On Accelerated Optimization Methods for Large-Scale Machine Learning

Julien Mairal

Inria Grenoble

ICT Innovations 2020, Skopje (online)

In supervised learning, we learn a **prediction function** $h : \mathcal{A} \to \mathcal{B}$ given labeled training data $(a_i, b_i)_{i=1,...,n}$ with a_i in \mathcal{A} , and b_i in \mathcal{B} :

In supervised learning, we learn a prediction function $h : \mathcal{A} \to \mathcal{B}$ given labeled training data $(a_i, b_i)_{i=1,...,n}$ with a_i in \mathcal{A} , and b_i in \mathcal{B} :

$$\min_{h \in \mathcal{H}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} L(b_i, h(a_i))}_{\text{empirical risk, data fit}} + \underbrace{\lambda \Omega(h)}_{\text{regularization}}.$$

The labels b_i are in

- $\{-1,+1\}$ for binary classification.
- $\{1, \ldots, K\}$ for multi-class classification.
- \mathbb{R} for regression.
- \mathbb{R}^k for multivariate regression.
- any general set for structured prediction.

In supervised learning, we learn a prediction function $h : \mathcal{A} \to \mathcal{B}$ given labeled training data $(a_i, b_i)_{i=1,...,n}$ with a_i in \mathcal{A} , and b_i in \mathcal{B} :

$$\min_{h \in \mathcal{H}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} L(b_i, h(a_i))}_{\text{empirical risk, data fit}} + \underbrace{\lambda \Omega(h)}_{\text{regularization}}.$$

The empirical risk minimization (ERM) paradigm

- observe the world (gather data);
- Propose models of the world (design and learn);
- **(3)** test on new data (estimate the generalization error).

Very Popperian point of view, see [Vapnik, 1995, Corfield, Schölkopf, and Vapnik, 2009]...

In supervised learning, we learn a prediction function $h : \mathcal{A} \to \mathcal{B}$ given labeled training data $(a_i, b_i)_{i=1,...,n}$ with a_i in \mathcal{A} , and b_i in \mathcal{B} :

$$\min_{h \in \mathcal{H}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} L(b_i, h(a_i))}_{\text{empirical risk, data fit}} + \underbrace{\lambda \Omega(h)}_{\text{regularization}}.$$

The empirical risk minimization (ERM) paradigm, parenthesis on limitations: "("

- it is not always possible to estimate the generalization error based on available data.
- when a complex model A performs slightly better than a simple model B, should we prefer A or B?
- we are also leaving aside the problem of non i.i.d. train/test data, biased data, testing with counterfactual reasoning... ")"

In supervised learning, we learn a prediction function $h : \mathcal{A} \to \mathcal{B}$ given labeled training data $(a_i, b_i)_{i=1,...,n}$ with a_i in \mathcal{A} , and b_i in \mathcal{B} :

Example: linear models

- assume there exists a linear relation between b in \mathbb{R} and features a in \mathbb{R}^p .
- $h(x) = a^{\top}x = \sum_{j} a[j]x[j]$ is parametrized by x in \mathbb{R}^{p} .
- L is often a **convex** loss function.
- Ω is often the squared ℓ_2 -norm $||x||^2$, but the ℓ_1 -norm is also very popular.

In supervised learning, we learn a prediction function $h : \mathcal{A} \to \mathcal{B}$ given labeled training data $(a_i, b_i)_{i=1,...,n}$ with a_i in \mathcal{A} , and b_i in \mathcal{B} :

Why the ℓ_2 -regularization for linear models $h(a) = x^{\top}a$?

• Intuition: if a and a' are similar, so should h(a) and h(a') be:

$$|h(a) - h(a')| \le ||x||_2 ||a - a'||_2.$$

• Because we have theory for it (and it works in practice)!

A few examples of linear models:

What are we interested in?

Our goal is to learn linear models on regular workstations

- with potentially large datasets that fit into memory (e.g., $\leq 256 {\rm Gb}).$
- with various loss (regression, classification) and regularization functions (ℓ_2 , ℓ_1 , ...).

