
Optimization methods
for large-scale machine learning

Alberto Bietti and Julien Mairal

Inria Grenoble

Autrans, SMAI-MODE, 2018
Part II

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 1/42

Common paradigm: optimization for machine learning

Optimization is central to machine learning. For instance, in supervised
learning, the goal is to learn a prediction function f : X → Y given
labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸

empirical risk, data fit

+ λΩ(f)
︸ ︷︷ ︸

regularization

.

[Vapnik, 1995, Bottou, Curtis, and Nocedal, 2016]...

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 2/42

Focus of this part

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

min
x∈Rd

{

f(x)
△

=
1

n

n∑

i=1

fi(x) + ψ(x)

}

,

where each fi is L-smooth and convex and ψ is a convex
regularization penalty but not necessarily differentiable.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 3/42

Focus of this part

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

min
x∈Rd

{

f(x)
△

=
1

n

n∑

i=1

fi(x) + ψ(x)

}

,

where each fi is L-smooth and convex and ψ is a convex
regularization penalty but not necessarily differentiable.

Why this setting?

convexity makes it easy to obtain complexity bounds.

convex optimization is often effective for non-convex problems.

What we will not cover

performance of approaches in terms of test error.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 3/42

Introduction of a few optimization principles
Convex Functions

Why do we care about convexity?

x

f(x)

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 4/42

Introduction of a few optimization principles
Convex Functions

Local observations give information about the global optimum

x

f(x)

x⋆
b

b

b

∇f(x) = 0 is a necessary and sufficient optimality condition for
differentiable convex functions;

it is often easy to upper-bound f(x)− f⋆.
Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 4/42

Introduction of a few optimization principles
An important inequality for L-smooth convex functions

If f is convex and smooth

x⋆

x

f(x)

b

b

b

b
x0

f(x) ≥ f(x0) +∇f(x0)⊤(x− x0)
︸ ︷︷ ︸

linear approximation

;

if f is non-smooth, a similar inequality holds for subgradients.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 5/42

Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)⊤(x− x0)
︸ ︷︷ ︸

linear approximation

+L
2 ‖x− x0‖22;

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 6/42

Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)⊤(x− x0)
︸ ︷︷ ︸

linear approximation

+L
2 ‖x− x0‖22;

g(x) = Cx0
+ L

2 ‖x0 − (1/L)∇f(x0)− x‖22.
Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 6/42

Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)⊤(x− x0)
︸ ︷︷ ︸

linear approximation

+L
2 ‖x− x0‖22;

x1 = x0 − 1
L∇f(x0). (gradient descent step).

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 6/42

Introduction of a few optimization principles
Gradient Descent Algorithm

Assume that f is convex and L-smooth (∇f is L-Lipschitz).

Theorem

Consider the algorithm

xt ← xt−1 − 1
L∇f(xt−1).

Then,

f(xt)− f⋆ ≤
L‖x0 − x⋆‖22

2t
.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 7/42

Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all x and z,

f(x) ≤ f(z) +∇f(z)⊤(x− z) +
L

2
‖x− z‖22.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 8/42

Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all x and z,

f(x) ≤ f(z) +∇f(z)⊤(x− z) +
L

2
‖x− z‖22.

By using Taylor’s theorem with integral form,

f(x)− f(z) =

∫

1

0

∇f(tx+ (1− t)z)⊤(x− z)dt.

Then,

f(x)−f(z)−∇f(z)⊤(x−z) ≤
∫

1

0

(∇f(tx+(1−t)z)−∇f(z))⊤(x−z)dt

≤
∫

1

0

|(∇f(tx+(1−t)z)−∇f(z))⊤(x−z)|dt

≤
∫

1

0

‖∇f(tx+(1−t)z)−∇f(z)‖2‖x−z‖2dt (C.-S.)

