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Common paradigm: optimization for machine learning

Optimization is central to machine learning. For instance, in supervised
learning, the goal is to learn a prediction function f : X → Y given
labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸

empirical risk, data fit

+ λΩ(f)
︸ ︷︷ ︸

regularization

.

[Vapnik, 1995, Bottou, Curtis, and Nocedal, 2016]...
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Focus of this part

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

min
x∈Rd

{

f(x)
△

=
1

n

n∑

i=1

fi(x) + ψ(x)

}

,

where each fi is L-smooth and convex and ψ is a convex
regularization penalty but not necessarily differentiable.
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Focus of this part

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

min
x∈Rd

{

f(x)
△

=
1

n

n∑

i=1

fi(x) + ψ(x)

}

,

where each fi is L-smooth and convex and ψ is a convex
regularization penalty but not necessarily differentiable.

Why this setting?

convexity makes it easy to obtain complexity bounds.

convex optimization is often effective for non-convex problems.

What we will not cover

performance of approaches in terms of test error.
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Introduction of a few optimization principles
Convex Functions

Why do we care about convexity?

x

f(x)
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Introduction of a few optimization principles
Convex Functions

Local observations give information about the global optimum

x

f(x)

x⋆
b

b

b

∇f(x) = 0 is a necessary and sufficient optimality condition for
differentiable convex functions;

it is often easy to upper-bound f(x)− f⋆.
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Introduction of a few optimization principles
An important inequality for L-smooth convex functions

If f is convex and smooth

x⋆

x

f(x)

b

b

b

b
x0

f(x) ≥ f(x0) +∇f(x0)⊤(x− x0)
︸ ︷︷ ︸

linear approximation

;

if f is non-smooth, a similar inequality holds for subgradients.
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Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)⊤(x− x0)
︸ ︷︷ ︸

linear approximation

+L
2 ‖x− x0‖22;
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Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)⊤(x− x0)
︸ ︷︷ ︸

linear approximation

+L
2 ‖x− x0‖22;

g(x) = Cx0
+ L

2 ‖x0 − (1/L)∇f(x0)− x‖22.
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Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)⊤(x− x0)
︸ ︷︷ ︸

linear approximation

+L
2 ‖x− x0‖22;

x1 = x0 − 1
L∇f(x0). (gradient descent step).
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Introduction of a few optimization principles
Gradient Descent Algorithm

Assume that f is convex and L-smooth (∇f is L-Lipschitz).

Theorem

Consider the algorithm

xt ← xt−1 − 1
L∇f(xt−1).

Then,

f(xt)− f⋆ ≤
L‖x0 − x⋆‖22

2t
.
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Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all x and z,

f(x) ≤ f(z) +∇f(z)⊤(x− z) +
L

2
‖x− z‖22.
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Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all x and z,

f(x) ≤ f(z) +∇f(z)⊤(x− z) +
L

2
‖x− z‖22.

By using Taylor’s theorem with integral form,

f(x)− f(z) =

∫

1

0

∇f(tx+ (1− t)z)⊤(x− z)dt.

Then,

f(x)−f(z)−∇f(z)⊤(x−z) ≤
∫

1

0

(∇f(tx+(1−t)z)−∇f(z))⊤(x−z)dt

≤
∫

1

0

|(∇f(tx+(1−t)z)−∇f(z))⊤(x−z)|dt

≤
∫

1

0

‖∇f(tx+(1−t)z)−∇f(z)‖2‖x−z‖2dt (C.-S.)

≤
∫

1

0

Lt‖x−z‖22dt =
L

2
‖x−z‖22.
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Proof (2/2)
Proof of the theorem

We have shown that for all x,

f(x) ≤ gt(x) = f(xt−1) +∇f(xt−1)
⊤(x− xt−1) +

L

2
‖x− xt−1‖22.

gt is minimized by xt; it can be rewritten gt(x) = gt(xt) +
L
2
‖x− xt‖22. Then,

f(xt) ≤ gt(xt) = gt(x
⋆)− L

2
‖x⋆ − xt‖22

= f(xt−1) +∇f(xt−1)
⊤(x⋆ − xt−1) +

L

2
‖x⋆ − xt−1‖22 −

L

2
‖x⋆ − xt‖22

≤ f
⋆ +

L

2
‖x⋆ − xt−1‖22 −

L

2
‖x⋆ − xt‖22.

