(v2) ∈ P1

x0.5 : Ω0 → H1

x0.5(v2) = ϕ1(P1x0(v2)) ∈ H1

dot-product kernel

x1 : Ω1 → H1

x1(v3) ∈ H1

linear pooling

xk ∈ Hk y
prediction layer

embedding
layer

convolutional
kernel layer

Illustration of multilayer convolutional kernel for 1D discrete signals.
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Convolutional Kernel Networks

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

xk–0.5(v) = ϕk(Pkxk–1(v)) ∈ Hk
xk–0.5 : Ω → Hk

xk : Ω → Hk

linear pooling
xk(w) ∈ Hk

Illustration of multilayer convolutional kernel for 2D continuous signals.
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Convolutional Kernel Networks

I0

x

x′

kernel trick

projection on F1

M1

ψ1(x)

ψ1(x
′)

I1
linear pooling

Hilbert space H1

F1

ϕ1(x)

ϕ1(x
′)

Learning mechanism of CKNs between layers 0 and 1.

Julien Mairal Foundations of DL from a kernel point of view 26/124



Convolutional Kernel Networks

Main principles

A multilayer kernel, which builds upon similar principles as a
convolutional neural net (multiscale, local stationarity).

When going up in the hierarchy, we represent larger
neighborhoods with more invariance;

The first layer may encode domain-specific knowledge;

We build a sequence of functional spaces and data representations
that are decoupled from learning...

But, we learn linear subspaces in RKHSs, where we project data,
providing a new type of CNN with a geometric interpretation.

Learning may be unsupervised (reduce approximation error) or
supervised (via backpropagation).
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Learning may be unsupervised (reduce approximation error) or
supervised (via backpropagation).
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Basic component: dot-product kernels

A simple link between kernels and neural networks can be obtained by
considering dot-product kernels.

A classical old result [Schoenberg, 1942]

Let X = Sd−1 be the unit sphere of Rd. The kernel K : X 2 → R

K(x, y) = κ(〈x, y〉Rd)

is positive definite if and only if κ is smooth and its Taylor expansion
coefficients are non-negative.

Remark

the proposition holds if X is the unit sphere of some Hilbert space
and 〈x, y〉Rd is replaced by the corresponding inner-product.

[Smola, Ovari, and Williamson, 2001]...

Julien Mairal Foundations of DL from a kernel point of view 28/124



Basic component: dot-product kernels

linear kernel 〈z, z′〉
exponential kernel eα(〈z,z′〉−1)

inverse polynomial kernel 1
2−〈z,z′〉

polynomial kernel of degree p (c+ 〈z, z′〉)p

arc-cosine kernel of degree 1 1
π (sin(θ) + (π − θ) cos(θ))

with θ = arccos(〈z, z′〉)
Vovk’s kernel of degree 3 1

3

(
1−〈z,z′〉3
1−〈z,z′〉

)
= 1

3

(
1 + 〈z, z′〉+ 〈z, z′〉2

)

Remark

if ‖z‖ = ‖z′‖ = 1, the exponential kernel recovers the Gaussian kernel

κexp(〈z, z′〉) = eα(〈z,z′〉−1) = e−
α
2
‖z−z′‖2 ,
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Basic component: dot-product kernels + Nyström

The Nyström method consists of replacing any point ϕ(x) in H, for x
in X by its orthogonal projection onto a finite-dimensional subspace

F = span(ϕ(z1), . . . , ϕ(zp)),

for some anchor points Z = [z1, . . . , zp] in Rd×p

Hilbert space H

F

ϕ(x)

ϕ(x′)
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Basic component: dot-product kernels + Nyström

The projection is equivalent to

ΠF [x]
M
=

p∑

j=1

β?jϕ(zj) with β? ∈ arg min
β∈Rp

∥∥∥∥∥∥
ϕ(x)−

p∑

j=1

βjϕ(zj)

∥∥∥∥∥∥

2

H

,

Then, it is possible to show that with K(x, y) = 〈ϕ(x), ϕ(y)〉H,

K(x, y) ≈ 〈ΠF [x],ΠF [y]〉H = 〈ψ(x), ψ(y)〉Rp ,

with
ψ(x) = κ(Z>Z)−1/2κ(Z>x),

where the function κ is applied pointwise to its arguments. The resulting
ψ can be interpreted as a neural network performing (i) linear operation,
(ii) pointwise non-linearity, (iii) linear operation.

[Williams and Seeger, 2001, Smola and Schölkopf, 2000, Fine and Scheinberg, 2001].
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The multilayer convolutional kernel

Definition: image feature maps

An image feature map is a function I : Ω→ H, where Ω is a 2D grid
representing “coordinates” in the image and H is a Hilbert space.

I0 : Ω0 → H0I0(ω0) ∈ H0

Pω1 ∈ P0 (patch)

Kernel trick

I0.5(ω1) = ϕ1(Pω1) ∈ H1
I0.5 : Ω0 → H1

I1 : Ω1 → H1

Linear pooling

I1(ω2) ∈ H1
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The multilayer convolutional kernel

Definition: image feature maps

An image feature map is a function I : Ω→ H, where Ω is a 2D grid
representing “coordinates” in the image and H is a Hilbert space.

Motivation and examples

Each point I(ω) carries information about an image neighborhood,
which is motivated by the local stationarity of natural images.

We will construct a sequence of maps I0, . . . , Ik. Going up in the
hierarchy yields larger receptive fields with more invariance.

I0 may simply be the input image, where H0 = R3 for RGB.

How do we go from I0 : Ω0 → H0 to I1 : Ω1 → H1?

First, define a p.d. kernel on patches of I0!
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The multilayer convolutional kernel

Going from I0 to I0.5: kernel trick

Patches of size e0 × e0 can be defined as elements of the Cartesian
product P0

M
= He0×e00 endowed with its natural inner-product.

Define a p.d. kernel on such patches: For all x, x′ in P0,

K1(x, x′) = ‖x‖P0‖x′‖P0κ1

( 〈x, x′〉P0

‖x‖P0‖x′‖P0

)
if x, x′ 6= 0 and 0 otherwise.

Note that for y, y′ normalized, we may choose

κ1

(
〈y, y′〉P0

)
= eα1(〈y,y′〉P0

−1) = e
−α1

2
‖y−y′‖2P0 .

We call H1 the RKHS and define a mapping ϕ1 : P0 → H1.