≤
∫

1

0

Lt‖x−z‖22dt =
L

2
‖x−z‖22.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 8/42

Proof (2/2)
Proof of the theorem

We have shown that for all x,

f(x) ≤ gt(x) = f(xt−1) +∇f(xt−1)
⊤(x− xt−1) +

L

2
‖x− xt−1‖22.

gt is minimized by xt; it can be rewritten gt(x) = gt(xt) +
L
2
‖x− xt‖22. Then,

f(xt) ≤ gt(xt) = gt(x
⋆)− L

2
‖x⋆ − xt‖22

= f(xt−1) +∇f(xt−1)
⊤(x⋆ − xt−1) +

L

2
‖x⋆ − xt−1‖22 −

L

2
‖x⋆ − xt‖22

≤ f
⋆ +

L

2
‖x⋆ − xt−1‖22 −

L

2
‖x⋆ − xt‖22.

By summing from t = 1 to T , we have a telescopic sum

T (f(xT)− f
⋆) ≤

T
∑

t=1

f(xt)− f
⋆ ≤ L

2
‖x⋆ − x

0‖22 −
L

2
‖x⋆ − xT ‖22.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 9/42

Introduction of a few optimization principles
An important inequality for smooth and µ-strongly convex functions

If ∇f is L-Lipschitz continuous and f µ-strongly convex

x⋆

x

f(x)

b

b

b

b
x0

f(x) ≤ f(x0) +∇f(x0)⊤(x− x0) + L
2 ‖x− x0‖22;

f(x) ≥ f(x0) +∇f(x0)⊤(x− x0) + µ
2‖x− x0‖22;

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 10/42

Introduction of a few optimization principles

Proposition

When f is µ-strongly convex and L-smooth, the gradient descent
algorithm with step-size 1/L produces iterates such that

f(xt)− f⋆ ≤
(

1− µ

L

)t L‖x0 − x⋆‖22
2

.

We call that a linear convergence rate.

Remarks

if f is twice differentiable, L and µ represent the larget and smallest
eigenvalues of the Hessian, respectively.

L/µ is called the condition number.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 11/42

Proof

We start from an inequality from the previous proof

f(xt) ≤ f(xt−1) +∇f(xt−1)
⊤(x⋆ − xt−1) +

L

2
‖x⋆ − xt−1‖22 −

L

2
‖x⋆ − xt‖22

≤ f
⋆ +

L− µ

2
‖x⋆ − xt−1‖22 −

L

2
‖x⋆ − xt‖22.

In addition, we have that f(xt) ≥ f⋆ + µ

2
‖xt − x⋆‖22, and thus

‖x⋆ − xt‖22 ≤ L− µ

L+ µ
‖x⋆ − xt−1‖22

≤
(

1− µ

L

)

‖x⋆ − xt−1‖22.

Finally,

f(xt)− f
⋆ ≤ L

2
‖xt − x

⋆‖22

≤
(

1− µ

L

)t L‖x⋆ − x0‖22
2

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 12/42

Introduction of a few optimization principles

Remark: with stepsize 1/L, gradient descent may be interpreted as a
majorization-minimization algorithm:

f(x)
gy(x)

b

b

y = xold

xnew f(x) ≤ gy(x)

Figure: At each step, we update x ∈ argmin
x∈Rp gy(x)

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 13/42

The proximal gradient method
An important inequality for composite functions

If ∇f0 is L-Lipschitz continuous

x⋆

x

f(x) = f0(x) + ψ(x)g(x)

b

b

bb

b

x0x1

f0(x) + ψ(x) ≤ f0(x0) +∇f0(x0)⊤(x− x0) + L
2 ‖x− x0‖22 + ψ(x);

x1 minimizes g.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 14/42

The proximal gradient method

Gradient descent for minimizing f consists of

xt ← argmin
x∈Rp

gt(x) ⇐⇒ xt ← xt−1 −
1

L
∇f(xt−1).

The proximal gradient method for minimizing f = f0 + ψ consists of

xt ← argmin
x∈Rp

gt(x),

which is equivalent to

xt ← argmin
x∈Rp

1

2

∥
∥
∥
∥
xt−1 −

1

L
∇f0(xt−1)− x

∥
∥
∥
∥

2

2

+
1

L
ψ(x).

It requires computing efficiently the proximal operator of ψ.

y 7→ argmin
x∈Rp

1

2
‖y − x‖22 + ψ(x).

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 15/42

The proximal gradient method

Remarks

also known as forward-backward algorithm;

has similar convergence rates as the gradient descent method (the
proof is nearly identical).

there exists line search schemes to automatically tune L;

The case of ℓ1
The proximal operator of λ‖.‖1 is the soft-thresholding operator

x[j] = sign(y[j])(|y[j]| − λ)+.