What are we interested in?

Our goal is to learn linear models on regular workstations

- with potentially large datasets that fit into memory (e.g., $\leq 256 {\rm Gb}).$
- with various loss (regression, classification) and regularization functions (ℓ_2 , ℓ_1 , ...).

Algorithms that are

- fast (exploit the structure of the problem).
- robust to difficult problems (numerically stable).
- with optimization guarantees (crucial for reproducibility).

What are we interested in?

Our goal is to learn linear models on regular workstations

- with potentially large datasets that fit into memory (e.g., $\leq 256 {\rm Gb}).$
- with various loss (regression, classification) and regularization functions (ℓ_2 , ℓ_1 , ...).

Algorithms that are

- fast (exploit the structure of the problem).
- robust to difficult problems (numerically stable).
- with optimization guarantees (crucial for reproducibility).

Software packages that are

- memory-efficient (no data copy).
- resource-efficient (exploit low-level languages and libraries, C++/BLAS).
- easy to use (scikit-learn compatible API, available in many high-level languages).

Part I: Algorithms and mathematical principles

An important quantity to quantify smoothness is the Lipschitz constant of the gradient:

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|.$$

An important quantity to quantify smoothness is the Lipschitz constant of the gradient:

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|.$$

If f is twice differentiable, L may be chosen as the largest eigenvalue of the Hessian $\nabla^2 f$. This is an upper-bound on the function curvature.

An important quantity to quantify convexity is the strong-convexity constant

$$f(x) \ge f(y) + \nabla f(y)^{\top} (x - y) + \frac{\mu}{2} ||x - y||^2,$$

An important quantity to quantify convexity is the strong-convexity constant

$$f(x) \ge f(y) + \nabla f(y)^{\top} (x-y) + \frac{\mu}{2} ||x-y||^2,$$

If f is twice differentiable, μ may be chosen as the smallest eigenvalue of the Hessian $\nabla^2 f$. This is a lower-bound on the function curvature.

Basics of gradient-based optimization Picture from F. Bach

Why is the condition number L/μ important?

Basics of gradient-based optimization Picture from F. Bach

Trajectory of gradient descent with optimal step size $x_t \leftarrow x_{t-1} - \eta_t \nabla f(x_{t-1})$.

A natural question is how many iterations are required to guarantee $f(x_t) - f^* \leq \varepsilon$?

A natural question is how many iterations are required to guarantee $f(x_t) - f^* \leq \varepsilon$?

Proposition

If f is μ -strongly convex and differentiable with L-Lipschitz gradient, the gradient descent method finds an ε -solution in at most $O((L/\mu)\log(1/\varepsilon))$ iterations.

A natural question is how many iterations are required to guarantee $f(x_t) - f^* \leq \varepsilon$?

Proposition

If f is μ -strongly convex and differentiable with L-Lipschitz gradient, the gradient descent method finds an ε -solution in at most $O((L/\mu)\log(1/\varepsilon))$ iterations.

Can we do better?

A natural question is how many iterations are required to guarantee $f(x_t) - f^* \leq \varepsilon$?

Proposition

If f is μ -strongly convex and differentiable with L-Lipschitz gradient, the gradient descent method finds an ε -solution in at most $O((L/\mu)\log(1/\varepsilon))$ iterations.

Can we do better? Yes, Nesterov [1983] proposes a method with complexity $O(\sqrt{L/\mu}\log(1/\varepsilon))$

$$x_t \leftarrow y_{t-1} - \eta_t \nabla f(y_{t-1})$$
$$y_t \leftarrow x_t + \beta_t (x_t - x_{t-1})$$

A natural question is how many iterations are required to guarantee $f(x_t) - f^* \leq \varepsilon$?

Proposition

If f is μ -strongly convex and differentiable with L-Lipschitz gradient, the gradient descent method finds an ε -solution in at most $O((L/\mu)\log(1/\varepsilon))$ iterations.