Then, we may define the map I0.5 : Ω0 → H1 that carries the
representations in H1 of the patches from I0 at all locations in Ω0.
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The multilayer convolutional kernel

I0 : Ω0 → H0I0(ω0) ∈ H0

Pω1 ∈ P0 (patch)

Kernel trick

I0.5(ω1) = ϕ1(Pω1) ∈ H1
I0.5 : Ω0 → H1

I1 : Ω1 → H1

Linear pooling

I1(ω2) ∈ H1

How do we go from I0.5 : Ω0 → H1 to I1 : Ω1 → H1?

Linear pooling!
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The multilayer convolutional kernel

Going from I0.5 to I1: linear pooling

For all ω in Ω1:

I1(ω) =
∑

ω′∈Ω0

I0.5(ω′)e−β1‖ω′−ω‖22 .

The Gaussian weight can be interpreted as an anti-aliasing filter for
downsampling the map I0.5 to a different resolution.

Linear pooling is compatible with the kernel interpretation: linear
combinations of points in the RKHS are still points in the RKHS.

Finally,

We may now repeat the process and build I0, I1, . . . , Ik.

and obtain the multilayer convolutional kernel

K(Ik, I
′
k) =

∑

ω∈Ωk

〈Ik(ω), I ′k(ω)〉Hk .
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The multilayer convolutional kernel

In summary

The multilayer convolutional kernel builds upon similar principles as
a convolutional neural net (multiscale, local stationarity).

Invariance to local translations is achieved through linear pooling
in the RKHS.

It remains a conceptual object due to its high complexity.

Learning and modelling are still decoupled.

Let us first address the second point (scalability).
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Unsupervised learning for convolutional kernel networks

Learn linear subspaces of finite-dimensions where we project the data

M0

x

x′

kernel trick

projection on F1

M0.5

ψ1(x)

ψ1(x
′)

M1

linear pooling
Hilbert space H1

F1

ϕ1(x)

ϕ1(x
′)

Figure: The convolutional kernel network model between layers 0 and 1.
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Unsupervised learning for convolutional kernel networks

Formally, this means using the Nyström approximation

We now manipulate finite-dimensional maps Mj : Ωj → Rpj .
Every linear subspace is parametrized by anchor points

Fj M= Span
(
ϕ(zj,1), . . . , ϕ(zj,pj )

)
,

where the z1,j ’s are in Rpj−1e
2
j−1 for patches of size ej−1 × ej−1.

The encoding function at layer j is

ψj(x)
M
= ‖x‖κj(Z>j Zj)−1/2κ1

(
Z>j

x

‖x‖

)
if x 6= 0 and 0 otherwise,

where Zj = [zj,1, . . . , zj,pj ] and ‖.‖ is the Euclidean norm.

The interpretation is convolution with filters Zj , pointwise
non-linearity, 1× 1 convolution, contrast normalization.
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Unsupervised learning for convolutional kernel networks

The pooling operation keeps points in the linear subspace Fj , and
pooling M0.5 : Ω0 → Rp1 is equivalent to pooling I0.5 : Ω0 → H1.

M0

x

x′

kernel trick

projection on F1

M0.5

ψ1(x)

ψ1(x
′)

M1

linear pooling
Hilbert space H1

F1

ϕ1(x)

ϕ1(x
′)

Figure: The convolutional kernel network model between layers 0 and 1.
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Unsupervised learning for convolutional kernel networks

How do we learn the filters with no supervision?

we learn one layer at a time, starting from the bottom one.

we extract a large number—say 100 000 patches from layers j − 1
computed on an image database and normalize them;

perform a spherical K-means algorithm to learn the filters Zj ;

compute the projection matrix κj(Z>j Zj)
−1/2.

Remarks

with kernels, we map patches in infinite dimension; with the
projection, we manipulate finite-dimensional objects.

we obtain an unsupervised convolutional net with a geometric
interpretation, where we perform projections in the RKHSs.
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Unsupervised learning for convolutional kernel networks

Remark on input image pre-processing

Unsupervised CKNs are sensitive to pre-processing; we have tested

RAW RGB input;

local centering of every color channel;

local whitening of each color channel;

2D image gradients.

(a) RAW RGB (b) centering
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Remark on input image pre-processing

Unsupervised CKNs are sensitive to pre-processing; we have tested

RAW RGB input;

local centering of every color channel;

local whitening of each color channel;

2D image gradients.
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Unsupervised learning for convolutional kernel networks

Remark on pre-processing with image gradients and 1× 1 patches

Every pixel/patch can be represented as a two dimensional vector

x = ρ[cos(θ), sin(θ)],

where ρ = ‖x‖ is the gradient intensity and θ is the orientation.

A natural choice of filters Z would be

zj = [cos(θj), sin(θj)] with θj = 2jπ/p0.

Then, the vector ψ(x) = ‖x‖κ1(Z>Z)−1/2κ1

(
Z> x
‖x‖

)
, can be

interpreted as a “soft-binning” of the gradient orientation.

After pooling, the representation of this first layer is very close
to SIFT/HOG descriptors [see Bo et al., 2011].
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Convolutional kernel networks with supervised learning

How do we learn the filters with supervision?

Given a kernel K and RKHS H, the ERM objective is

min
f∈H

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+
λ

2
‖f‖2H

︸ ︷︷ ︸
regularization

.

here, we use the parametrized kernel

KZ(I0, I
′
0) =

∑

ω∈Ωk

〈Mk(ω),M ′k(ω)〉 = 〈Mk,M
′
k〉F,

and we obtain the simple formulation

min
W∈Rpk×|Ωk|

1

n

n∑

i=1

L(yi, 〈W,M i
k〉F) +

λ

2
‖W‖2F. (1)
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Convolutional kernel networks with supervised learning

How do we learn the filters with supervision?

we jointly optimize w.r.t. Z (set of filters) and W .

we alternate between the optimization of Z and of W ;

for W , the problem is strongly-convex and can be tackled with
recent algorithms that are much faster than SGD;

for Z, we derive backpropagation rules and use classical tricks for
learning CNNs (SGD+momentum);

The only tricky part is to differentiate κj(Z
>
j Zj)

−1/2 w.r.t Zj , which is
a non-standard operation in classical CNNs.
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Convolutional kernel networks

In summary

a multilayer kernel for images, which builds upon similar principles
as a convolutional neural net (multiscale, local stationarity).

