A Generic Quasi-Newton Algorithm for Faster Gradient-Based Optimization

Hongzhou Lin ${ }^{1}$, Julien Mairal ${ }^{1}$, Zaid Harchaoui ${ }^{2}$
${ }^{1}$ Inria, Grenoble $\quad{ }^{2}$ University of Washington

Journées franco-chiliennes d'optimisation
Toulouse, 2017

An alternate title: Acceleration by Smoothing

Collaborators

Hongzhou Lin

Zaid
Harchaoui

Dima
Drusvyatskiy

Courtney
Paquette

Publications and pre-prints

H. Lin, J. Mairal and Z. Harchaoui. A Generic Quasi-Newton Algorithm for Faster Gradient-Based Optimization. arXiv:1610.00960. 2017
C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, Z. Harchaoui. Catalyst Acceleration for Gradient-Based Non-Convex Optimization. arXiv:1703.10993. 2017
H. Lin, J. Mairal and Z. Harchaoui. A Universal Catalyst for First-Order Optimization. Adv. NIPS 2015.

Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$
\min _{x \in \mathbb{R}^{d}}\left\{f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)+\psi(x)\right\}
$$

where each f_{i} is L-smooth and convex and ψ is a convex regularization penalty but not necessarily differentiable.

Motivation

	Composite	Finite sum	Exploit "curvature"
First-order methods	$\boldsymbol{\swarrow}$		
Quasi-Newton			

[Nesterov, 2013, Wright et al., 2009, Beck and Teboulle, 2009, Chambolle and Pock, 2011, Combettes and Wajs, 2005],...

Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$
\min _{x \in \mathbb{R}^{d}}\left\{f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)+\psi(x)\right\}
$$

where each f_{i} is L-smooth and convex and ψ is a convex regularization penalty but not necessarily differentiable.

Motivation

	Composite	Finite sum	Exploit "curvature"
First-order methods	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	
Quasi-Newton			

[Schmidt et al., 2017, Xiao and Zhang, 2014, Defazio et al., 2014a,b, Shalev-Shwartz and Zhang, 2012, Mairal, 2015, Zhang and Xiao, 2015]

Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$
\min _{x \in \mathbb{R}^{d}}\left\{f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)+\psi(x)\right\}
$$

where each f_{i} is L-smooth and convex and ψ is a convex regularization penalty but not necessarily differentiable.

Motivation

Expected number of gradients ∇f_{i} to compute to guarantee $f\left(x_{k}\right)-f^{\star} \leq \varepsilon$, when the objective f is μ-strongly convex:

- accelerated proximal gradient: $O\left(n \sqrt{\frac{L_{f}}{\mu}} \log \left(\frac{1}{\varepsilon}\right)\right)$;
[$\$$. incremental gradient methods: $O\left(\left(n+\frac{L}{\mu}\right) \log \left(\frac{1}{\varepsilon}\right)\right)$.

Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$
\min _{x \in \mathbb{R}^{d}}\left\{f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)+\psi(x)\right\}
$$

where each f_{i} is L-smooth and convex and ψ is a convex regularization penalty but not necessarily differentiable.

Motivation

Expected number of gradients ∇f_{i} to compute to guarantee $f\left(x_{k}\right)-f^{\star} \leq \varepsilon$, when the objective f is μ-strongly convex:

- accelerated proximal gradient: $O\left(n \sqrt{\frac{L_{f}}{\mu}} \log \left(\frac{1}{\varepsilon}\right)\right)$;
[S . o incremental gradient methods: $O\left(\left(n+\sqrt{n \frac{L}{\mu}}\right) \log \left(\frac{1}{\varepsilon}\right)\right)$.

Focus of this work

Minimizing large finite sums
Consider the minimization of a large sum of convex functions

$$
\min _{x \in \mathbb{R}^{d}}\left\{f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)+\psi(x)\right\}
$$

where each f_{i} is L-smooth and convex and ψ is a convex regularization penalty but not necessarily differentiable.