By summing from t = 1 to T , we have a telescopic sum

T (f(xT )− f
⋆) ≤

T
∑

t=1

f(xt)− f
⋆ ≤ L

2
‖x⋆ − x

0‖22 −
L

2
‖x⋆ − xT ‖22.
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Introduction of a few optimization principles
An important inequality for smooth and µ-strongly convex functions

If ∇f is L-Lipschitz continuous and f µ-strongly convex

x⋆

x

f(x)

b

b

b

b
x0

f(x) ≤ f(x0) +∇f(x0)⊤(x− x0) + L
2 ‖x− x0‖22;

f(x) ≥ f(x0) +∇f(x0)⊤(x− x0) + µ
2‖x− x0‖22;
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Introduction of a few optimization principles

Proposition

When f is µ-strongly convex and L-smooth, the gradient descent
algorithm with step-size 1/L produces iterates such that

f(xt)− f⋆ ≤
(

1− µ

L

)t L‖x0 − x⋆‖22
2

.

We call that a linear convergence rate.

Remarks

if f is twice differentiable, L and µ represent the larget and smallest
eigenvalues of the Hessian, respectively.

L/µ is called the condition number.
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Proof

We start from an inequality from the previous proof

f(xt) ≤ f(xt−1) +∇f(xt−1)
⊤(x⋆ − xt−1) +

L

2
‖x⋆ − xt−1‖22 −

L

2
‖x⋆ − xt‖22

≤ f
⋆ +

L− µ

2
‖x⋆ − xt−1‖22 −

L

2
‖x⋆ − xt‖22.

In addition, we have that f(xt) ≥ f⋆ + µ

2
‖xt − x⋆‖22, and thus

‖x⋆ − xt‖22 ≤ L− µ

L+ µ
‖x⋆ − xt−1‖22

≤
(

1− µ

L

)

‖x⋆ − xt−1‖22.

Finally,

f(xt)− f
⋆ ≤ L

2
‖xt − x

⋆‖22

≤
(

1− µ

L

)t L‖x⋆ − x0‖22
2
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Introduction of a few optimization principles

Remark: with stepsize 1/L, gradient descent may be interpreted as a
majorization-minimization algorithm:

f(x)
gy(x)

b

b

y = xold

xnew f(x) ≤ gy(x)

Figure: At each step, we update x ∈ argmin
x∈Rp gy(x)
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The proximal gradient method
An important inequality for composite functions

If ∇f0 is L-Lipschitz continuous

x⋆

x

f(x) = f0(x) + ψ(x)g(x)

b

b

bb

b

x0x1

f0(x) + ψ(x) ≤ f0(x0) +∇f0(x0)⊤(x− x0) + L
2 ‖x− x0‖22 + ψ(x);

x1 minimizes g.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 14/42



The proximal gradient method

Gradient descent for minimizing f consists of

xt ← argmin
x∈Rp

gt(x) ⇐⇒ xt ← xt−1 −
1

L
∇f(xt−1).

The proximal gradient method for minimizing f = f0 + ψ consists of

xt ← argmin
x∈Rp

gt(x),

which is equivalent to

xt ← argmin
x∈Rp

1

2

∥
∥
∥
∥
xt−1 −

1

L
∇f0(xt−1)− x

∥
∥
∥
∥

2

2

+
1

L
ψ(x).

It requires computing efficiently the proximal operator of ψ.

y 7→ argmin
x∈Rp

1

2
‖y − x‖22 + ψ(x).
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The proximal gradient method

Remarks

also known as forward-backward algorithm;

has similar convergence rates as the gradient descent method (the
proof is nearly identical).

there exists line search schemes to automatically tune L;

The case of ℓ1
The proximal operator of λ‖.‖1 is the soft-thresholding operator

x[j] = sign(y[j])(|y[j]| − λ)+.

The resulting algorithm is called iterative soft-thresholding.

[Nowak and Figueiredo, 2001, Daubechies et al., 2004, Combettes and Wajs,
2006, Beck and Teboulle, 2009, Wright et al., 2009, Nesterov, 2013]...
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The proximal gradient method

The proximal operator for the group Lasso penalty

min
x∈Rp

1

2
‖y − x‖22 + λ

∑

g∈G
‖x[g]‖q.