A new type of convolutional neural network with a geometric
interpretation: orthogonal projections in RKHS.

Learning may be unsupervised: align subspaces with data.

Learning may be supervised: subspace learning in RKHSs.
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Related work on deep kernel machines

Related work

proof of concept for combining kernels and deep learning [Cho and
Saul, 2009];

hierarchical kernel descriptors [Bo et al., 2011];

other multilayer models [Bouvrie et al., 2009, Montavon et al.,
2011, Anselmi et al., 2015];

deep Gaussian processes [Damianou and Lawrence, 2013].

multilayer PCA [Schölkopf et al., 1998].

old kernels for images [Scholkopf, 1997].

RBF networks [Broomhead and Lowe, 1988].
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Related work on deep kernel machines

Composition of feature spaces

Consider a p.d. kernel K1 : X 2 → R and its RKHS H1 with mapping
ϕ1 : X → H1. Consider also a p.d. kernel K2 : H2

1 → R and its RKHS
H2 with mapping ϕ2 : H1 → H2. Then, K3 : X 2 → R below is also p.d.

K3(x, x′) = K2(ϕ1(x), ϕ1(x′)),

Examples

K3(x, x′) = e
− 1

2σ2 ‖ϕ1(x)−ϕ1(x′)‖2H1 .

K3(x, x′) = 〈ϕ1(x), ϕ1(x′)〉2H1
= K1(x, x′)2.
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Related work on deep kernel machines

Remarks on the composition of feature spaces

we can iterate the process many times.

the idea appears early in the literature of kernel methods [see
Schölkopf et al., 1998, for a multilayer variant of kernel PCA].

Is this idea sufficient to make kernel methods more powerful?

Probably not:

K2 is doomed to be a simple kernel (dot-product or RBF kernel).

K3 and K1 operate on the same type of object; it is not clear
why desining K3 is easier than designing K1 directly.

CKNs rely on this principle, but exploit the multi-scale and spatial
structure of the signal to operate on more and more complex objects.
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Related work on deep kernel machines: infinite NN

A large class of kernels on Rp may be defined as an expectation

K(x, y) = Ew[s(w>x)s(w>y)],

where s : R→ R is a nonlinear function. The encoding can be seen as a
one-layer neural network with infinite number of random weights.

Examples

random Fourier features

κ(x− y) = Ew∼q(w),b∼U [0,2π]

[√
2 cos(w>x+ b)

√
2 cos(w>y + b)

]

Gaussian kernel

e−
1

2σ2 ‖x−y‖22 ∝ Ew
[
e

2
σ2w

>xe
2
σ2w

>y
]

with w ∼ N (0, (σ2/4)I).
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Related work on deep kernel machines: infinite NN

Example, arc-cosine kernels

K(x, y) ∝ Ew
[
max

(
w>x, 0

)α
max

(
w>y, 0

)α]
with w ∼ N (0, I),

for x, y on the hyper-sphere Sm−1. Interestingly, the non-linearity s are
typical ones from the neural network literature.

s(u) = max(0, u) (rectified linear units) leads to
K1(x, y) = sin(θ) + (π − θ) cos(θ) with θ = cos−1(x>y);

s(u) = max(0, u)2 (squared rectified linear units) leads to
K2(x, y) = 3 sin(θ) cos(θ) + (π − θ)(1 + 2 cos2(θ));

Remarks

infinite neural nets were discovered by Neal, 1994; then revisited
many times [Le Roux, 2007, Cho and Saul, 2009].

the concept does not lead to more powerful kernel methods...
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Related work on deep kernel machines: infinite NN

Mea culpa

The first version of CKN [Mairal et al., 2014] relied on the infinite NN
point of view. That was a bad design choice.

unlike Nyström, the kernel approximation does not provide a point
in the RKHS, which is problematic for multilayer constructions.

unsupervised learning led to a costly non-convex stochastic
optimization problem (vs. simple K-means).

the quality of the results where far from that of Nyström.
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Image classification

Experiments were conducted on classical “deep learning” datasets, on
CPUs with no model averaging and no data augmentation.

Dataset ] classes im. size ntrain ntest

CIFAR-10 10 32× 32 50 000 10 000

SVHN 10 32× 32 604 388 26 032

Figure: Figure from the NIPS’16 paper. Error rates in percents.

Remarks on CIFAR-10

10% is the standard “good” result for single model with no data
augmentation.

the best unsupervised architecture has two layers, is wide
(1024-16384 filters), and achieves 14.2%;
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Image super-resolution

The task is to predict a high-resolution y image from low-resolution
one x. This may be formulated as a multivariate regression problem.

(a) Low-resolution y (b) High-resolution x
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Image super-resolution

The task is to predict a high-resolution y image from low-resolution
one x. This may be formulated as a multivariate regression problem.

(c) Low-resolution y (d) Bicubic interpolation
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Image super-resolution

Fact. Dataset Bicubic SC CNN CSCN SCKN

x2
Set5 33.66 35.78 36.66 36.93 37.07

Set14 30.23 31.80 32.45 32.56 32.76
Kodim 30.84 32.19 32.80 32.94 33.21

x3
Set5 30.39 31.90 32.75 33.10 33.08

Set14 27.54 28.67 29.29 29.41 29.50
Kodim 28.43 29.21 29.64 29.76 29.88

Table: Reconstruction accuracy for super-resolution in PSNR (the higher, the
better). All CNN approaches are without data augmentation at test time.

Remarks

CNN is a “vanilla CNN” [Dong et al., 2016];

Very recent work does better with very deep CNNs and residual
learning [Kim et al., 2016];

CSCN combines ideas from sparse coding and CNNs;

[Zeyde et al., 2010, Dong et al., 2016, Wang et al., 2015, Kim et al., 2016].
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Image super-resolution

Bicubic Sparse coding CNN SCKN (Ours)

Figure: Results for x3 upscaling.
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Image super-resolution

Figure: Bicubic
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Image super-resolution

Figure: SCKN
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Image super-resolution

Bicubic Sparse coding CNN SCKN (Ours)

Figure: Results for x3 upscaling.
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Image super-resolution

Figure: Bicubic
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Image super-resolution

Bicubic CNN SCKN (Ours)

Figure: Results for x3 upscaling.
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Image super-resolution

Figure: Bicubic
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Image super-resolution

Figure: SCKN
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Application to biological sequences

D. Chen, L. Jacob, and J. Mairal. Predicting Transcription Factor
Binding Sites with Convolutional Kernel Networks. BiorXiv. 2017.