Can we do better? Yes, Nesterov [1983] proposes a method with complexity $O(\sqrt{L/\mu}\log(1/\varepsilon))$

$$\begin{aligned} x_t &\leftarrow y_{t-1} - \eta_t \nabla f(y_{t-1}) \\ y_t &\leftarrow x_t + \beta_t (x_t - x_{t-1}) \end{aligned}$$

Can we do better?

A natural question is how many iterations are required to guarantee $f(x_t) - f^* \leq \varepsilon$?

Proposition

If f is μ -strongly convex and differentiable with L-Lipschitz gradient, the gradient descent method finds an ε -solution in at most $O((L/\mu)\log(1/\varepsilon))$ iterations.

Can we do better? Yes, Nesterov [1983] proposes a method with complexity $O(\sqrt{L/\mu}\log(1/\varepsilon))$

$$x_t \leftarrow y_{t-1} - \eta_t \nabla f(y_{t-1})$$
$$y_t \leftarrow x_t + \beta_t (x_t - x_{t-1})$$

Can we do better? No, unless

- you consider problems with a specific structure.
- your algorithm is not deterministic.

Exploiting the structure with stochastic approximations (Idea 2)

The machine learning problems we consider are large finite sums of functions

$$\min_{x \in \mathbb{R}^p} \left\{ F(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}.$$

Computing the gradient $\nabla F(x) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(x)$ requires computing *n* gradients of the functions f_i . The complexity of gradient descent becomes $O((nL/\mu)\log(1/\varepsilon))$.

The stochastic gradient descent method [Robbins and Monro, 1951]

$$x_t \leftarrow x_{t-1} - \eta_t \nabla f_{i_t}(x_{t-1})$$

The complexity per iteration is O(1) instead of O(n), but we lose the logarithmic dependency in ε [see, e.g. Polyak and Juditsky, 1992]; with averaging, the typical complexity is $O(1/\mu\varepsilon)$ for strongly convex problems.

The stochastic gradient descent method uses an unbiased estimate of the gradient

 $x_t \leftarrow x_{t-1} - \eta_t \nabla f_{i_t}(x_{t-1})$ such that $\mathbb{E}[\nabla f_{i_t}(x_{t-1})] = \nabla F(x_{t-1}).$

The stochastic gradient descent method uses an unbiased estimate of the gradient

 $x_t \leftarrow x_{t-1} - \eta_t \nabla f_{i_t}(x_{t-1})$ such that $\mathbb{E}[\nabla f_{i_t}(x_{t-1})] = \nabla F(x_{t-1}).$

Can we find a better estimate of the gradient (leading to better complexity)?

The stochastic gradient descent method uses an unbiased estimate of the gradient

 $x_t \leftarrow x_{t-1} - \eta_t \nabla f_{i_t}(x_{t-1})$ such that $\mathbb{E}[\nabla f_{i_t}(x_{t-1})] = \nabla F(x_{t-1}).$

Can we find a better estimate of the gradient (leading to better complexity)? Consider two random variables X, Y and define

$$Z = X - Y + \mathbb{E}[Y].$$

Then,

•
$$\mathbb{E}[Z] = \mathbb{E}[X]$$
 and $\operatorname{Var}(Z) = \operatorname{Var}(X) + \operatorname{Var}(Y) - 2\operatorname{cov}(X, Y)$.

The variance of Z may be smaller if X and Y are positively correlated.

The stochastic gradient descent method uses an unbiased estimate of the gradient

 $x_t \leftarrow x_{t-1} - \eta_t \nabla f_{i_t}(x_{t-1})$ such that $\mathbb{E}[\nabla f_{i_t}(x_{t-1})] = \nabla F(x_{t-1}).$

Can we find a better estimate of the gradient (leading to better complexity)? Consider two random variables X, Y and define

$$Z = X - Y + \mathbb{E}[Y].$$

Then,

•
$$\mathbb{E}[Z] = \mathbb{E}[X]$$
 and $\operatorname{Var}(Z) = \operatorname{Var}(X) + \operatorname{Var}(Y) - 2\operatorname{cov}(X, Y)$.

The variance of Z may be smaller if X and Y are positively correlated.