For q = 2,

x[g] =
y[g]

‖y[g]‖2
(‖y[g]‖2 − λ)+, ∀g ∈ G.

For q =∞,
x[g] = y[g]−Π‖.‖1≤λ[y[g]], ∀g ∈ G.

These formula generalize soft-thresholding to groups of variables.
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The proximal gradient method

A few proximal operators:

ℓ0-penalty: hard-thresholding;

ℓ1-norm: soft-thresholding;

group-Lasso: group soft-thresholding;

fused-lasso (1D total variation): [Hoefling, 2010];

total variation: [Chambolle and Darbon, 2009];

hierarchical norms: [Jenatton et al., 2011], O(p) complexity;

overlapping group Lasso with ℓ∞-norm: [Mairal et al., 2010];
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Accelerated gradient descent methods

Nesterov introduced in the 80’s an acceleration scheme for the gradient
descent algorithm. It was generalized later to the composite setting.

FISTA

xt ← argmin
x∈Rp

1

2

∥
∥
∥
∥
x−

(

yt−1 −
1

L
∇f0(yt−1)

)∥
∥
∥
∥

2

2

+
1

L
ψ(x);

Find αt > 0 s.t. α2
t = (1− αt)α

2
t−1 +

µ

L
αt;

yt ← xt + βt(xt − xt−1) with βt =
αt−1(1− αt−1)

α2
t−1 + αt

.

f(xt)− f⋆ = O(1/t2) for convex problems;

f(xt)− f⋆ = O((1−
√

µ/L)t) for µ-strongly convex problems;

Acceleration works in many practical cases.

see [Beck and Teboulle, 2009, Nesterov, 1983, 2004, 2013]
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What do we mean by “acceleration”?

Complexity analysis for large finite sums

Since f is a sum of n functions, computing ∇f requires computing n
gradients ∇fi. The complexity to reach an ε−solution is given below

µ > 0 µ = 0

ISTA O
(

nL
µ log

(
1
ε

))

O
(
nL
ε

)

FISTA O
(

n
√

L
µ log

(
1
ε

))

O

(

n
√

L
ε

)

Remarks

ε-solution means here f(xt)− f⋆ ≤ ε.
For n = 1, the rates of FISTA are optimal for a “first-order local
black box” [Nesterov, 2004].

For L = 1 and µ = 1/n, scales at best in n3/2.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 20/42



How does “acceleration” work?

Unfortunately, the literature does not provide any simple geometric
explanation...
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How does “acceleration” work?

Unfortunately, the literature does not provide any simple geometric
explanation... but they are a few obvious facts and a mechanism
introduced by Nesterov, called “estimate sequence”.

Obvious fact

Simple gradient descent steps are “blind” to the past iterates, and
are based on a purely local model of the objective.

Accelerated methods usually involve an extrapolation step
yt = xt + βt(xt − xt−1) with βt in (0, 1).

Nesterov interprets acceleration as relying on a better model of the
objective called estimate sequence.
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How does “acceleration” work?

Definition of estimate sequence [Nesterov].

A pair of sequences (ϕt)t≥0 and (λt)t≥0, with λt ≥ 0 and ϕt : R
p → R,

is called an estimate sequence of function f if λt → 0 and

for any x ∈ R
p and all t ≥ 0, ϕt(x)− f(x) ≤ λt(ϕ0(x)− f(x)).

In addition, if for some sequence (xt)t≥0 we have

f(xt) ≤ ϕ⋆
t

△

= min
x∈Rp

ϕt(x),

then
f(xt)− f⋆ ≤ λt(ϕ0(x

⋆)− f⋆),
where x⋆ is a minimizer of f .
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How does “acceleration” work?

In summary, we need two properties

1 ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x);

2 f(xt) ≤ ϕ⋆
t

△

= minx∈Rp ϕt(x).

Remarks

ϕt is neither an upper-bound, nor a lower-bound;

Finding the right estimate sequence is often nontrivial.
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How does “acceleration” work?

In summary, we need two properties

1 ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x);

2 f(xt) ≤ ϕ⋆
t

△

= minx∈Rp ϕt(x).

How to build an estimate sequence?