Source wikipedia.
Julien Mairal Foundations of DL from a kernel point of view 64/124



Application to biological sequences

Transcription factors (TFs)

are proteins that bind to particular locations of the genome and regulate
the rate of transcription from DNA to mRNA.
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Application to biological sequences

There are more than 2 000 TFs types in humans. Studying the nature of
binding sites is of utmost importance for

clinical diagnostics;
drug targets;
synthetic biology;
understanding mechanisms of evolution...

CHIP-seq technology

For a particular TFs, it is possible to extract short DNA sequences
(about 100 bases) that contain a binding site.
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Application to biological sequences

Data from ENCODE

composed of the peaks (sequences of size 101) of 506 experiments. For
each experiment, between 1000s and 50 000s of sequences are produced.

Question

Can we design a model that predicts the position of TF binding sites,
and provide an interpretation of their DNA patterns?

Ideally, the machine learning task is that of genome-wide detection.
However, following earlier work, we consider a classification task.

A dataset contains n pairs (xi, yi), where xi is a DNA sequence,
and yi is label in {−1,+1} (TF binding site or not).

negative examples are generated by dinucleotide shuffling.

All of this is a simple proxy for the “true” detection task.
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Application to biological sequences

But then, we end up with a classical supervised learning formulation.

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

Challenges

achieve good prediction while being interpretable.

learn without user interaction (no manual parameter tuning).
(remember we need to process 500 datasets).

exploit together datasets from the same TF (multitask learning?).
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Convolutional neural networks for biological sequences

Figure: DeepBind model architecture from Alipanahi et al. [2015]

DeepBind: a “one-layer” convolutional neural network architecture,
state of the art model for TF binding prediction problem.

an embedding layer is used to encode sequence x from X to R4×m

where m is the sequence length.
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Representation of sequence motifs

Sequence logo

A sequence logo is a representation of the relative frequency, at each
position, of each letter, in a collection of aligned sequences.

Figure: An example of sequence logo for the LexA-binding motif
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Convolutional neural networks for biological sequences

Figure: Filter visualizations for DeepBind [Angermueller et al., 2016]

The filters in the convolutional layer need to be interpreted.

sequence logos can be generated by alignment of filter to the top
activated subsequences from a set of test sequences.
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Convolutional neural networks for biological sequences

Remarks

CNNs are hard to regularize and require Dropout and weight decays.

initialization requires also parameters.

To remove the need of manual hyper-parameter tuning, DeepBind
uses random search to find a set of parameters per dataset.
This requires to learn ≈ 100 models per dataset.

Can we interpret the filters without using test sequences?
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Convolutional kernel networks for biological sequences

x ∈ X
x(u) ∈ AP0x(v) ∈ P0

ϕ0(P0x0(v)) ∈ H0

homogeneous Gaussian dot-product kernel

x1(w) ∈ H0

linear pooling

ϕ(x) ∈ Hk y
prediction layer

single-
layer

multi-
layer

Hilbert space H0

E0

ϕ0(z)

Π0ϕ0(z)

ϕ0(z′)

Π0ϕ0(z′)

Also use invariance to reverse complementation of the DNA sequence.

min
f∈F

1

n

n∑

i=1

L(yi,max(f(xi), f(xci ))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization
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Convolutional kernel networks for biological sequences

Remarks

same set of parameters for all 507 datasets.

initialization via unsupervised learning (no parameters).

interpretation of the motifs via pre-image problem.

min
y∈M

‖ϕk(Pkyk−1)− ϕk(zk,i)‖2Hk ,

ϕk(zk,1)

ϕk(zk,2)

Hilbert space Hk

Fk

ϕk(z)

ψk(z)

ϕk(z
′)

ψk(z
′)

A

C

G

T

motif associated with ϕk(zk,1)
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Motifs in convolutional kernel networks

(a) Factorbook
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Convolutional kernel networks for biological sequences

With multitask learning

min
w1,...,wT∈Rpk ,Z

1

T

T∑

t=1

1

nt

nt∑

i=1

L(yi,t, 〈wt, ψ(xi,t)〉) +
λ

2
‖wt‖2,

Task 1

Task 2

Task T

x
1

x2

xT

Kernel
mapping

ψ(
x1
)

ψ(x2)

ψ(x
T )

Predictor 1

Predictor 2

Predictor T

y1

y2

yT
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What about classical kernel methods?

Classical kernels for biological sequences [see Ben-Hur et al., 2008],
typically encode biological phenomenons (insertions, deletions, ...).

They are less fashionable these days due to their lack of stability, but
can we still use some of them in the embedding layer?

x : Ω → A
x(u) ∈ A P0x(v1) ∈ P0 (patch)

x0 : Ω0 → H0

x0(v1) = ϕ0(P0x(v1)) ∈ H0

domain-specific kernel
P1x0(v2) ∈ P1

x0.5 : Ω0 → H1

x0.5(v2) = ϕ1(P1x0(v2)) ∈ H1

dot-product kernel

x1 : Ω1 → H1

x1(v3) ∈ H1

linear pooling

xk ∈ Hk y
prediction layer

embedding
layer

convolutional
kernel layer
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CKN-seq vs DeepBind

DeepBind CKN-seq

Training time (min) 72.0± 1.0 2.9± 2.3

Table: Average training time on 40 different experiments
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Method
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Benefits of multitask learning

With all data available

When using fewer training data (n = 1000).

CKN-seq multi-task CKN-seq
Method
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Influence of the number of filters

CKN-seq-16 CKN-seq-128
Method

0.70

0.75

0.80

0.85

0.90

0.95

1.00

RO
C 
AU

C 
sc
or
e

2.5e-80

0.70 0.75 0.80 0.85 0.90 0.95 1.00
CKN-seq-16

0.70

0.75

0.80

0.85

0.90

0.95

1.00

CK
N-
se
q-
12

8
nb. of training data
0k~5k
5k~10k
10k~20k

20k~30k
30k~40k
>40k

Julien Mairal Foundations of DL from a kernel point of view 80/124



Multilayer CKN-seq

CKN-seq 2-layer CKN-seq
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Conclusion of this part

On-going work, but code is available to play with these models.

first version of unsupervised CKN, slow, Matlab.
http://ckn.gforge.inria.fr/ (do not use this one).

second version of CKN, unsupervised or supervised. TensorFlow.
https://gitlab.inria.fr/thoth/ckn by Ghislain Durif.

