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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : A → B given labeled training
data (ai, bi)i=1,...,n with ai in A, and bi in B:

min
h∈H

1

n

n∑
i=1

L(bi, h(ai))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.
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The labels bi are in

{−1,+1} for binary classification.

{1, . . . ,K} for multi-class classification.

R for regression.

Rk for multivariate regression.

any general set for structured prediction.
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The empirical risk minimization (ERM) paradigm

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

Very Popperian point of view, see [Vapnik, 1995, Corfield, Schölkopf, and Vapnik, 2009]...
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The empirical risk minimization (ERM) paradigm, parenthesis on limitations: “(”

it is not always possible to estimate the generalization error based on available data.

when a complex model A performs slightly better than a simple model B, should we
prefer A or B?

we are also leaving aside the problem of non i.i.d. train/test data, biased data, testing
with counterfactual reasoning... “)”
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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : A → B given labeled training
data (ai, bi)i=1,...,n with ai in A, and bi in B:

min
x∈Rp

1

n

n∑
i=1

L(bi, x
>ai)︸ ︷︷ ︸

empirical risk, data fit

+ λΩ(x)︸ ︷︷ ︸
regularization

.

Example: linear models

assume there exists a linear relation between b in R and features a in Rp.

h(x) = a>x =
∑

j a[j]x[j] is parametrized by x in Rp.

L is often a convex loss function.

Ω is often the squared `2-norm ‖x‖2, but the `1-norm is also very popular.
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In supervised learning, we learn a prediction function h : A → B given labeled training
data (ai, bi)i=1,...,n with ai in A, and bi in B:

min
x∈Rp

1

n

n∑
i=1

L(bi, x
>ai)︸ ︷︷ ︸

empirical risk, data fit

+ λΩ(x)︸ ︷︷ ︸
regularization

.

Why the `2-regularization for linear models h(a) = x>a?

Intuition: if a and a′ are similar, so should h(a) and h(a′) be:

|h(a)− h(a′)| ≤ ‖x‖2‖a− a′‖2.

Because we have theory for it (and it works in practice)!
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Optimization is central to machine learning

A few examples of linear models:

Ridge regression: min
x∈Rp

1

n

n∑
i=1

1

2
(bi − x>ai)2 + λ‖x‖22.

Linear SVM: min
x∈Rp

1

n

n∑
i=1

max(0, 1− bix>ai) + λ‖x‖22.

Logistic regression: min
x∈Rp

1

n

n∑
i=1

log
(

1 + e−bix
>ai
)

+ λ‖x‖22.

Loss as a function of x>a
with b = 1.
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What are we interested in?

Our goal is to learn linear models on regular workstations

with potentially large datasets that fit into memory (e.g., ≤ 256Gb).

with various loss (regression, classification) and regularization functions (`2, `1, . . . ).

Algorithms that are

fast (exploit the structure of the problem).

robust to difficult problems (numerically stable).

with optimization guarantees (crucial for reproducibility).

Software packages that are

memory-efficient (no data copy).

resource-efficient (exploit low-level languages and libraries, C++/BLAS).

easy to use (scikit-learn compatible API, available in many high-level languages).
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Part I: Algorithms

and mathematical principles
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Basics of gradient-based optimization

Smooth vs non-smooth

(a) smooth (b) non-smooth

An important quantity to quantify smoothness is the Lipschitz constant of the gradient:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

If f is twice differentiable, L may be chosen as the largest eigenvalue of the Hessian ∇2f .
This is an upper-bound on the function curvature.
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Basics of gradient-based optimization

Convex vs non-convex

(a) non-convex (b) convex (c) strongly-convex

An important quantity to quantify convexity is the strong-convexity constant

f(x) ≥ f(y) +∇f(y)>(x− y) +
µ

2
‖x− y‖2,

If f is twice differentiable, µ may be chosen as the smallest eigenvalue of the Hessian
∇2f . This is a lower-bound on the function curvature.
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Basics of gradient-based optimization
Picture from F. Bach

Why is the condition number L/µ important?
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Basics of gradient-based optimization
Picture from F. Bach

Trajectory of gradient descent with optimal step size xt ← xt−1 − ηt∇f(xt−1).
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Complexity and accelerated gradient descent (Idea 1)

A natural question is how many iterations are required to guarantee f(xt)− f? ≤ ε?

Proposition

If f is µ-strongly convex and differentiable with L-Lipschitz gradient, the gradient descent
method finds an ε-solution in at most O((L/µ) log(1/ε)) iterations.