The idea is now to use past gradients $\nabla f_{i_t}(x_{past})$ to reduce the variance of $\nabla f_{i_t}(x_{t-1})$.

The stochastic gradient descent method uses an unbiased estimate of the gradient

 $x_t \leftarrow x_{t-1} - \eta_t \nabla f_{i_t}(x_{t-1})$ such that $\mathbb{E}[\nabla f_{i_t}(x_{t-1})] = \nabla F(x_{t-1}).$

Can we find a better estimate of the gradient (leading to better complexity)? Consider two random variables X, Y and define

$$Z = X - Y + \mathbb{E}[Y].$$

Then,

•
$$\mathbb{E}[Z] = \mathbb{E}[X]$$
 and $\operatorname{Var}(Z) = \operatorname{Var}(X) + \operatorname{Var}(Y) - 2\operatorname{cov}(X, Y)$.

The variance of Z may be smaller if X and Y are positively correlated.

The idea is now to use past gradients $\nabla f_{i_t}(x_{past})$ to reduce the variance of $\nabla f_{i_t}(x_{t-1})$.

SAG [Schmidt et al., 2013], SVRG [Xiao and Zhang, 2014], SAGA [Defazio et al., 2014], SDCA [Shalev-Shwartz and Zhang, 2012], MISO [Mairal, 2015], and many others . . .

These methods achieve low (worst-case) complexity in expectation. The number of gradients evaluations to ensure $\mathbb{E}[f(x_t) - f^*] \leq \varepsilon$ is

	$\mu > 0$		
acc-GD	$O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right) ight)$		
SVRG, SAG, SAGA, SDCA, MISO, Finito	$O\left(\left(n+\frac{L}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$		

These methods achieve low (worst-case) complexity in expectation. The number of gradients evaluations to ensure $\mathbb{E}[f(x_t) - f^*] \leq \varepsilon$ is

	$\mu > 0$		
acc-GD	$O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon} ight) ight)$		
SVRG, SAG, SAGA, SDCA, MISO, Finito	$O\left(\left(n+\frac{L}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$		

Main features vs. stochastic gradient descent

- Same complexity per-iteration.
- Faster convergence (exploit the finite-sum structure).
- Less parameter tuning than SGD.
- SVRG is better than acc-GD if $n \ge \sqrt{L/\mu}$.

These methods achieve low (worst-case) complexity in expectation. The number of gradients evaluations to ensure $\mathbb{E}[f(x_t) - f^*] \leq \varepsilon$ is

	$\mu > 0$		
acc-GD	$O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right) ight)$		
SVRG, SAG, SAGA, SDCA, MISO, Finito	$O\left(\left(n+\frac{L}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$		

Can we do better? Yes, with acceleration: The method Katyusha [Allen-Zhu, 2016] (and others) achieve

$$O\left(\left(n + \sqrt{\frac{nL}{\mu}}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$$

Other ideas and recent contributions

Other important concepts

- duality gaps: convex optimization offers mechanisms to control $f(x_t) f^*$ in practice!
- composite optimization: all previous approaches can be extended to solve

$$\min_{x \in \mathbb{R}^p} f(x) + \Omega(x),$$

where Ω is convex and non-smooth with a particular structure (*e.g.*, ℓ_1 -norm).

• Quasi-Newton: how to exploit function curvature with a reasonable cost.

Other ideas and recent contributions

Other important concepts

- duality gaps: convex optimization offers mechanisms to control $f(x_t) f^*$ in practice!
- composite optimization: all previous approaches can be extended to solve

 $\min_{x \in \mathbb{R}^p} f(x) + \Omega(x),$

where Ω is convex and non-smooth with a particular structure (*e.g.*, ℓ_1 -norm).

• Quasi-Newton: how to exploit function curvature with a reasonable cost.

Example of our recent contributions (with H. Lin, Z. Harchaoui, and A. Kulunchakov)

- Catalyst: provides Nesterov's acceleration to algorithms [Lin et al., 2018].
- QNing: provides Quasi-Newton acceleration to algorithms [Lin et al., 2019].
- acceleration + variance-reduction + robustness [Kulunchakov and Mairal, 2019a].