CKN for biological sequences. PyTorch.
https://gitlab.inria.fr/dchen/CKN-seq by Dexiong Chen.

We have seen the practice. What about the theory?
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Part III: Invariance, Stability, and Complexity of
Deep Convolutional Representations
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Understanding deep convolutional representations

Questions

Are they stable to deformations?

How can we achieve invariance to transformation groups?

Do they preserve signal information?

How can we measure model complexity?

A. Bietti and J. Mairal. Group Invariance, Stability to
Deformations, and Complexity of Deep Convolutional
Representations. arXiv:1706.03078. 2017.

A. Bietti and J. Mairal. Invariance and Stability of Deep
Convolutional Representations. NIPS. 2017.
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Construct a functional space for deep learning

Main ideas
1 use the kernel construction of CKNs;

2 notice that the functional space contains some CNNs;

3 derive theoretical results for CKNs and CNNs.

Why? Separate learning from representation: f(x) = 〈f,Φ(x)〉
Φ(x): CNN architecture (stability, invariance, signal preservation)

f : CNN model, learning, generalization through ‖f‖

|f(x)− f(x′)| ≤ ‖f‖ · ‖Φ(x)− Φ(x′)‖.

‖f‖ controls both stability and generalization!

→ discriminating small deformations requires large ‖f‖
→ learning stable functions is “easier”
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Property 1: Stability to deformationsInvariant SVM using Selective Sampling

Figure 6: This figure shows 16 variations of a digit with all the transformations cited here.

3.2.5 Large translations

All the transformations described above are small sub-pixel transformations. Even though
the MNIST digit images are roughly centered, experiments indicate that we still need to
implement invariance with respect to translations of magnitude one or two pixels. Thus we
also apply randomly chosen translations of one or two pixels. These full-pixel translations
come on top of the sub-pixel translations implemented by the random deformation fields.

4. Application

This section reports experimental results achieved on the MNIST database using the tech-
niques described in the previous section. We have obtained state-of-the-art results using 10
SVM classifiers in one-versus-rest configuration. Each classifier is trained using 8 million
transformed examples using the standard RBF kernel < x, x′ >= exp(−γ∥x − x′∥2). The
soft-margin C parameter was always 1000.

As explained before, the untransformed training examples and their two translation
tangent vectors are stored in memory. Transformed exemples are computed on the fly and
cached. We allowed 500MB for the cache of transformed examples, and 6.5GB for the cache
of kernel values. Indeed, despite the favorable characteristics of our algorithm, dealing with
millions of examples quickly yields tens of thousands support vectors.

13

Go beyond simple translation invariance;

Small local deformations do not change content of images (“label”);

Formally studied for wavelet-based scattering transform [Mallat,
2012, Bruna and Mallat, 2013];

Can we do the same for CKNs and CNNs?
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Property 2: Group invariance

Convolutions and pooling provides translation invariance

Can we encode more general transformation groups in the
architecture? (e.g. rotations, roto-translations, rigid motion)

How does this relate to stability?

Related work: [Cohen and Welling, 2016, Mallat, 2012, Sifre and
Mallat, 2013, Raj et al., 2016]
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Property 3: Signal preservation

Do deep convolutional representations preserve signal
information?

Can x be recovered from Φ(x)?

At odds with invariance and stability?
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Property 4: Model complexity and generalization

How do we measure model complexity of CKNs and CNNs?

Can we get meaningful bounds on generalization error?

Summary of results:

Some CNNs are contained in the RKHS of CKNs.
we may control the RKHS norm of a generic CNN
The choice of activation function is important.
Same norm also controls stability (“stable functions generalize
better”)

Related work: [Zhang et al., 2017]

Spoiler: classical CNNs should be regularized with products of
spectral norms [Bartlett et al., 2017]?

CKNs should be regularized with the `2-norm of the last layer.
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A generic deep convolutional representation

We adopt a formalism for continuous signals.

x0 : Ω→ H0: initial (continuous) signal

u ∈ Ω = Rd: location (d = 2 for images)
x0(u) ∈ H0: value (H0 = R3 for RGB images)

xk : Ω→ Hk: feature map at layer k

xk = AkMkPkxk−1

Pk: patch extraction operator, extract small patch of feature map
xk−1 around each point u
Mk: non-linear mapping operator, maps each patch to a new point
with a pointwise non-linear function ϕk(·)
Ak: (linear, Gaussian) pooling operator at scale σk

In this part, a signal x is always in L2(Ω,H) for some Hilbert space H;
in other words ‖x‖2L2 =

∫
Ω ‖x(u)‖2Hdu <∞.
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A generic deep convolutional representation

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Patch extraction operator Pk

Pkxk–1(u) := (v 7→ xk–1(u+ v))v∈Sk ∈ Pk

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)
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Patch extraction operator Pk

Pkxk–1(u) := (v 7→ xk–1(u+ v))v∈Sk ∈ Pk

Sk: patch shape, e.g. box

Pk = HSkk–1

Pk is linear, and preserves the norm: ‖Pkxk–1‖ = ‖xk–1‖
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

xk–1 : Ω → Hk–1

Pkxk–1(v) ∈ Pk

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

ϕk : Pk → Hk pointwise non-linearity on patches (kernel map)

We assume non-expansivity: for z, z′ ∈ Pk

‖ϕk(z)‖ ≤ ‖z‖ and ‖ϕk(z)− ϕk(z′)‖ ≤ ‖z − z′‖

Mk then satisfies, for x, x′ ∈ L2(Ω,Pk)

‖Mkx‖ ≤ ‖x‖ and ‖Mkx−Mkx
′‖ ≤ ‖x− x′‖

(can think instead: ϕk(z) = ReLU(Wkz), ρk-Lipschitz with
ρk = ‖Wk‖)
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

ϕk : Pk → Hk pointwise non-linearity on patches
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ϕk from kernels

Kernel mapping of homogeneous dot-product kernels:

Kk(z, z
′) = ‖z‖‖z′‖κk

( 〈z, z′〉
‖z‖‖z′‖

)
with κk(1) = 1.