Define ϕt recursively

ϕt(x)
△

= (1− αt)ϕt−1(x) + αtdt(x),

where dt is a lower-bound, e.g., if f is smooth,

dt(x)
△

= f(yt) +∇f(yt)⊤(x− yt) +
µ

2
‖x− yt‖22,

Then, work hard to choose αt as large as possible, and yt and xt such
that property 2 holds. Subsequently, λt =

∏t
t=1(1− αt).
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The stochastic (sub)gradient descent algorithm

Consider now the minimization of an expectation

min
x∈Rp

f(x) = Ez[ℓ(x, z)],

To simplify, we assume that for all z, x 7→ ℓ(x, z) is differentiable.

Algorithm

At iteration t,

Randomly draw one example zt from the training set;

Update the current iterate

xt ← xt−1 − ηt∇ft(xt−1) with ft(x) = ℓ(x, zt).

Perform online averaging of the iterates (optional)

x̃t ← (1− γt)x̃t−1 + γtxt.
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The stochastic (sub)gradient descent algorithm

There are various learning rates strategies (constant, varying step-sizes),
and averaging strategies. Depending on the problem assumptions and
choice of ηt, γt, classical convergence rates may be obtained:

f(x̃t)− f⋆ = O(1/
√
t) for convex problems;

f(x̃t)− f⋆ = O(1/t) for strongly-convex ones;

Remarks

The convergence rates are not great, but the complexity
per-iteration is small (1 gradient evaluation for minimizing an
empirical risk versus n for the batch algorithm).

When the amount of data is infinite, the method minimizes the
expected risk (which is what we want).

Choosing a good learning rate automatically is an open problem.
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Proof of an O(1/
√
t) rate for the convex case

Inspired by (aka, stolen from) F. Bach’s slides

Assumptions

The solution lies in a bounded domain C = {‖x‖ ≤ D}.
The sub-gradients are bounded on C: ‖∇ft(x)‖ ≤ B.

Fix in advance the number of iterations T and choose ηt =
2D

B
√
T
.

Choose Polyak-Ruppert averaging x̃T = (1/T )
∑T−1

t=0 xt.

Perform updates with projections

xt ← ΠC [xt−1 − ηt∇ft(xt−1)].

Proposition

E[f (x̃t)− f⋆] ≤
2DB√
T
.
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Proof of an O(1/
√
t) rate for the convex case

Inspired by (aka, stolen from) F. Bach’s slides

Ft: information up to time t.

‖x‖ ≤ D and ‖∇ft(x)‖ ≤ B. Besides E[∇ft(x)|Ft−1] = ∇f(x).

‖xt − x
⋆‖2 ≤ ‖xt−1 − ηt∇ft(xt−1)− x

⋆‖2

≤ ‖xt−1 − x
⋆‖2 +B

2
η
2

t − 2ηt(xt−1 − x
⋆)⊤∇ft(xt−1).

Take now conditional expectations

E[‖xt − x
⋆‖2|Ft−1] ≤ ‖xt−1 − x

⋆‖2 +B
2
η
2

t − 2ηt(xt−1 − x
⋆)⊤∇f(xt−1)

≤ ‖xt−1 − x
⋆‖2 +B

2
η
2

t − 2ηt(f(xt−1)− f
⋆).

Take now full expectations

E[‖xt − x
⋆‖2] ≤ E[‖xt−1 − x

⋆‖2] +B
2
η
2

t − 2ηtE[f(xt−1)− f
⋆],

and, after reorganizing the terms

E[f(xt−1)− f
⋆] ≤ B2η2

t

2
+

1

2ηt

(

E[‖xt−1 − x
⋆‖2]− E[‖xt − x

⋆‖2]
)

.
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Proof of an O(1/
√
t) rate for the convex case

Inspired by (aka, stolen from) F. Bach’s slides

We start again from

E[f(xt−1)− f
⋆] ≤ B2η2

t

2
+

1

2ηt

(

E[‖xt−1 − x
⋆‖2]− E[‖xt − x

⋆‖2]
)

.

and we exploit the telescopic sum

T
∑

t=1

E[f(xt−1)− f
⋆] ≤

T
∑

t=1

B2η2

t

2
+

T
∑

t=1

1

2ηt

(

E[‖xt−1 − x
⋆‖2]− E[‖xt − x

⋆‖2]
)

≤ T
B2η2

2
+

4D2

2η
≤ 2DB

√
T with γ =

2D

B
√
T
.