Part II: Generic Acceleration

- H. Lin, J. Mairal, and Z. Harchaoui. Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice. Journal of Machine Learning Research (JMLR). 2018.
- H. Lin, J. Mairal, and Z. Harchaoui. An Inexact Variable Metric Proximal Point Algorithm for Generic Quasi-Newton Acceleration. SIAM Journal on Optimization. 2019.
- A. Kulunchakov and J. Mairal. A Generic Acceleration Framework for Stochastic Composite Optimization. Adv. Neural Information Processing Systems (NeurIPS). 2019.

The Catalyst approach [Lin, Mairal, and Harchaoui, 2018]

Catalyst is a particular accelerated proximal point algorithm with inexact gradients [Güler, 1992].

$$x_{k+1} \approx p(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$

The quantity x_{k+1} is obtained by using an optimization method \mathcal{M} for approximately solving:

$$x_{k+1} \approx \underset{w \in \mathbb{R}^p}{\operatorname{arg\,min}} \left\{ f(w) + \frac{\kappa}{2} \|w - y_k\|^2 \right\},$$

Catalyst provides Nesterov's acceleration to ${\mathcal M}$ with...

- restart strategies for solving the sub-problems;
- global complexity analysis resulting in theoretical acceleration;
- optimal balancing between outer and inner computations with the right κ .

see also [Frostig et al., 2015, Devolder et al., 2014, Shalev-Shwartz and Zhang, 2014]

An old idea, apparently unrelated to acceleration

Old idea: Smooth the function and then optimize.

• The strategy appears in early work about variable metric bundle methods. [Chen and Fukushima, 1999, Fukushima and Qi, 1996, Mifflin, 1996, Fuentes, Malick, and Lemaréchal, 2012, Burke and Qian, 2000] ...

An old idea, apparently unrelated to acceleration

Old idea: Smooth the function and then optimize.

• The strategy appears in early work about variable metric bundle methods. [Chen and Fukushima, 1999, Fukushima and Qi, 1996, Mifflin, 1996, Fuentes, Malick, and Lemaréchal, 2012, Burke and Qian, 2000] ...

The Moreau-Yosida envelope

Given $f : \mathbb{R}^d \to \mathbb{R}$ a convex function, the Moreau-Yosida envelope of f is the function $F : \mathbb{R}^d \to \mathbb{R}$ defined as

$$F(x) = \min_{w \in \mathbb{R}^d} \left\{ f(w) + \frac{\kappa}{2} \|w - x\|^2 \right\}.$$

The proximal operator p(x) is the unique minimizer of the problem.

The Moreau-Yosida regularization

$$F(x) = \min_{w \in \mathbb{R}^d} \left\{ f(w) + \frac{\kappa}{2} \|w - x\|^2 \right\}.$$

Basic properties [see Lemaréchal and Sagastizábal, 1997]

• Minimizing f and F is equivalent in the sense that

$$\min_{x \in \mathbb{R}^d} F(x) = \min_{x \in \mathbb{R}^d} f(x),$$

and the solution set of the two problems coincide with each other.

• F is continuously differentiable even when f is not and

$$\nabla F(x) = \kappa(x - p(x)).$$

In addition, ∇F is Lipschitz continuous with parameter $L_F = \kappa$.

• If f is μ -strongly convex then F is also strongly convex with parameter $\mu_F = \frac{\mu\kappa}{\mu+\kappa}$.

The Moreau-Yosida regularization

$$F(x) = \min_{w \in \mathbb{R}^d} \left\{ f(w) + \frac{\kappa}{2} \|w - x\|^2 \right\}.$$

Basic properties [see Lemaréchal and Sagastizábal, 1997]

• Minimizing f and F is equivalent in the sense that

$$\min_{x \in \mathbb{R}^d} F(x) = \min_{x \in \mathbb{R}^d} f(x),$$

and the solution set of the two problems coincide with each other.

• F is continuously differentiable even when f is not and

$$\nabla F(x) = \kappa(x - p(x)).$$

In addition, ∇F is Lipschitz continuous with parameter $L_F = \kappa$.