Commonly used for hierarchical kernels

‖ϕk(z)‖ = Kk(z, z)
1/2 = ‖z‖

‖ϕk(z)− ϕk(z′)‖ ≤ ‖z − z′‖ if κ′k(1) ≤ 1

=⇒ non-expansive

Examples:

κexp(〈z, z′〉) = e〈z,z
′〉−1 (Gaussian kernel on the sphere)

κinv-poly(〈z, z′〉) = 1
2−〈z,z′〉
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ϕk from kernels: CKNs approximation

Convolutional Kernel Networks approximation:

Approximate ϕk(z) by projection on span(ϕk(z1), . . . , ϕk(zp))
(Nystrom)

Leads to tractable, p-dimensional representation ψk(z)

Norm is preserved, and projection is non-expansive:

‖ψk(z)− ψk(z′)‖ = ‖Πkϕk(z)−Πkϕk(z
′)‖

≤ ‖ϕk(z)− ϕk(z′)‖ ≤ ‖z − z′‖

Non-expansive =⇒ robust to additive perturbations!

Anchor points z1, . . . , zp (≈ filters) can be learned from data
(K-means or backprop)
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ϕk from kernels: CKNs approximation

Convolutional Kernel Networks approximation:
Unsupervised learning for convolutional kernel networks

Learn linear subspaces of finite-dimensions where we project the data

M0

x

x0

kernel trick

projection on F1

M0.5

 1(x)

 1(x
0)

M1

linear pooling
Hilbert space H1

F1

'1(x)

'1(x
0)

Figure: The convolutional kernel network model between layers 0 and 1.

Julien Mairal Towards deep kernel machines 31/51
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =

∫

Rd
hσk(u− v)MkPkxk–1(v)dv ∈ Hk

xk–1 : Ω → Hk–1

MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =

∫

Rd
hσk(u− v)MkPkxk–1(v)dv ∈ Hk

hσk : pooling filter at scale σk

hσk(u) := σ−dk h(u/σk) with h(u) Gaussian

linear, non-expansive operator: ‖Ak‖ ≤ 1
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Recap: Pk, Mk, Ak

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

xk–0.5(v) = ϕk(Pkxk–1(v)) ∈ Hk
xk–0.5 : Ω → Hk

xk : Ω → Hk

linear pooling
xk(w) ∈ Hk
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Multilayer construction

xn
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1x0 ∈ L2(Ω,Hn)

Sk, σk grow exponentially in practice (i.e. fixed with subsampling)

x0 is typically a discrete signal aquired with physical device

Natural assumption: x0 = A0x, with x the original continuous
signal, A0 local integrator (anti-aliasing)

Prediction layer: e.g. linear

f(x0) = 〈w, xn〉
“linear kernel” K(x0, x

′
0) = 〈xn, x′n〉 =

∫
Ω
〈xn(u), x′n(u)〉du
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Stability to deformations: definitions

τ : Ω→ Ω: C1-diffeomorphism

Lτx(u) = x(u− τ(u)): action operator

Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed
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Stability to deformations: definitions

Representation Φ(·) is stable [Mallat, 2012] if:

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation

‖τ‖∞ = supu |τ(u)| controls translation

C2 → 0: translation invariance
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Warmup: translation invariance

Representation:

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1x.

Translation: Lcx(u) = x(u− c)

Equivariance - all operators commute with Lc: �Lc = Lc�

‖Φ(Lcx)− Φ(x)‖ = ‖LcΦ(x)− Φ(x)‖
≤ ‖LcAn −An‖ · ‖x‖

Mallat [2012]: ‖LτAn −An‖ ≤ C2
σn
‖τ‖∞
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Stability to deformations

Representation:

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1x.

Patch extraction Pk and pooling Ak do not commute with Lτ !

Mallat [2012]: ‖‖ ≤ C1‖∇τ‖∞
But: [Pk, Lτ ] is unstable at high frequencies!

Adapt to current layer resolution, patch size controlled by σk–1:

‖[PkAk–1, Lτ ]‖ ≤ C1‖∇τ‖∞ sup
u∈Sk

|u| ≤ κσk–1

C1 grows as κd+1 =⇒ more stable with small patches (e.g., 3x3,
VGG et al.)
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Stability to deformations: final result

Representation:

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

Result: if ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτx)− Φn(x)‖ ≤
(
C1 (1 + n) ‖∇τ‖∞ +

C2

σn
‖τ‖∞

)
‖x‖

(for generic CNNs, multiply by
∏
k ρk =

∏
k ‖Wk‖)
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Controlling stability

How is stability controlled?

full kernels: ‖f‖HK (regularizer)

CKN: ‖W‖2, `2 norm of last layer (regularizer)

CNN: ‖W‖2 ·
∏
k ρk (luck...? SGD magic? Parseval nets?)
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Beyond the translation group

Global invariance to other groups? (rotations, reflections,
roto-translations, ...)

Group action Lgx(u) = x(g−1u)

Equivariance in inner layers + (global) pooling in last layer

Similar construction to [Cohen and Welling, 2016]
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G-equivariant layer construction

Feature maps x(u) defined on u ∈ G (G: locally compact group)

Patch extraction:

Px(u) = (x(uv))v∈S

Non-linear mapping: equivariant because pointwise!

Pooling (µ: left-invariant Haar measure):

Ax(u) =

∫

G
x(uv)h(v)dµ(v) =

∫

G
x(v)h(u−1v)dµ(v)
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Group invariance and stability

Stability analysis should work on “compact Lie groups” [similar to
Mallat, 2012], e.g., rotations only

For more complex groups (e.g., roto-translations):

Stability only w.r.t. subgroup (translations) is enough?
Inner layers: only pool on translation group
Last layer: global pooling on rotations
Cohen and Welling [2016]: rotation pooling in inner layers hurts
performance on Rotated MNIST

Julien Mairal Foundations of DL from a kernel point of view 106/124



Discretization and signal preservation
The multilayer convolutional kernel

I0 : ⌦0 ! H0I0(!0) 2 H0

P!1 2 P0 (patch)

Kernel trick

I0.5(!1) = '1(P!1) 2 H1
I0.5 : ⌦0 ! H1

I1 : ⌦1 ! H1

Linear pooling

I1(!2) 2 H1

How do we go from I0.5 : ⌦0 ! H1 to I1 : ⌦1 ! H1?