Finally, we conclude by using a convexity inequality

Ef

(

1

T

T−1
∑

t=0

)

− f
⋆ ≤ 2DB√

T
.
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Constant step-size SGD for the strongly convex case

Gradient “variance”: E[‖∇ft(x)‖2] ≤ B2

‖xt − x∗‖2 = ‖xt−1 − x∗‖2 − 2ηt∇ft(xt−1)
⊤(xt−1 − x∗)

+ η2t ‖∇ft(xt−1)‖2

E[‖xt − x∗‖2|Ft−1] = ‖xt−1 − x∗‖2 − 2ηt∇f(xt−1)
⊤(xt−1 − x∗) + η2tB

2

≤ (1− µηt)‖xt−1 − x∗‖2 − 2ηt(f(xt−1)− f∗) + η2tB
2

Constant step-size η, no averaging:

E[‖xt − x∗‖2] ≤ (1− µη)E[‖xt−1 − x∗‖2] + η2B2

−−−→
t→∞

ηB2

µ
(with linear rate)

Can replace B2 with variance σ2 for smooth f if η ≤ 1/L
Limit value becomes smaller with:

Smaller step-size: η → η/m (but m times slower rate)
Mini-batch of size m: σ2 → σ2/m (but m times more computation)
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O(1/t) for the strongly convex case

From the previous slide:

E[‖xt − x∗‖2] ≤ (1− µηt)E[‖xt−1 − x∗‖2] + η2tB
2

Take ηt =
2

µ(γ+t) (with η1 ≤ 1/L) and by induction:

E[‖xt − x∗‖2] ≤
ν

γ + t+ 1
, ν := max

{
4B2

µ2
, (γ + 1)‖x0 − x∗‖2

}

f(xt)− f(x∗) ≤ L
2 ‖xt − x∗‖2

Start with constant step-size to forget initial condition faster

Averaging improves from O(LB2/µ2t) to O(B2/µt)
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Back to finite sums

Consider now the case of interest for us today:

min
x∈Rp

1

n

n∑

i=1

fi(x),

Question

Can we do as well as SGD in terms of cost per iteration, while enjoying a
fast (linear) convergence rate like (accelerated or not) gradient descent?

For n = 1, no!

The rates are optimal for a “first-order local black box” [Nesterov, 2004].

For n ≥ 1, yes! We need to design algorithms

whose per-iteration computational complexity is smaller than n;

whose convergence rate may be worse than FISTA....

...but with a better expected computational complexity.
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Incremental gradient descent methods

min
x∈Rp

{

f(x) =
1

n

n∑

i=1

fi(x)

}

.

Several randomized algorithms are designed with one ∇fi computed per
iteration, with fast convergence rates, e.g., SAG [Schmidt et al., 2013]:

xk ← xk−1 −
γ

Ln

n∑

i=1

yki with yki =







∇fi(xk−1) if i = ik

yk−1
i otherwise

.
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Incremental gradient descent methods

min
x∈Rp

{

f(x) =
1

n

n∑

i=1

fi(x)

}

.

Several randomized algorithms are designed with one ∇fi computed per
iteration, with fast convergence rates, e.g., SAG [Schmidt et al., 2013]:

xk ← xk−1 −
γ

Ln

n∑

i=1

yki with yki =







∇fi(xk−1) if i = ik

yk−1
i otherwise

.

See also SVRG, SAGA, SDCA, MISO, Finito...
Some of these algorithms perform updates of the form

xk ← xk−1 − ηkgk with E[gk] = ∇f(xk−1),

but gk has lower variance than in SGD.

[Schmidt et al., 2013, Xiao and Zhang, 2014, Defazio et al., 2014a,b,
Shalev-Shwartz and Zhang, 2012, Mairal, 2015, Zhang and Xiao, 2015]
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Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation.
The number of gradients evaluations to ensure f(xk)− f⋆ ≤ ε is

µ > 0

FISTA O
(

n
√

L
µ log

(
1
ε

))

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L̄µ

)

log
(
1
ε

))
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Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation.
The number of gradients evaluations to ensure f(xk)− f⋆ ≤ ε is

µ > 0

FISTA O
(

n
√

L
µ log

(
1
ε

))

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L̄µ

)

log
(
1
ε

))

Main features vs. stochastic gradient descent

Same complexity per-iteration (but higher memory footprint).