Can we do better? Yes, Nesterov [1983] proposes a method with complexity
O(
√
L/µ log(1/ε))

xt ← yt−1 − ηt∇f(yt−1)

yt ← xt + βt(xt − xt−1)

Can we do better? No, unless

you consider problems with a specific structure.

your algorithm is not deterministic.
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Exploiting the structure with stochastic approximations (Idea 2)

The machine learning problems we consider are large finite sums of functions

min
x∈Rp

{
F (x) =

1

n

n∑
i=1

fi(x)

}
.

Computing the gradient ∇F (x) = 1
n

∑n
i=1∇fi(x) requires computing n gradients of the

functions fi. The complexity of gradient descent becomes O((nL/µ) log(1/ε)).

The stochastic gradient descent method [Robbins and Monro, 1951]

xt ← xt−1 − ηt∇fit(xt−1)

The complexity per iteration is O(1) instead of O(n), but we lose the logarithmic
dependency in ε [see, e.g. Polyak and Juditsky, 1992]; with averaging, the typical
complexity is O(1/µε) for strongly convex problems.
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Stochastic approximations with variance reduction (Idea 3)

The stochastic gradient descent method uses an unbiased estimate of the gradient

xt ← xt−1 − ηt∇fit(xt−1) such that E[∇fit(xt−1)] = ∇F (xt−1).

Can we find a better estimate of the gradient (leading to better complexity)?
Consider two random variables X,Y and define

Z = X − Y + E[Y ].

Then,

E[Z] = E[X] and Var(Z) = Var(X) + Var(Y )− 2cov(X,Y ).

The variance of Z may be smaller if X and Y are positively correlated.

The idea is now to use past gradients ∇fit(xpast) to reduce the variance of ∇fit(xt−1).

SAG [Schmidt et al., 2013], SVRG [Xiao and Zhang, 2014], SAGA [Defazio et al., 2014],
SDCA [Shalev-Shwartz and Zhang, 2012], MISO [Mairal, 2015], and many others . . .
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Stochastic approximations with variance reduction (Idea 3)

These methods achieve low (worst-case) complexity in expectation. The number of
gradients evaluations to ensure E[f(xt)− f?] ≤ ε is

µ > 0

acc-GD O
(
n
√

L
µ log

(
1
ε

))
SVRG, SAG, SAGA, SDCA, MISO, Finito O

((
n+ L

µ

)
log
(
1
ε

))
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Main features vs. stochastic gradient descent

Same complexity per-iteration.

Faster convergence (exploit the finite-sum structure).

Less parameter tuning than SGD.

SVRG is better than acc-GD if n ≥
√
L/µ.

Julien Mairal Large-scale optimization for machine learning 14/34



Stochastic approximations with variance reduction (Idea 3)

These methods achieve low (worst-case) complexity in expectation. The number of
gradients evaluations to ensure E[f(xt)− f?] ≤ ε is

µ > 0

acc-GD O
(
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√
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µ log
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Can we do better? Yes, with acceleration: The method Katyusha [Allen-Zhu, 2016] (and
others) achieve

O

((
n+

√
nL

µ

)
log

(
1

ε

))
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Other ideas and recent contributions

Other important concepts

duality gaps: convex optimization offers mechanisms to control f(xt)− f? in practice!

composite optimization: all previous approaches can be extended to solve

min
x∈Rp

f(x) + Ω(x),

where Ω is convex and non-smooth with a particular structure (e.g., `1-norm).

Quasi-Newton: how to exploit function curvature with a reasonable cost.

Example of our recent contributions (with H. Lin, Z. Harchaoui, and A. Kulunchakov)

Catalyst: provides Nesterov’s acceleration to algorithms [Lin et al., 2018].

QNing: provides Quasi-Newton acceleration to algorithms [Lin et al., 2019].

acceleration + variance-reduction + robustness [Kulunchakov and Mairal, 2019a].
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Part II: Generic Acceleration

H. Lin, J. Mairal, and Z. Harchaoui. Catalyst Acceleration for First-order Convex Optimization: from
Theory to Practice. Journal of Machine Learning Research (JMLR). 2018.

H. Lin, J. Mairal, and Z. Harchaoui. An Inexact Variable Metric Proximal Point Algorithm for Generic
Quasi-Newton Acceleration. SIAM Journal on Optimization. 2019.