Linear pooling!
Julien Mairal Towards deep kernel machines 28/51
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Discretization and signal preservation

x̄k: subsampling factor sk after pooling with scale σk ≈ sk:

x̄k[n] = AkMkPkx̄k–1[nsk]

Claim: We can recover x̄k−1 from x̄k if subsampling sk ≤ patch
size

How? Kernels! Recover patches with linear functions (contained
in RKHS)

〈fw,MkPkx(u)〉 = fw(Pkx(u)) = 〈w,Pkx(u)〉
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Signal recovery: example in 1D

x : Ω → A
x(u) ∈ A P0x(v1) ∈ P`0 (patch)

x0 : Ω0 → H0

x0(v1) = ϕ0(P0x(v1)) ∈ H0

string kernel
P1x0(v2) ∈ P`1

x0.5 : Ω0 → H1

x0.5(v2) = ϕ1(P1x0(v2)) ∈ H1

dot-product kernel

x1 : Ω1 → H1

x1(v3) ∈ H1

linear pooling

xk ∈ Hk y
prediction layer

embedding
layer

convolutional
kernel layer
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From kernel representation to CNNs?

Functions in the RKHS Hk of patch kernels Kk?

CNNs in the RKHS HK of the full kernel K(x, x′) = 〈Φ(x),Φ(x′)〉?
RKHS norm ‖f‖HK for a typical CNN:

Stability
Generalization
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RKHS of patch kernels Kk

Kk(z, z
′) = ‖z‖‖z′‖κk

( 〈z, z′〉
‖z‖‖z′‖

)
, κk(u) =

∞∑

j=0

bju
j

RKHS contains homogeneous functions:

f : z 7→ ‖z‖σ(〈g, z〉/‖z‖)

Smooth activations: σ(u) =
∑∞

j=0 aju
j

Norm: ‖f‖2Hk ≤ C
2
σ(‖g‖2)

Examples:

σ(u) = u (linear): C2
σ(λ2) = O(λ2)

σ(u) = up (polynomial): C2
σ(λ2) = O(λ2p)

σ ≈ sin, sigmoid, smooth ReLU: C2
σ(λ2) = O(ecλ

2

)

Homogeneous version of [?Zhang et al., 2017]
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RKHS of patch kernels Kk
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Constructing a CNN in the RKHS HK
Consider a CNN with filters wijk (u), u ∈ Sk
“Homogeneous” activations σ

The CNN can be constructed hierarchically in HK (define one
function f ik ∈ Hk for each feature map)

Norm:

‖fσ‖2 ≤ ‖wn+1‖22C2
σ(‖wn‖22C2

σ(‖wn–1‖22C2
σ(. . . )))

Linear layers: product of spectral norms
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Link with generalization

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ HK, ‖f‖ ≤ B} =⇒ Radn(FB) ≤ O
(
BR√
n

)

Leads to margin bound O(‖f̂n‖R/
√
n) for a learned CNN f̂n

(margin = 1/‖f̂n‖)

For linear activations (‖f‖ ≤ ‖wn+1‖ · · · ‖w1‖), matches
Rademacher complexity lower bound of Bartlett et al. [2017]

Their bound has additional factors:

(a) Margins. (b) Normalized margins.

Figure 2: Margin distributions at the end of training AlexNet on cifar10, with and without random
labels. With proper normalization, random labels demonstrably correspond to a harder problem.

let FA denote the function computed by the corresponding network:

FA(x) := �L(AL�L�1(AL�1 · · ·�1(A1x) · · · )).

Whenever data (x1, . . . , xn) are given, collect them as rows of a matrix X 2 Rn⇥d. Occasionally, notation
will be overloaded to discuss FA(XT ), a matrix whose ith column is FA(xi). The l2 norm k · k2 is always
computed entry-wise; thus, for a matrix, it corresponds to the Frobenius norm.

Next, define a collection of reference matrices (M1, . . . , ML) with each dimension at most W ; for
instance, to obtain a good bound for ResNet (He et al., 2016), it is sensible to set Mi := I, the identity
map, and the bound below will worsen as the network moves farther from the identity map; for AlexNet
(Krizhevsky et al., 2012), the simple choice Mi = 0 suffices. Finally, letting k · k� and k · k1 respectively
denote spectral norm and the unrolled l1 vector norm, the spectral complexity RFA = RA of a network
FA with weights A is

RA :=

0
@

LY

i=1

⇢ikAik�

1
A
0
@

LX

i=1

kAi � Mik2/3
1

kAik2/3
�

1
A

3/2

. (1.1)

The following theorem provides a generalization bound for neural networks whose nonlinearities are
fixed but whose weight matrices A have bounded spectral complexity RA.

Theorem 1.1. Let nonlinearities (�1, . . . ,�L) and reference matrices (M1, . . . , ML) be given as above
(i.e., �i is ⇢i-Lipschitz and �i(0) = 0). Then with probability at least 1� � over an iid draw of n examples
((xi, yi))

n
i=1, every margin � > 0 and network FA : Rd ! Rk with weight matrices A = (A1, . . . , AL)

satisfy

Pr
h
arg max

j
FA(x)j 6= y

i
 bR�(FA) + eO

 
kXk2RA

�n
ln(n) ln(W ) +

r
ln(1/�)

n

!
,

where bR�(f)  n�1
P

i 1
⇥
f(xi)yi

 � + maxj 6=yi
f(xi)j

⇤
and kXk2 =

pP
i kxik2

2.

The full proof (based on metric entropy) is relegated to the appendix, but a sketch is provided in
Section 3, along with a more general form (not limited to spectral norms), along with a (non-matching!)
lower bound. Section 3 also gives a discussion of related work, but briefly it’s essential to note that
margin and Lipschitz-sensitive bounds have a long history in the neural networks literature (Bartlett,
1996; Anthony and Bartlett, 1999; Neyshabur et al., 2015); the distinction here is the sensitivity to
specifically the spectral norm, as well as no explicit appearance of combinatorial quantities such as
numbers of parameters or layers (outside of log terms, and indices to summations and products).

To close, miscellaneous observations and open problems are collected in Section 4.