Motivation

	Composite	Finite sum	Exploit "curvature"
First-order methods	$\boldsymbol{\swarrow}$	$\boldsymbol{\swarrow}$	χ
Quasi-Newton			

Focus of this work

Minimizing large finite sums
Consider the minimization of a large sum of convex functions

$$
\min _{x \in \mathbb{R}^{d}}\left\{f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)+\psi(x)\right\}
$$

where each f_{i} is L-smooth and convex and ψ is a convex regularization penalty but not necessarily differentiable.

Motivation

	Composite	Finite sum	Exploit "curvature"
First-order methods	$\boldsymbol{\nu}$	$\boldsymbol{\checkmark}$	χ
Quasi-Newton			$\boldsymbol{\checkmark}$

Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$
\min _{x \in \mathbb{R}^{d}}\left\{f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)+\psi(x)\right\}
$$

where each f_{i} is L-smooth and convex and ψ is a convex regularization penalty but not necessarily differentiable.

Motivation

	Composite	Finite sum	Exploit "curvature"
First-order methods	$\boldsymbol{\checkmark}$	$\boldsymbol{\nearrow}$	χ
Quasi-Newton	-		$\boldsymbol{\nearrow}$

[Byrd et al., 2015, Lee et al., 2012, Scheinberg and Tang, 2016, Yu et al., 2008, Ghadimi et al., 2015, Stella et al., 2016],...

Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$
\min _{x \in \mathbb{R}^{d}}\left\{f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)+\psi(x)\right\}
$$

where each f_{i} is L-smooth and convex and ψ is a convex regularization penalty but not necessarily differentiable.

Motivation

	Composite	Finite sum	Exploit "curvature"
First-order methods	$\boldsymbol{\nearrow}$	$\boldsymbol{\nearrow}$	χ
Quasi-Newton	-	χ	$\boldsymbol{\checkmark}$

[Byrd et al., 2016, Gower et al., 2016]

Focus of this work

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$
\min _{x \in \mathbb{R}^{d}}\left\{f(x) \triangleq \frac{1}{n} \sum_{i=1}^{n} f_{i}(x)+\psi(x)\right\}
$$

where each f_{i} is L-smooth and convex and ψ is a convex regularization penalty but not necessarily differentiable.

Motivation

Our goal is to

- accelerate first-order methods with Quasi-Newton heuristics;
- design algorithms that can adapt to composite and finite-sum structures and that can also exploit curvature information.
[Byrd et al., 2016, Gower et al., 2016]

QuickeNing: main idea (an old one)

Idea: Smooth the function and then apply Quasi-Newton.

- The strategy appears in early work about variable metric bundle methods. [Chen and Fukushima, 1999, Fukushima and Qi, 1996, Mifflin, 1996, Fuentes, Malick, and Lemaréchal, 2012, Burke and Qian, 2000] ...

QuickeNing: main idea (an old one)

Idea: Smooth the function and then apply Quasi-Newton.

- The strategy appears in early work about variable metric bundle methods. [Chen and Fukushima, 1999, Fukushima and Qi, 1996, Mifflin, 1996, Fuentes, Malick, and Lemaréchal, 2012, Burke and Qian, 2000] ...

The Moreau-Yosida envelope
Given $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ a convex function, the Moreau-Yosida envelope of f is the function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ defined as

$$
F(x)=\min _{w \in \mathbb{R}^{d}}\left\{f(w)+\frac{\kappa}{2}\|w-x\|^{2}\right\} .
$$

The proximal operator $p(x)$ is the unique minimizer of the problem.

The Moreau-Yosida regularization

$$
F(x)=\min _{w \in \mathbb{R}^{d}}\left\{f(w)+\frac{\kappa}{2}\|w-x\|^{2}\right\}
$$

Basic properties [see Lemaréchal and Sagastizábal, 1997]

- Minimizing f and F is equivalent in the sense that

$$
\min _{x \in \mathbb{R}^{d}} F(x)=\min _{x \in \mathbb{R}^{d}} f(x)
$$

and the solution set of the two problems coincide with each other.

- F is continuously differentiable even when f is not and

$$
\nabla F(x)=\kappa(x-p(x))
$$

In addition, ∇F is Lipschitz continuous with parameter $L_{F}=\kappa$.