Faster convergence (exploit the finite-sum structure).

Less parameter tuning than SGD.

Some variants are compatible with a composite term ψ.
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Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation.
The number of gradients evaluations to ensure f(xk)− f⋆ ≤ ε is

µ > 0

FISTA O
(

n
√

L
µ log

(
1
ε

))

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L̄µ

)

log
(
1
ε

))

Important remarks

When fi(x) = ℓ(z⊤i x), the memory footprint is O(n) otherwise
O(dn), except for SVRG (O(d)).

Some algorithms require an estimate of µ;

L̄ is the average (or max) of the Lipschitz constants of the ∇fi’s.
The L for fista is the Lipschitz constant of ∇f : L ≤ L̄.
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Incremental gradient descent methods

stealing again a bit from F. Bach’s slides.

Variance reduction

Consider two random variables X,Y and define

Z = X − Y + E[Y ].

Then,

E[Z] = E[X]

Var(Z) = Var(X) + Var(Y )− 2cov(X,Y ).

The variance of Z may be smaller if X and Y are positively correlated.
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Incremental gradient descent methods

stealing again a bit from F. Bach’s slides.

Variance reduction

Consider two random variables X,Y and define

Z = X − Y + E[Y ].

Then,

E[Z] = E[X]

Var(Z) = Var(X) + Var(Y )− 2cov(X,Y ).

The variance of Z may be smaller if X and Y are positively correlated.

Why is it useful for stochatic optimization?

step-sizes for SGD have to decrease to ensure convergence.

with variance reduction, one may use constant step-sizes.
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Incremental gradient descent methods

SVRG

xt = xt−1 − γ (∇fit(xt−1)−∇fit(y) +∇f(y)) ,
where y is updated every epoch and E[∇fit(y)|Ft−1] = ∇f(y).

SAGA

xt = xt−1 − γ
(
∇fit(xt−1)− yt−1

it
+ 1

n

∑n
i=1 y

t−1
i

)
,

where E[yt−1
it
|Ft−1] =

1
n

∑n
i=1 y

t−1
i and yti =







∇fi(xt−1) if i = it

yt−1
i otherwise.

MISO/Finito: for n ≥ L/µ, same form as SAGA but

1
n

∑n
i=1 y

t−1
i = −µxt−1 and yti =







∇fi(xt−1)− µxt−1 if i = it

yt−1
i otherwise.

Alberto Bietti and Julien Mairal Optimization for large-scale Machine Learning 35/42



Can we do even better for large finite sums?

Without vs with acceleration

µ > 0

FISTA O
(

n
√

L
µ log

(
1
ε

))

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L̄µ

)

log
(
1
ε

))

Accelerated versions Õ
(

max
(

n,
√

n L̄
µ

)

log
(
1
ε

))

Acceleration for specific algorithms [Shalev-Shwartz and Zhang,
2014, Lan, 2015, Allen-Zhu, 2016].

Generic acceleration: Catalyst [Lin et al., 2015].

see [Agarwal and Bottou, 2015] for discussions about optimality.
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What we have not (or should have) covered

Import approaches and concepts

distributed optimization.

proximal splitting / ADMM.

Quasi-Newton approaches.

Frank-Wolfe and coordinate descent algorithms.
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What we have not (or should have) covered

Import approaches and concepts

distributed optimization.

proximal splitting / ADMM.

Quasi-Newton approaches.

Frank-Wolfe and coordinate descent algorithms.