3
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Deep convolutional representations: conclusions

Study of generic properties

Deformation stability with small patches, adapted to resolution

Signal preservation when subsampling ≤ patch size

Group invariance by changing patch extraction and pooling

Applies to learned models

RKHS norm as a measure of model complexity

Useful generalization bounds for CNNs

Same quantity controls stability and generalization:

“higher capacity” (small margin) is needed to discriminate small
deformations
Learning is “easier” on deformation manifold? (“manifold
assumption”)
Open: how do SGD and friends control capacity in generic CNNs?

Julien Mairal Foundations of DL from a kernel point of view 114/124



Deep convolutional representations: conclusions

Study of generic properties

Deformation stability with small patches, adapted to resolution

Signal preservation when subsampling ≤ patch size

Group invariance by changing patch extraction and pooling

Applies to learned models

RKHS norm as a measure of model complexity

Useful generalization bounds for CNNs

Same quantity controls stability and generalization:

“higher capacity” (small margin) is needed to discriminate small
deformations
Learning is “easier” on deformation manifold? (“manifold
assumption”)
Open: how do SGD and friends control capacity in generic CNNs?

Julien Mairal Foundations of DL from a kernel point of view 114/124



Stability to deformations: proof idea

Generic bound with commutators [A,B] = AB −BA:

‖Φn(Lτx)− Φn(x)‖

≤
(

n∑

k=1

‖[PkAk−1, Lτ ]‖+ ‖[An, Lτ ]‖+ ‖LτAn −An‖
)
‖x‖.

Use small patch assumption to bound:

‖[PkAk−1, Lτ ]‖ ≤ sup
c∈Sk
‖[LcAk−1, Lτ ]‖ ≤ C1‖∇τ‖∞

From [Mallat, 2012]:

‖LτAσ −Aσ‖ ≤
C2

σ
‖τ‖∞.
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Stability to deformations: takeaways

Small patches adapted to resolution are important for stability

Translation invariance comes from

Last pooling layer
Exact equivariance in inner layers (“commute with translations”)

Intermediate pooling is for antialiasing/stable downsampling
(strided convolutions enough in practice?)

Why not just skip intermediate layers..? Loss of signal information!
(See discretization below...)

How is stability controlled?

full kernels: ‖f‖H (regularizer)
CKN: ‖W‖2, `2 norm of last layer (regularizer)
CNN: ‖W‖2 ·

∏
k ρk (luck...? SGD magic? Parseval nets?)
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Signal recovery with kernels

Idea:

“Invert” kernel mapping with linear functions to reconstruct
patches (non-overlapping)

Recover full higher resolution (pooled) signal before downsampling

Deconvolve to recover signal before pooling

Linear functions?

fw ∈ Hk s.t. fw(z) = 〈fw, ϕk(z)〉Hk = 〈w, z〉Pk for a patch z

Consider w in a basis of Hk–1 for each patch location to recover
signal

Contained in RKHS of most dot-product kernels considered!
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Signal recovery: takeaways

Kernels allow recovery of the signal (up to pooling deconvolutions),
when subsampling ≤ patch size

Φ(x) contains all signal information, f(x) = 〈f,Φ(x)〉 may focus on
what’s relevant to the task

Harder to obtain for CNNs or kernel approximations, but can do
well when data-dependent?

High frequencies are hard to recover if we want translation
invariance (vs. full “horizontal” multi-resolution approach like
scattering): An . . . A0x ≈ Anx
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RKHS of patch kernels Kk

Kk(z, z
′) = ‖z‖‖z′‖κk

( 〈z, z′〉
‖z‖‖z′‖

)

Expansion κk(u) =
∑∞

j=0 bju
j

If

σ(u) :=
∑∞
j=0 aju

j (activation)

C2
σ(‖w‖2) :=

∑∞
j=0(a2

j/bj)‖w‖2j < +∞
Then

f : z 7→ ‖z‖σ(〈g, z〉/‖z‖)
is in Hk with ‖f‖2Hk ≤ C

2
σ(‖w‖2).

Homogeneous version of [?Zhang et al., 2017]

Linear functions contained when b1 > 0
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RKHS of full kernel K
Theorem [e.g., ?]

If Φ : X → H (e.g., X = L2(Ω,H0), H = L2(Ω,Hn))

The RKHS of K(x, x′) = 〈Φ(x),Φ(x′)〉H is

HK := {fw ; w ∈ H} s.t. fw : z 7→ 〈w,Φ(z)〉H ,

‖fw‖2HK := inf
w′∈H

{‖w′‖2H s.t. fw = fw′}≤ ‖w‖2H

Goal: construct a w ∈ L2(Ω,Hn) hierarchically to obtain a CNN
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Constructing a CNN in the RKHS

CNN:

Filters wijk ∈ L2(Sk,R)

Feature maps zik = Akz̃
i
k ∈ L2(Ω,R) (z0 = x0):

z̃ik(u) = σ
(
〈wik, Pkzk–1(u)〉

)

RKHS construction:

f ik in Hk and gik in Pk

gik(v) =

pk–1∑

j=1

wijk (v)f jk–1 where wik(v) = (wijk (v))j=1,...,pk–1

f ik(z) = ‖z‖σ(〈gik, z〉/‖z‖) for z ∈ Pk.
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Constructing a CNN in the RKHS

CNN:

Linear prediction layer: wjn+1 ∈ L2(Ω,R)

fσ(x0) = 〈wn+1, zn〉

RKHS construction:

gσ ∈ L2(Ω,Hn)

gσ(u) =

pn∑

j=1

wjn+1(u)f jn for all u ∈ Ω,

We have: 〈gσ,Φ(x0)〉 = fσ(x0) =⇒ fσ ∈ HK
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Norm of the CNN

Simple recursive bound

‖fσ‖2 ≤ pn
pn∑

i=1

‖win+1‖22Bn,i,

with

B1,i = C2
σ(‖wi1‖22)

Bk,i = C2
σ


pk–1

pk–1∑

j=1

‖wijk ‖22Bk–1,j


 .
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Norm of the CNN

Spectral norm bound (not in paper...)

‖fσ‖2 ≤ ‖wn+1‖22C2
σ(‖wn‖22C2

σ(‖wn–1‖22C2
σ(. . .))),

where ‖wk‖22 =
∫
Sk
‖wk(u)‖22du and ‖wk(u)‖2 is the spectral norm of

the matrix (wijk (u))ij .

With 1x1 patches (fully-connected) and no activations (linear),
C2
σ(λ) = λ, we get product of spectral norms

similar Rademacher complexity lower bound of [Bartlett et al., 2017]
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