F enjoys nice properties: smoothness, (strong) convexity and we can control its condition number $1/q = 1 + \kappa/\mu$.

The proximal point algorithm

A naive approach consists of minimizing the smoothed objective F instead of f with a method designed for smooth optimization.

Consider indeed

$$x_{k+1} = x_k - \frac{1}{\kappa} \nabla F(x_k).$$

By rewriting the gradient $\nabla F(x_k)$ as $\kappa(x_k-p(x_k)),$ we obtain

$$x_{k+1} = p(x_k) = \operatorname*{arg\,min}_{w \in \mathbb{R}^p} \left\{ f(w) + \frac{\kappa}{2} \|w - x_k\|^2 \right\}.$$

This is exactly the proximal point algorithm [Martinet, 1970, Rockafellar, 1976].

The accelerated proximal point algorithm

Consider now

$$x_{k+1} = y_k - \frac{1}{\kappa} \nabla F(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k),$

where β_{k+1} is a Nesterov-like extrapolation parameter. We may now rewrite the update using the value of ∇F , which gives:

$$x_{k+1} = p(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$

This is the accelerated proximal point algorithm of Güler [1992].

The accelerated proximal point algorithm

Consider now

$$x_{k+1} = y_k - \frac{1}{\kappa} \nabla F(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k),$

where β_{k+1} is a Nesterov-like extrapolation parameter. We may now rewrite the update using the value of ∇F , which gives:

$$x_{k+1} = p(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$

This is the accelerated proximal point algorithm of Güler [1992].

Remarks

- F may be better conditioned than f when $1 + \kappa/\mu \le L/\mu$;
- Computing $p(y_k)$ has a cost!

The Catalyst approach [Lin, Mairal, and Harchaoui, 2018]

Catalyst is a particular accelerated proximal point algorithm with inexact gradients [Güler, 1992].

$$x_{k+1} \approx p(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$

The quantity x_{k+1} is obtained by using an optimization method \mathcal{M} for approximately solving:

$$x_{k+1} \approx \underset{w \in \mathbb{R}^p}{\operatorname{arg\,min}} \left\{ f(w) + \frac{\kappa}{2} \|w - y_k\|^2 \right\},$$

Catalyst provides Nesterov's acceleration to ${\mathcal M}$ with...

- restart strategies for solving the sub-problems;
- global complexity analysis resulting in theoretical acceleration;
- optimal balancing between outer and inner computations with the right κ .

see also [Frostig et al., 2015, Devolder et al., 2014, Shalev-Shwartz and Zhang, 2014]

The QNing approach [Lin, Mairal, and Harchaoui, 2019]

Replace Nesterov's acceleration in Catalyst by a Quasi-Newton method (L-BFGS)

$$x_{k+1} = x_k - \eta_k B_k^{-1} g_k$$
 with $g_k \approx \nabla F(x_k)$.

The quantity g_k is obtained by using an optimization method \mathcal{M} :

$$g_k = \kappa(x_k - z_k)$$
 with $z_k pprox \operatorname*{arg\,min}_{z \in \mathbb{R}^p} \left\{ f(z) + \frac{\kappa}{2} \|z - x_k\|^2 \right\},$

QNing provides Quasi-Newton principles to ${\mathcal M}$ with...

- L-BFGS rules for building B_k .
- restart strategies for solving the sub-problems;
- global complexity analysis resulting in ... no acceleration;
- balancing between outer and inner computations resulting in practical acceleration.

see also [Friedlander and Schmidt, 2012, Nocedal, 1980]

Part III: the Cyanure software package

http://julien.mairal.org/cyanure/welcome.html

Binary classification with ℓ_2 -logistic regression on the Criteo dataset (21Gb, huge sparse matrix). We use a three-years-old quad-core workstation with 32Gb of memory.

```
import cyanure as cyan
import scipy.sparse
import numpy as np
#load criteo dataset 21Gb, n=45840617, p=999999
dataY=np.load('criteo_y.npz',allow_pickle=True); y=dataY['y']
X = scipy.sparse.load_npz('criteo_X.npz')
#normalize the rows of X in-place, without performing any copy
cyan.preprocess(X,normalize=True,columns=False)
#declare a binary classifier for l2-logistic regression
classifier=cyan.BinaryClassifier(loss='logistic',penalty='12')
# uses the auto solver by default, performs at most 500 epochs
classifier.fit(X,y,lambd=0.1/X.shape[0],max_epochs=500,tol=1e-3,it0=5)
```