- If f is μ-strongly convex then F is also strongly convex with parameter $\mu_{F}=\frac{\mu \kappa}{\mu+\kappa}$.

The Moreau-Yosida regularization

$$
F(x)=\min _{w \in \mathbb{R}^{d}}\left\{f(w)+\frac{\kappa}{2}\|w-x\|^{2}\right\}
$$

Basic properties [see Lemaréchal and Sagastizábal, 1997]

- Minimizing f and F is equivalent in the sense that

$$
\min _{x \in \mathbb{R}^{d}} F(x)=\min _{x \in \mathbb{R}^{d}} f(x)
$$

and the solution set of the two problems coincide with each other.

- F is continuously differentiable even when f is not and

$$
\nabla F(x)=\kappa(x-p(x))
$$

In addition, ∇F is Lipschitz continuous with parameter $L_{F}=\kappa$.
F enjoys nice properties: smoothness, (strong) convexity and we can control its condition number $1+\kappa / \mu$.

A fresh look at Catalyst

[Lin et al., 2015]

A fresh look at the proximal point algorithm

A naive approach consists of minimizing the smoothed objective F instead of f with a method designed for smooth optimization.

Consider indeed

$$
x_{k+1}=x_{k}-\frac{1}{\kappa} \nabla F\left(x_{k}\right)
$$

By rewriting the gradient $\nabla F\left(x_{k}\right)$ as $\kappa\left(x_{k}-p\left(x_{k}\right)\right)$, we obtain

$$
x_{k+1}=p\left(x_{k}\right)=\underset{w \in \mathbb{R}^{p}}{\arg \min }\left\{f(w)+\frac{\kappa}{2}\left\|w-x_{k}\right\|^{2}\right\} .
$$

This is exactly the proximal point algorithm [Martinet, 1970, Rockafellar, 1976].

A fresh look at the accelerated proximal point algorithm

Consider now

$$
x_{k+1}=y_{k}-\frac{1}{\kappa} \nabla F\left(y_{k}\right) \quad \text { and } \quad y_{k+1}=x_{k+1}+\beta_{k+1}\left(x_{k+1}-x_{k}\right),
$$

where β_{k+1} is a Nesterov-like extrapolation parameter. We may now rewrite the update using the value of ∇F, which gives:

$$
x_{k+1}=p\left(y_{k}\right) \quad \text { and } \quad y_{k+1}=x_{k+1}+\beta_{k+1}\left(x_{k+1}-x_{k}\right)
$$

This is the accelerated proximal point algorithm of Güler [1992].

A fresh look at the accelerated proximal point algorithm

Consider now

$$
x_{k+1}=y_{k}-\frac{1}{\kappa} \nabla F\left(y_{k}\right) \quad \text { and } \quad y_{k+1}=x_{k+1}+\beta_{k+1}\left(x_{k+1}-x_{k}\right),
$$

where β_{k+1} is a Nesterov-like extrapolation parameter. We may now rewrite the update using the value of ∇F, which gives:

$$
x_{k+1}=p\left(y_{k}\right) \quad \text { and } \quad y_{k+1}=x_{k+1}+\beta_{k+1}\left(x_{k+1}-x_{k}\right)
$$

This is the accelerated proximal point algorithm of Güler [1992].
Remarks

- F may be better conditioned than f when $1+\kappa / \mu \leq L / \mu$;
- Computing $p\left(y_{k}\right)$ has a cost!

A fresh look at Catalyst [Lin, Mairal, and Harchaoui, 2015]

Catalyst is a particular accelerated proximal point algorithm with inexact gradients [Güler, 1992].

$$
x_{k+1} \approx p\left(y_{k}\right) \quad \text { and } \quad y_{k+1}=x_{k+1}+\beta_{k+1}\left(x_{k+1}-x_{k}\right)
$$

The quantity x_{k+1} is obtained by using an optimization method \mathcal{M} for approximately solving:

$$
x_{k+1} \approx \underset{w \in \mathbb{R}^{p}}{\arg \min }\left\{f(w)+\frac{\kappa}{2}\left\|w-y_{k}\right\|^{2}\right\},
$$

Catalyst provides Nesterov's acceleration to \mathcal{M} with...