The resulting algorithm is called iterative soft-thresholding.

[Nowak and Figueiredo, 2001, Daubechies et al., 2004, Combettes and Wajs,
2006, Beck and Teboulle, 2009, Wright et al., 2009, Nesterov, 2013]...

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 16/42

The proximal gradient method

The proximal operator for the group Lasso penalty

min
x∈Rp

1

2
‖y − x‖22 + λ

∑

g∈G
‖x[g]‖q.

For q = 2,

x[g] =
y[g]

‖y[g]‖2
(‖y[g]‖2 − λ)+, ∀g ∈ G.

For q =∞,
x[g] = y[g]−Π‖.‖1≤λ[y[g]], ∀g ∈ G.

These formula generalize soft-thresholding to groups of variables.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 17/42

The proximal gradient method

A few proximal operators:

ℓ0-penalty: hard-thresholding;

ℓ1-norm: soft-thresholding;

group-Lasso: group soft-thresholding;

fused-lasso (1D total variation): [Hoefling, 2010];

total variation: [Chambolle and Darbon, 2009];

hierarchical norms: [Jenatton et al., 2011], O(p) complexity;

overlapping group Lasso with ℓ∞-norm: [Mairal et al., 2010];

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 18/42

Accelerated gradient descent methods

Nesterov introduced in the 80’s an acceleration scheme for the gradient
descent algorithm. It was generalized later to the composite setting.

FISTA

xt ← argmin
x∈Rp

1

2

∥
∥
∥
∥
x−

(

yt−1 −
1

L
∇f0(yt−1)

)∥
∥
∥
∥

2

2

+
1

L
ψ(x);

Find αt > 0 s.t. α2
t = (1− αt)α

2
t−1 +

µ

L
αt;

yt ← xt + βt(xt − xt−1) with βt =
αt−1(1− αt−1)

α2
t−1 + αt

.

f(xt)− f⋆ = O(1/t2) for convex problems;

f(xt)− f⋆ = O((1−
√

µ/L)t) for µ-strongly convex problems;

Acceleration works in many practical cases.

see [Beck and Teboulle, 2009, Nesterov, 1983, 2004, 2013]

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 19/42

What do we mean by “acceleration”?

Complexity analysis for large finite sums

Since f is a sum of n functions, computing ∇f requires computing n
gradients ∇fi. The complexity to reach an ε−solution is given below

µ > 0 µ = 0

ISTA O
(

nL
µ log

(
1
ε

))

O
(
nL
ε

)

FISTA O
(

n
√

L
µ log

(
1
ε

))

O

(

n
√

L
ε

)

Remarks

ε-solution means here f(xt)− f⋆ ≤ ε.
For n = 1, the rates of FISTA are optimal for a “first-order local
black box” [Nesterov, 2004].

For L = 1 and µ = 1/n, scales at best in n3/2.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 20/42

How does “acceleration” work?

Unfortunately, the literature does not provide any simple geometric
explanation...

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 21/42

How does “acceleration” work?

Unfortunately, the literature does not provide any simple geometric
explanation... but they are a few obvious facts and a mechanism
introduced by Nesterov, called “estimate sequence”.

Obvious fact

Simple gradient descent steps are “blind” to the past iterates, and
are based on a purely local model of the objective.

Accelerated methods usually involve an extrapolation step
yt = xt + βt(xt − xt−1) with βt in (0, 1).

Nesterov interprets acceleration as relying on a better model of the
objective called estimate sequence.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 21/42

How does “acceleration” work?

Definition of estimate sequence [Nesterov].

A pair of sequences (ϕt)t≥0 and (λt)t≥0, with λt ≥ 0 and ϕt : R
p → R,

is called an estimate sequence of function f if λt → 0 and

for any x ∈ R
p and all t ≥ 0, ϕt(x)− f(x) ≤ λt(ϕ0(x)− f(x)).

In addition, if for some sequence (xt)t≥0 we have

f(xt) ≤ ϕ⋆
t

△

= min
x∈Rp

ϕt(x),

then
f(xt)− f⋆ ≤ λt(ϕ0(x

⋆)− f⋆),
where x⋆ is a minimizer of f .