Matrix X, n=45840617, p=999999

Catalyst Accelerator, MISO Solver, Incremental Solver with uniform sampling Logistic Loss is used with L2 regularization Epoch: 5, primal objective: 0.456014, time: 92.5784 Best relative duality gap: 14383.9 Epoch: 10, primal objective: 0.450885, time: 227.593 Best relative duality gap: 1004.69 Epoch: 15, primal objective: 0.450728, time: 367.939 Best relative duality gap: 6.50049 Epoch: 20, primal objective: 0.450724, time: 502.954 Best relative duality gap: 0.068658 Epoch: 25, primal objective: 0.450724, time: 643.323 Best relative duality gap: 0.00173208 Epoch: 30, primal objective: 0.450724, time: 778.363 Best relative duality gap: 0.00173207 Epoch: 35, primal objective: 0.450724, time: 909.426 Best relative duality gap: 9.36947e-05 Time elapsed : 928.114

We now learn an SVM with ℓ_1 -regularization on this laptop.

import cyanure as cyan import numpy as np import scipy.sparse #load rcv1 dataset about 1Gb, n=781265, p=47152 data = np.load('rcv1.npz',allow_pickle=True); y=data['y']; X=data['X'] $X = scipy.sparse.csc_matrix(X.all()).T # n x p matrix, csr format$ #normalize the rows of X in-place, without performing any copy cyan.preprocess(X,normalize=True,columns=False) #declare a binary classifier for squared hinge loss + l1 regularization classifier=cyan.BinaryClassifier(loss='sqhinge',penalty='12') # uses the auto solver by default, performs at most 500 epochs classifier.fit(X,y,lambd=0.000005,max_epochs=500,tol=1e-3)

Matrix X, n=781265, p=47152 Memory parameter: 20 ***** QNing Accelerator, MISO Solver Squared Hinge Loss with L1 regularization Epoch: 10, primal objective: 0.0915524, time: 7.33038 Best relative duality gap: 0.387338 Epoch: 20, primal objective: 0.0915441, time: 15.524 Best relative duality gap: 0.00426003 Epoch: 30, primal objective: 0.0915441, time: 25.738 Best relative duality gap: 0.000312145 Time elapsed : 26.0225 Total additional line search steps: 8 Total skipping 1-bfgs steps: 0

Other examples are available on the website.

Dataset	Sparse	Num classes	n	р	Size (in Gb)
covtype	No	1	581012	54	0.25
alpha	No	1	500000	500	2
real-sim	No	1	72309	20958	0.044
epsilon	No	1	250000	2000	4
ocr	No	1	2500000	1155	23.1
rcv1	Yes	1	781265	47152	0.95
webspam	Yes	1	250000	16609143	14.95
kddb	Yes	1	19264097	28875157	6.9
criteo	Yes	1	45840617	999999	21
ckn_mnist	No	10	60000	2304	0.55
ckn_svhn	No	10	604388	18432	89

Conclusion

Challenges for algorithms

- going beyond the comfortable convex setting with i.i.d. data.
- better exploit the function curvature for nonconvex problems.
- extension to stochastic optimization [Kulunchakov and Mairal, 2019b].

Conclusion

Challenges for algorithms

- going beyond the comfortable convex setting with i.i.d. data.
- better exploit the function curvature for nonconvex problems.
- extension to stochastic optimization [Kulunchakov and Mairal, 2019b].

Challenges for Cyanure

Cyanure is still in its early stage. Do not hesitate to post issues/request on github.

Todo list

- Interface for R and Matlab.
- Improve scikit-learn compatibility.

• ...