A. Kulunchakov and J. Mairal. A Generic Acceleration Framework for Stochastic Composite
Optimization. Adv. Neural Information Processing Systems (NeurIPS). 2019.
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The Catalyst approach [Lin, Mairal, and Harchaoui, 2018]

Catalyst is a particular accelerated proximal point algorithm with inexact
gradients [Güler, 1992].

xk+1 ≈ p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk)
The quantity xk+1 is obtained by using an optimization method M for approximately
solving:

xk+1 ≈ arg min
w∈Rp

{
f(w) +

κ

2
‖w − yk‖2

}
,

Catalyst provides Nesterov’s acceleration to M with...

restart strategies for solving the sub-problems;

global complexity analysis resulting in theoretical acceleration;

optimal balancing between outer and inner computations with the right κ.

see also [Frostig et al., 2015, Devolder et al., 2014, Shalev-Shwartz and Zhang, 2014]
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An old idea, apparently unrelated to acceleration

Old idea: Smooth the function and then optimize.

The strategy appears in early work about variable metric bundle methods. [Chen and

Fukushima, 1999, Fukushima and Qi, 1996, Mifflin, 1996, Fuentes, Malick, and Lemaréchal,

2012, Burke and Qian, 2000] ...

The Moreau-Yosida envelope

Given f : Rd → R a convex function, the Moreau-Yosida envelope of f is the function
F : Rd → R defined as

F (x) = min
w∈Rd

{
f(w) +

κ

2
‖w − x‖2

}
.

The proximal operator p(x) is the unique minimizer of the problem.
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The Moreau-Yosida regularization

F (x) = min
w∈Rd

{
f(w) +

κ

2
‖w − x‖2

}
.

Basic properties [see Lemaréchal and Sagastizábal, 1997]

Minimizing f and F is equivalent in the sense that

min
x∈Rd

F (x) = min
x∈Rd

f(x),

and the solution set of the two problems coincide with each other.

F is continuously differentiable even when f is not and

∇F (x) = κ(x− p(x)).

In addition, ∇F is Lipschitz continuous with parameter LF = κ.

If f is µ-strongly convex then F is also strongly convex with parameter µF = µκ
µ+κ .
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F enjoys nice properties: smoothness, (strong) convexity and we can control its
condition number 1/q = 1 + κ/µ.



The proximal point algorithm

A naive approach consists of minimizing the smoothed objective F instead of f with a
method designed for smooth optimization.

Consider indeed

xk+1 = xk −
1

κ
∇F (xk).

By rewriting the gradient ∇F (xk) as κ(xk − p(xk)), we obtain

xk+1 = p(xk) = arg min
w∈Rp

{
f(w) +

κ

2
‖w − xk‖2

}
.

This is exactly the proximal point algorithm [Martinet, 1970, Rockafellar, 1976].
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The accelerated proximal point algorithm

Consider now

xk+1 = yk −
1

κ
∇F (yk) and yk+1 = xk+1 + βk+1(xk+1 − xk),

where βk+1 is a Nesterov-like extrapolation parameter. We may now rewrite the update
using the value of ∇F , which gives:

xk+1 = p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk)

This is the accelerated proximal point algorithm of Güler [1992].

Remarks

F may be better conditioned than f when 1 + κ/µ ≤ L/µ;

Computing p(yk) has a cost!
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The Catalyst approach [Lin, Mairal, and Harchaoui, 2018]

Catalyst is a particular accelerated proximal point algorithm with inexact
gradients [Güler, 1992].

xk+1 ≈ p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk)
The quantity xk+1 is obtained by using an optimization method M for approximately
solving:

xk+1 ≈ arg min
w∈Rp

{
f(w) +

κ

2
‖w − yk‖2

}
,

Catalyst provides Nesterov’s acceleration to M with...

restart strategies for solving the sub-problems;

global complexity analysis resulting in theoretical acceleration;

optimal balancing between outer and inner computations with the right κ.

see also [Frostig et al., 2015, Devolder et al., 2014, Shalev-Shwartz and Zhang, 2014]
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The QNing approach [Lin, Mairal, and Harchaoui, 2019]

Replace Nesterov’s acceleration in Catalyst by a Quasi-Newton method (L-BFGS)

xk+1 = xk − ηkB−1k gk with gk ≈ ∇F (xk).

The quantity gk is obtained by using an optimization method M:

gk = κ(xk − zk)with zk ≈ arg min
z∈Rp

{
f(z) +

κ

2
‖z − xk‖2

}
,

QNing provides Quasi-Newton principles to M with...