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 22/42

How does “acceleration” work?

In summary, we need two properties

1 ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x);

2 f(xt) ≤ ϕ⋆
t

△

= minx∈Rp ϕt(x).

Remarks

ϕt is neither an upper-bound, nor a lower-bound;

Finding the right estimate sequence is often nontrivial.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 23/42

How does “acceleration” work?

In summary, we need two properties

1 ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x);

2 f(xt) ≤ ϕ⋆
t

△

= minx∈Rp ϕt(x).

How to build an estimate sequence?

Define ϕt recursively

ϕt(x)
△

= (1− αt)ϕt−1(x) + αtdt(x),

where dt is a lower-bound, e.g., if f is smooth,

dt(x)
△

= f(yt) +∇f(yt)⊤(x− yt) +
µ

2
‖x− yt‖22,

Then, work hard to choose αt as large as possible, and yt and xt such
that property 2 holds. Subsequently, λt =

∏t
t=1(1− αt).

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 23/42

The stochastic (sub)gradient descent algorithm

Consider now the minimization of an expectation

min
x∈Rp

f(x) = Ez[ℓ(x, z)],

To simplify, we assume that for all z, x 7→ ℓ(x, z) is differentiable.

Algorithm

At iteration t,

Randomly draw one example zt from the training set;

Update the current iterate

xt ← xt−1 − ηt∇ft(xt−1) with ft(x) = ℓ(x, zt).

Perform online averaging of the iterates (optional)

x̃t ← (1− γt)x̃t−1 + γtxt.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 24/42

The stochastic (sub)gradient descent algorithm

There are various learning rates strategies (constant, varying step-sizes),
and averaging strategies. Depending on the problem assumptions and
choice of ηt, γt, classical convergence rates may be obtained:

f(x̃t)− f⋆ = O(1/
√
t) for convex problems;

f(x̃t)− f⋆ = O(1/t) for strongly-convex ones;

Remarks

The convergence rates are not great, but the complexity
per-iteration is small (1 gradient evaluation for minimizing an
empirical risk versus n for the batch algorithm).

When the amount of data is infinite, the method minimizes the
expected risk (which is what we want).

Choosing a good learning rate automatically is an open problem.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 25/42

Proof of an O(1/
√
t) rate for the convex case

Inspired by (aka, stolen from) F. Bach’s slides

Assumptions

The solution lies in a bounded domain C = {‖x‖ ≤ D}.
The sub-gradients are bounded on C: ‖∇ft(x)‖ ≤ B.

Fix in advance the number of iterations T and choose ηt =
2D

B
√
T
.

Choose Polyak-Ruppert averaging x̃T = (1/T)
∑T−1

t=0 xt.

Perform updates with projections

xt ← ΠC [xt−1 − ηt∇ft(xt−1)].

Proposition

E[f (x̃t)− f⋆] ≤
2DB√
T
.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 26/42

Proof of an O(1/
√
t) rate for the convex case

Inspired by (aka, stolen from) F. Bach’s slides

Ft: information up to time t.

‖x‖ ≤ D and ‖∇ft(x)‖ ≤ B. Besides E[∇ft(x)|Ft−1] = ∇f(x).

‖xt − x
⋆‖2 ≤ ‖xt−1 − ηt∇ft(xt−1)− x

⋆‖2

≤ ‖xt−1 − x
⋆‖2 +B

2
η
2

t − 2ηt(xt−1 − x
⋆)⊤∇ft(xt−1).

Take now conditional expectations

E[‖xt − x
⋆‖2|Ft−1] ≤ ‖xt−1 − x

⋆‖2 +B
2
η
2

t − 2ηt(xt−1 − x
⋆)⊤∇f(xt−1)

≤ ‖xt−1 − x
⋆‖2 +B

2
η
2

t − 2ηt(f(xt−1)− f
⋆).