The question

Should we care that much about minimizing finite sums when all we
want is minimizing an expectation?
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Statistical learning basics

Statistical learning setting:

Data (xi, yi) ∈ X × Y, i.i.d. from distribution D
Hypothesis class (here linear) x 7→ θ⊤Φ(x), θ ∈ Θ ⊂ R

d

Loss function ℓ(y, θ⊤Φ(x))

Goal: minθ∈Θ E(x,y)∼D[ℓ(y, θ
⊤Φ(x))]
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Statistical learning basics

Two main approaches

Empirical risk minimization with batch/incremental methods

min
θ∈Rd

1

n

n∑

i=1

ℓ(yi, θ
⊤Φ(xi)) + Ω(θ)

Minimize expected risk with SGD

min
θ∈Rd

E(x,y)∼D[ℓ(y, θ
⊤Φ(x))]

Question: Which is better?
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Statistical learning basics

Two main approaches

Empirical risk minimization with batch/incremental methods

min
θ∈Rd

{

f̂(θ) :=
1

n

n∑

i=1

ℓ(yi, θ
⊤Φ(xi))

}

s.t. Ω(θ) ≤ D

Minimize expected risk with SGD

min
θ∈Rd

{

f(θ) := E(x,y)∼D[ℓ(y, θ
⊤Φ(x))]

}

Question: Which is better?
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Empirical Risk Minimization

θ̂ := argmin
θ∈Θ

f̂(θ)

Approximation/Estimation:

f(θ̂)− min
θ∈Rd

f(θ) = f(θ̂)−min
θ∈Θ

f(θ)
︸ ︷︷ ︸

estimation error

+min
θ∈Θ

f(θ)− min
θ∈Rd

f(θ)

︸ ︷︷ ︸

approximation error

Controlled with regularization (bias/variance, over/under-fitting)
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Empirical Risk Minimization

θ̂ := argmin
θ∈Θ

f̂(θ)

Approximation/Estimation/Optimization:

f(θ̂)− min
θ∈Rd

f(θ) = f(θ̂)−min
θ∈Θ

f(θ)
︸ ︷︷ ︸

estimation error

+min
θ∈Θ

f(θ)− min
θ∈Rd

f(θ)

︸ ︷︷ ︸

approximation error

Controlled with regularization (bias/variance, over/under-fitting)

θ̂ obtained approximately by optimization:

f(θ̃)− min
θ∈Rd

f(θ) = f(θ̃)− f(θ̂)
︸ ︷︷ ︸

optimization error

+f(θ̂)− min
θ∈Rd

f(θ)

Key insight of Bottou and Bousquet (2008): no need to optimize
below statistical error!
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ERM: uniform convergence

Deviations of f̂ from f can be bounded for all θ ∈ Θ:

E[sup
θ∈Θ
|f̂(θ)− f(θ)|] ≤ BD√

n

Θ = {θ : ‖θ‖ ≤ D}
B = GR Lipschitz constant (G-Lipschitz loss, data radius R)
Tools from concentration of measure

Bound estimation error (θD := argminθ∈Θ f(θ)):

E[f(θ̂)− f(θD)] ≤ E[f(θ̂)− f̂(θ̂) + f̂(θ̂)− f̂(θD)
︸ ︷︷ ︸

≤0

+f̂(θD)− f(θD)]

≤ 2E[sup
θ∈Θ
|f̂(θ)− f(θ)|] ≤ 2BD√

n

Same as SGD!
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ERM: fast rates

Estimation error can be smaller than O(1/
√
n)

O(1/µn) for µ-strongly convex f and f̂

Similar to SGD on strongly convex functions
Warning: large µ will increase approximation error!

O(1/nα), α ∈ [1/2, 1] by making assumptions on the data
distribution D in classification problems:

Separable data → O(1/n)
Better rate when P (y = 1|x) puts little mass near 1/2

When finite sum optimization helps

Good optimization of f̂ helps with fast rates

No dependence on gradient variance

More robust to ill-conditioning, easier step-sizes

See (Bottou and Bousquet, 2008; Babanezhad et al, 2015)

But: SGD can do better (see work of F. Bach)
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Mark the date! July 2-6th, Grenoble

Along with Naver Labs, Inria is organizing a summer school in Grenoble
on artificial intelligence. Visit https://project.inria.fr/paiss/.

Among the distinguished speakers

Lourdes Agapito (UCL)

Kyunghyun Cho (NYU/Facebook)

Emmanuel Dupoux (EHESS)

Martial Hebert (CMU)

Hugo Larochelle (Google Brain)

Yann LeCun (Facebook/NYU)

Jean Ponce (Inria)

Cordelia Schmid (Inria)

Andrew Zisserman (Oxford/Google DeepMind).

...
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