L-BFGS rules for building Bk.

restart strategies for solving the sub-problems;

global complexity analysis resulting in ... no acceleration;

balancing between outer and inner computations resulting in practical acceleration.

see also [Friedlander and Schmidt, 2012, Nocedal, 1980]
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Part III: the Cyanure software package

http://julien.mairal.org/cyanure/welcome.html
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The Cyanure software package

Binary classification with `2-logistic regression on the Criteo dataset (21Gb, huge sparse
matrix). We use a three-years-old quad-core workstation with 32Gb of memory.

import cyanure as cyan

import scipy.sparse

import numpy as np

#load criteo dataset 21Gb, n=45840617, p=999999

dataY=np.load('criteo_y.npz',allow_pickle=True); y=dataY['y']

X = scipy.sparse.load_npz('criteo_X.npz')

#normalize the rows of X in-place, without performing any copy

cyan.preprocess(X,normalize=True,columns=False)

#declare a binary classifier for l2-logistic regression

classifier=cyan.BinaryClassifier(loss='logistic',penalty='l2')

# uses the auto solver by default, performs at most 500 epochs

classifier.fit(X,y,lambd=0.1/X.shape[0],max_epochs=500,tol=1e-3,it0=5)
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The Cyanure software package
Matrix X, n=45840617, p=999999

*********************************

Catalyst Accelerator, MISO Solver, Incremental Solver with uniform sampling

Logistic Loss is used with L2 regularization

Epoch: 5, primal objective: 0.456014, time: 92.5784

Best relative duality gap: 14383.9

Epoch: 10, primal objective: 0.450885, time: 227.593

Best relative duality gap: 1004.69

Epoch: 15, primal objective: 0.450728, time: 367.939

Best relative duality gap: 6.50049

Epoch: 20, primal objective: 0.450724, time: 502.954

Best relative duality gap: 0.068658

Epoch: 25, primal objective: 0.450724, time: 643.323

Best relative duality gap: 0.00173208

Epoch: 30, primal objective: 0.450724, time: 778.363

Best relative duality gap: 0.00173207

Epoch: 35, primal objective: 0.450724, time: 909.426

Best relative duality gap: 9.36947e-05

Time elapsed : 928.114
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The Cyanure software package

We now learn an SVM with `1-regularization on this laptop.

import cyanure as cyan

import numpy as np

import scipy.sparse

#load rcv1 dataset about 1Gb, n=781265, p=47152

data = np.load('rcv1.npz',allow_pickle=True); y=data['y']; X=data['X']

X = scipy.sparse.csc_matrix(X.all()).T # n x p matrix, csr format

#normalize the rows of X in-place, without performing any copy

cyan.preprocess(X,normalize=True,columns=False)

#declare a binary classifier for squared hinge loss + l1 regularization

classifier=cyan.BinaryClassifier(loss='sqhinge',penalty='l2')

# uses the auto solver by default, performs at most 500 epochs

classifier.fit(X,y,lambd=0.000005,max_epochs=500,tol=1e-3)
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The Cyanure software package

Matrix X, n=781265, p=47152

Memory parameter: 20

*********************************

QNing Accelerator, MISO Solver

Squared Hinge Loss with L1 regularization

Epoch: 10, primal objective: 0.0915524, time: 7.33038

Best relative duality gap: 0.387338

Epoch: 20, primal objective: 0.0915441, time: 15.524

Best relative duality gap: 0.00426003

Epoch: 30, primal objective: 0.0915441, time: 25.738

Best relative duality gap: 0.000312145

Time elapsed : 26.0225

Total additional line search steps: 8

Total skipping l-bfgs steps: 0

Other examples are available on the website.
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The Cyanure software package, benchmarks
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The Cyanure software package, benchmarks
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The Cyanure software package, benchmarks
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The Cyanure software package, benchmarks
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The Cyanure software package, benchmarks
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Conclusion

Challenges for algorithms

going beyond the comfortable convex setting with i.i.d. data.

better exploit the function curvature for nonconvex problems.

extension to stochastic optimization [Kulunchakov and Mairal, 2019b].

Challenges for Cyanure

Cyanure is still in its early stage. Do not hesitate to post issues/request on github.

Todo list

Interface for R and Matlab.

Improve scikit-learn compatibility.

. . .

Any suggestion is welcome.
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