Take now full expectations

E[‖xt − x
⋆‖2] ≤ E[‖xt−1 − x

⋆‖2] +B
2
η
2

t − 2ηtE[f(xt−1)− f
⋆],

and, after reorganizing the terms

E[f(xt−1)− f
⋆] ≤ B2η2

t

2
+

1

2ηt

(

E[‖xt−1 − x
⋆‖2]− E[‖xt − x

⋆‖2]
)

.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 27/42

Proof of an O(1/
√
t) rate for the convex case

Inspired by (aka, stolen from) F. Bach’s slides

We start again from

E[f(xt−1)− f
⋆] ≤ B2η2

t

2
+

1

2ηt

(

E[‖xt−1 − x
⋆‖2]− E[‖xt − x

⋆‖2]
)

.

and we exploit the telescopic sum

T
∑

t=1

E[f(xt−1)− f
⋆] ≤

T
∑

t=1

B2η2

t

2
+

T
∑

t=1

1

2ηt

(

E[‖xt−1 − x
⋆‖2]− E[‖xt − x

⋆‖2]
)

≤ T
B2η2

2
+

4D2

2η
≤ 2DB

√
T with γ =

2D

B
√
T
.

Finally, we conclude by using a convexity inequality

Ef

(

1

T

T−1
∑

t=0

)

− f
⋆ ≤ 2DB√

T
.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 28/42

Constant step-size SGD for the strongly convex case

Gradient “variance”: E[‖∇ft(x)‖2] ≤ B2

‖xt − x∗‖2 = ‖xt−1 − x∗‖2 − 2ηt∇ft(xt−1)
⊤(xt−1 − x∗)

+ η2t ‖∇ft(xt−1)‖2

E[‖xt − x∗‖2|Ft−1] = ‖xt−1 − x∗‖2 − 2ηt∇f(xt−1)
⊤(xt−1 − x∗) + η2tB

2

≤ (1− µηt)‖xt−1 − x∗‖2 − 2ηt(f(xt−1)− f∗) + η2tB
2

Constant step-size η, no averaging:

E[‖xt − x∗‖2] ≤ (1− µη)E[‖xt−1 − x∗‖2] + η2B2

−−−→
t→∞

ηB2

µ
(with linear rate)

Can replace B2 with variance σ2 for smooth f if η ≤ 1/L
Limit value becomes smaller with:

Smaller step-size: η → η/m (but m times slower rate)
Mini-batch of size m: σ2 → σ2/m (but m times more computation)

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 29/42

O(1/t) for the strongly convex case

From the previous slide:

E[‖xt − x∗‖2] ≤ (1− µηt)E[‖xt−1 − x∗‖2] + η2tB
2

Take ηt =
2

µ(γ+t) (with η1 ≤ 1/L) and by induction:

E[‖xt − x∗‖2] ≤
ν

γ + t+ 1
, ν := max

{
4B2

µ2
, (γ + 1)‖x0 − x∗‖2

}

f(xt)− f(x∗) ≤ L
2 ‖xt − x∗‖2

Start with constant step-size to forget initial condition faster

Averaging improves from O(LB2/µ2t) to O(B2/µt)

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 30/42

Back to finite sums

Consider now the case of interest for us today:

min
x∈Rp

1

n

n∑

i=1

fi(x),

Question

Can we do as well as SGD in terms of cost per iteration, while enjoying a
fast (linear) convergence rate like (accelerated or not) gradient descent?

For n = 1, no!

The rates are optimal for a “first-order local black box” [Nesterov, 2004].

For n ≥ 1, yes! We need to design algorithms

whose per-iteration computational complexity is smaller than n;

whose convergence rate may be worse than FISTA....

...but with a better expected computational complexity.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 31/42

Incremental gradient descent methods

min
x∈Rp

{

f(x) =
1

n

n∑

i=1

fi(x)

}

.

Several randomized algorithms are designed with one ∇fi computed per
iteration, with fast convergence rates, e.g., SAG [Schmidt et al., 2013]:

xk ← xk−1 −
γ

Ln

n∑

i=1

yki with yki =

∇fi(xk−1) if i = ik

yk−1
i otherwise

.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 32/42

Incremental gradient descent methods

min
x∈Rp

{

f(x) =
1

n

n∑

i=1

fi(x)

}

.

Several randomized algorithms are designed with one ∇fi computed per
iteration, with fast convergence rates, e.g., SAG [Schmidt et al., 2013]:

xk ← xk−1 −
γ

Ln

n∑

i=1

yki with yki =

∇fi(xk−1) if i = ik

yk−1
i otherwise

.