Any suggestion is welcome.

References I

- Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. *arXiv* preprint arXiv:1603.05953, 2016.
- J.V. Burke and Maijian Qian. On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating. *Mathematical Programming*, 88(1): 157–181, 2000.
- Xiaojun Chen and Masao Fukushima. Proximal quasi-Newton methods for nondifferentiable convex optimization. *Mathematical Programming*, 85(2):313–334, 1999.
- David Corfield, Bernhard Schölkopf, and Vladimir Vapnik. Falsificationism and statistical learning theory: Comparing the popper and vapnik-chervonenkis dimensions. *Journal for General Philosophy of Science*, 40(1):51–58, 2009.
- A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In *Advances in Neural Information Processing Systems (NIPS)*, 2014.
- Olivier Devolder, F. Glineur, and Yurii Nesterov. First-order methods of smooth convex optimization with inexact oracle. *Mathematical Programming*, 146(1-2):37–75, 2014.

References II

- Michael P Friedlander and Mark Schmidt. Hybrid deterministic-stochastic methods for data fitting. *SIAM Journal on Scientific Computing*, 34(3):A1380–A1405, 2012.
- Roy Frostig, Rong Ge, Sham M Kakade, and Aaron Sidford. Un-regularizing: approximate proximal point and faster stochastic algorithms for empirical risk minimization. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2015.
- Marc Fuentes, Jérôme Malick, and Claude Lemaréchal. Descentwise inexact proximal algorithms for smooth optimization. *Computational Optimization and Applications*, 53(3):755–769, 2012.
- Masao Fukushima and Liqun Qi. A globally and superlinearly convergent algorithm for nonsmooth convex minimization. *SIAM Journal on Optimization*, 6(4):1106–1120, 1996.
- O. Güler. New proximal point algorithms for convex minimization. *SIAM Journal on Optimization*, 2 (4):649–664, 1992.
- Andrei Kulunchakov and Julien Mairal. Estimate sequences for stochastic composite optimization: Variance reduction, acceleration, and robustness to noise. arXiv preprint arXiv:1901.08788, 2019a.
 Andrei Kulunchakov and Julien Mairal. A generic acceleration framework for stochastic composite optimization. In Advances in Neural Information Processing Systems (NeurIPS), 2019b.

References III

- Claude Lemaréchal and Claudia Sagastizábal. Practical aspects of the moreau-yosida regularization: Theoretical preliminaries. *SIAM Journal on Optimization*, 7(2):367–385, 1997.
- H. Lin, J. Mairal, and Z. Harchaoui. Catalyst acceleration for first-order convex optimization: from theory to practice. *Journal of Machine Learning Research (JMLR)*, 18(212):1–54, 2018.
- Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. An inexact variable metric proximal point algorithm for generic quasi-newton acceleration. *SIAM Journal on Optimization*, 29(2):1408–1443, 2019.
- J. Mairal. Incremental majorization-minimization optimization with application to large-scale machine learning. *SIAM Journal on Optimization*, 25(2):829–855, 2015.
- B. Martinet. Régularisation d'inéquations variationnelles par approximations successives. Revue fran \tilde{A} saise d'informatique et de recherche opérationnelle, série rouge, 1970.
- Robert Mifflin. A quasi-second-order proximal bundle algorithm. *Mathematical Programming*, 73(1): 51–72, 1996.
- Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o (1/k2). In *Doklady an SSSR*, volume 269, pages 543–547, 1983.

References IV

- Jorge Nocedal. Updating quasi-Newton matrices with limited storage. *Mathematics of Computation*, 35(151):773–782, 1980.
- Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.
- Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathematical statistics*, pages 400–407, 1951.
- R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 14(5):877–898, 1976.
- M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient. *arXiv:1309.2388*, 2013.
- S. Shalev-Shwartz and T. Zhang. Proximal stochastic dual coordinate ascent. arXiv:1211.2717, 2012.
- S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization. *Mathematical Programming*, pages 1–41, 2014.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 1995.

L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. *SIAM Journal on Optimization*, 24(4):2057–2075, 2014.