See also SVRG, SAGA, SDCA, MISO, Finito...
Some of these algorithms perform updates of the form

xk ← xk−1 − ηkgk with E[gk] = ∇f(xk−1),

but gk has lower variance than in SGD.

[Schmidt et al., 2013, Xiao and Zhang, 2014, Defazio et al., 2014a,b,
Shalev-Shwartz and Zhang, 2012, Mairal, 2015, Zhang and Xiao, 2015]

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 32/42

Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation.
The number of gradients evaluations to ensure f(xk)− f⋆ ≤ ε is

µ > 0

FISTA O
(

n
√

L
µ log

(
1
ε

))

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L̄µ

)

log
(
1
ε

))

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 33/42

Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation.
The number of gradients evaluations to ensure f(xk)− f⋆ ≤ ε is

µ > 0

FISTA O
(

n
√

L
µ log

(
1
ε

))

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L̄µ

)

log
(
1
ε

))

Main features vs. stochastic gradient descent

Same complexity per-iteration (but higher memory footprint).

Faster convergence (exploit the finite-sum structure).

Less parameter tuning than SGD.

Some variants are compatible with a composite term ψ.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 33/42

Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation.
The number of gradients evaluations to ensure f(xk)− f⋆ ≤ ε is

µ > 0

FISTA O
(

n
√

L
µ log

(
1
ε

))

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L̄µ

)

log
(
1
ε

))

Important remarks

When fi(x) = ℓ(z⊤i x), the memory footprint is O(n) otherwise
O(dn), except for SVRG (O(d)).

Some algorithms require an estimate of µ;

L̄ is the average (or max) of the Lipschitz constants of the ∇fi’s.
The L for fista is the Lipschitz constant of ∇f : L ≤ L̄.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 33/42

Incremental gradient descent methods

stealing again a bit from F. Bach’s slides.

Variance reduction

Consider two random variables X,Y and define

Z = X − Y + E[Y].

Then,

E[Z] = E[X]

Var(Z) = Var(X) + Var(Y)− 2cov(X,Y).

The variance of Z may be smaller if X and Y are positively correlated.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 34/42

Incremental gradient descent methods

stealing again a bit from F. Bach’s slides.

Variance reduction

Consider two random variables X,Y and define

Z = X − Y + E[Y].

Then,

E[Z] = E[X]

Var(Z) = Var(X) + Var(Y)− 2cov(X,Y).

The variance of Z may be smaller if X and Y are positively correlated.

Why is it useful for stochatic optimization?

step-sizes for SGD have to decrease to ensure convergence.

with variance reduction, one may use constant step-sizes.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 34/42

Incremental gradient descent methods

SVRG

xt = xt−1 − γ (∇fit(xt−1)−∇fit(y) +∇f(y)) ,
where y is updated every epoch and E[∇fit(y)|Ft−1] = ∇f(y).

SAGA

xt = xt−1 − γ
(
∇fit(xt−1)− yt−1

it
+ 1

n

∑n
i=1 y

t−1
i

)
,

where E[yt−1
it
|Ft−1] =

1
n

∑n
i=1 y

t−1
i and yti =

∇fi(xt−1) if i = it

yt−1
i otherwise.

MISO/Finito: for n ≥ L/µ, same form as SAGA but

1
n

∑n
i=1 y

t−1
i = −µxt−1 and yti =

∇fi(xt−1)− µxt−1 if i = it

yt−1
i otherwise.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 35/42

Can we do even better for large finite sums?

Without vs with acceleration

µ > 0

FISTA O
(

n
√

L
µ log

(
1
ε

))

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L̄µ

)

log
(
1
ε

))

Accelerated versions Õ
(

max
(

n,
√

n L̄
µ

)

log
(
1
ε

))

Acceleration for specific algorithms [Shalev-Shwartz and Zhang,
2014, Lan, 2015, Allen-Zhu, 2016].

Generic acceleration: Catalyst [Lin et al., 2015].

see [Agarwal and Bottou, 2015] for discussions about optimality.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 36/42

What we have not (or should have) covered

Import approaches and concepts

distributed optimization.

proximal splitting / ADMM.

Quasi-Newton approaches.

Frank-Wolfe and coordinate descent algorithms.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 37/42

What we have not (or should have) covered

Import approaches and concepts

distributed optimization.

proximal splitting / ADMM.

Quasi-Newton approaches.

Frank-Wolfe and coordinate descent algorithms.

The question

Should we care that much about minimizing finite sums when all we
want is minimizing an expectation?

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 37/42

Statistical learning basics

Statistical learning setting:

Data (xi, yi) ∈ X × Y, i.i.d. from distribution D
Hypothesis class (here linear) x 7→ θ⊤Φ(x), θ ∈ Θ ⊂ R

d

Loss function ℓ(y, θ⊤Φ(x))

Goal: minθ∈Θ E(x,y)∼D[ℓ(y, θ
⊤Φ(x))]

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 38/42

Statistical learning basics

Two main approaches

Empirical risk minimization with batch/incremental methods

min
θ∈Rd

1

n

n∑

i=1

ℓ(yi, θ
⊤Φ(xi)) + Ω(θ)

Minimize expected risk with SGD

min
θ∈Rd

E(x,y)∼D[ℓ(y, θ
⊤Φ(x))]

Question: Which is better?

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 38/42

Statistical learning basics

Two main approaches

Empirical risk minimization with batch/incremental methods

min
θ∈Rd

{

f̂(θ) :=
1

n

n∑

i=1

ℓ(yi, θ
⊤Φ(xi))

}

s.t. Ω(θ) ≤ D

Minimize expected risk with SGD

min
θ∈Rd

{

f(θ) := E(x,y)∼D[ℓ(y, θ
⊤Φ(x))]

}

Question: Which is better?

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 38/42

Empirical Risk Minimization

θ̂ := argmin
θ∈Θ

f̂(θ)

Approximation/Estimation:

f(θ̂)− min
θ∈Rd

f(θ) = f(θ̂)−min
θ∈Θ

f(θ)
︸ ︷︷ ︸

estimation error

+min
θ∈Θ

f(θ)− min
θ∈Rd

f(θ)

︸ ︷︷ ︸

approximation error

Controlled with regularization (bias/variance, over/under-fitting)

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 39/42

Empirical Risk Minimization

θ̂ := argmin
θ∈Θ

f̂(θ)

Approximation/Estimation/Optimization:

f(θ̂)− min
θ∈Rd

f(θ) = f(θ̂)−min
θ∈Θ

f(θ)
︸ ︷︷ ︸

estimation error

+min
θ∈Θ

f(θ)− min
θ∈Rd

f(θ)

︸ ︷︷ ︸

approximation error

Controlled with regularization (bias/variance, over/under-fitting)

θ̂ obtained approximately by optimization:

f(θ̃)− min
θ∈Rd

f(θ) = f(θ̃)− f(θ̂)
︸ ︷︷ ︸

optimization error

+f(θ̂)− min
θ∈Rd

f(θ)

Key insight of Bottou and Bousquet (2008): no need to optimize
below statistical error!

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 39/42

ERM: uniform convergence

Deviations of f̂ from f can be bounded for all θ ∈ Θ:

E[sup
θ∈Θ
|f̂(θ)− f(θ)|] ≤ BD√

n

Θ = {θ : ‖θ‖ ≤ D}
B = GR Lipschitz constant (G-Lipschitz loss, data radius R)
Tools from concentration of measure

Bound estimation error (θD := argminθ∈Θ f(θ)):

E[f(θ̂)− f(θD)] ≤ E[f(θ̂)− f̂(θ̂) + f̂(θ̂)− f̂(θD)
︸ ︷︷ ︸

≤0

+f̂(θD)− f(θD)]

≤ 2E[sup
θ∈Θ
|f̂(θ)− f(θ)|] ≤ 2BD√

n

Same as SGD!

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 40/42

ERM: fast rates

Estimation error can be smaller than O(1/
√
n)

O(1/µn) for µ-strongly convex f and f̂

Similar to SGD on strongly convex functions
Warning: large µ will increase approximation error!

O(1/nα), α ∈ [1/2, 1] by making assumptions on the data
distribution D in classification problems:

Separable data → O(1/n)
Better rate when P (y = 1|x) puts little mass near 1/2

When finite sum optimization helps

Good optimization of f̂ helps with fast rates

No dependence on gradient variance

More robust to ill-conditioning, easier step-sizes

See (Bottou and Bousquet, 2008; Babanezhad et al, 2015)

But: SGD can do better (see work of F. Bach)

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 41/42

Mark the date! July 2-6th, Grenoble

Along with Naver Labs, Inria is organizing a summer school in Grenoble
on artificial intelligence. Visit https://project.inria.fr/paiss/.

Among the distinguished speakers

Lourdes Agapito (UCL)

Kyunghyun Cho (NYU/Facebook)

Emmanuel Dupoux (EHESS)

Martial Hebert (CMU)

Hugo Larochelle (Google Brain)

Yann LeCun (Facebook/NYU)

Jean Ponce (Inria)

Cordelia Schmid (Inria)

Andrew Zisserman (Oxford/Google DeepMind).

...

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 42/42

https://project.inria.fr/paiss/

References I

A. Agarwal and L. Bottou. A lower bound for the optimization of finite sums.
In Proceedings of the International Conference on Machine Learning (ICML),
2015.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic
gradient methods. arXiv preprint arXiv:1603.05953, 2016.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202,
2009.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for
large-scale machine learning. arXiv preprint arXiv:1606.04838, 2016.

Antonin Chambolle and Jérôme Darbon. On total variation minimization and
surface evolution using parametric maximum flows. International journal of
computer vision, 84(3):288, 2009.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward
splitting. SIAM Multiscale Modeling and Simulation, 4(4):1168–1200, 2006.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 43/42

References II
I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm

for linear inverse problems with a sparsity constraint. Communications on
Pure and Applied Mathematics, 57(11):1413–1457, 2004.

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In
Advances in Neural Information Processing Systems (NIPS), 2014a.

A. J. Defazio, T. S. Caetano, and J. Domke. Finito: A faster, permutable
incremental gradient method for big data problems. In Proceedings of the
International Conference on Machine Learning (ICML), 2014b.

H. Hoefling. A path algorithm for the fused lasso signal approximator. Journal
of Computational and Graphical Statistics, 19(4):984–1006, 2010.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for
hierarchical sparse coding. Journal of Machine Learning Research, 12:
2297–2334, 2011.

Guanghui Lan. An optimal randomized incremental gradient method. arXiv
preprint arXiv:1507.02000, 2015.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 44/42

References III
H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order

optimization. In Advances in Neural Information Processing Systems, 2015.

J. Mairal. Incremental majorization-minimization optimization with application
to large-scale machine learning. SIAM Journal on Optimization, 25(2):
829–855, 2015.

J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for
structured sparsity. In Advances in Neural Information Processing Systems
(NIPS), 2010.

Y. Nesterov. Introductory lectures on convex optimization: a basic course.
Kluwer Academic Publishers, 2004.

Y. Nesterov. Gradient methods for minimizing composite objective function.
Mathematical Programming, 140(1):125–161, 2013.

Yurii Nesterov. A method for unconstrained convex minimization problem with
the rate of convergence o (1/k2). In Doklady an SSSR, volume 269, pages
543–547, 1983.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 45/42

References IV
R. D. Nowak and M. A. T. Figueiredo. Fast wavelet-based image deconvolution

using the EM algorithm. In Conference Record of the Thirty-Fifth Asilomar
Conference on Signals, Systems and Computers., 2001.

M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the
stochastic average gradient. arXiv:1309.2388, 2013.

S. Shalev-Shwartz and T. Zhang. Proximal stochastic dual coordinate ascent.
arXiv:1211.2717, 2012.

S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual
coordinate ascent for regularized loss minimization. Mathematical
Programming, pages 1–41, 2014.

Vladimir Vapnik. The nature of statistical learning theory. Springer science &
business media, 1995.

S.J. Wright, R.D. Nowak, and M.A.T. Figueiredo. Sparse reconstruction by
separable approximation. IEEE Transactions on Signal Processing, 57(7):
2479–2493, 2009.

L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive
variance reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 46/42

References V
Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for

regularized empirical risk minimization. In Proceedings of the International
Conference on Machine Learning (ICML), 2015.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 47/42