- restart strategies for solving the sub-problems;
- global complexity analysis resulting in theoretical acceleration;
- optimal balancing between outer and inner computations.
see also [Frostig et al., 2015]

Limited-Memory BFGS (L-BFGS)

Pros

- one of the largest practical success of smooth optimization.

Limited-Memory BFGS (L-BFGS)

Pros

- one of the largest practical success of smooth optimization.

Cons

- worst-case convergence rates for strongly-convex functions are linear, but much worse than the gradient descent method.
- proximal variants typically requires solving many times

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{2}(x-z) B_{k}(z-z)+\psi(x) .
$$

- no guarantee of approximating the Hessian.

QuickeNing

Main recipe

- L-BFGS applied to the smoothed objective F with inexact gradients [see Friedlander and Schmidt, 2012].
- inexact gradients are obtained by solving sub-problems using a first-order optimization method \mathcal{M};
- ideally, \mathcal{M} is able to adapt to the problem structure (finite sum, composite regularization).
- replace L-BFGS steps by proximal point steps if no sufficient decrease is estimated \Rightarrow no line search on F;

Obtaining inexact gradients

Algorithm Procedure ApproxGradient
input Current point x in \mathbb{R}^{d}; smoothing parameter $\kappa>0$.
1: Compute the approximate mapping using an optimization method \mathcal{M} :

$$
z \approx \underset{w \in \mathbb{R}^{d}}{\arg \min }\left\{h(w) \triangleq f(w)+\frac{\kappa}{2}\|w-x\|^{2}\right\}
$$

2: Estimate the gradient $\nabla F(x)$

$$
g=\kappa(x-z) .
$$

output approximate gradient estimate g, objective value $F_{a} \triangleq h(z)$, proximal mapping z.

Algorithm QuickeNing

input x_{0} in \mathbb{R}^{p}; number of iterations $K ; \kappa>0$; minimization algorithm \mathcal{M}.
1: Initialization: $\left(g_{0}, F_{0}, z_{0}\right)=$ ApproxGradient $\left(x_{0}, \mathcal{M}\right) ; B_{0}=\kappa l$.
2: for $k=0, \ldots, K-1$ do
3: \quad Perform the Quasi-Newton step

$$
\begin{aligned}
x_{\text {test }} & =x_{k}-B_{k}^{-1} g_{k} \\
\left(g_{\text {test }}, F_{\text {test }}, z_{\text {test }}\right) & =\text { ApproxGradient }\left(x_{\text {test }}, \mathcal{M}\right) .
\end{aligned}
$$

4: if $F_{\text {test }} \leq F_{k}-\frac{1}{2 \kappa}\left\|g_{k}\right\|^{2}$, then
5: $\quad\left(x_{k+1}, g_{k+1}, F_{k+1}, z_{k+1}\right)=\left(x_{\text {test }}, g_{\text {test }}, F_{\text {test }}, z_{\text {test }}\right)$.
6: else
7: Update the current iterate with the last proximal mapping:

$$
\begin{aligned}
x_{k+1} & =z_{k}=x_{k}-(1 / \kappa) g_{k} \\
\left(g_{k+1}, F_{k+1}, z_{k+1}\right) & =\text { ApproxGradient }\left(x_{k+1}, \mathcal{M}\right) .
\end{aligned}
$$

8: end if
9: update $B_{k+1}=\operatorname{L-BFGS}\left(B_{k}, x_{k+1}-x_{k}, g_{k+1}-g_{k}\right)$.
10: end for
output last proximal mapping z_{K} (solution).

Algorithm QuickeNing

input x_{0} in \mathbb{R}^{p}; number of iterations K; $\kappa>0$; minimization algorithm \mathcal{M}.
1: Initialization: $\left(g_{0}, F_{0}, z_{0}\right)=$ ApproxGradient $\left(x_{0}, \mathcal{M}\right) ; B_{0}=\kappa l$.
2: for $k=0, \ldots, K-1$ do
3: \quad Perform the Quasi-Newton step

$$
\begin{aligned}
x_{\text {test }} & =x_{k}-B_{k}^{-1} g_{k} \\
\left(g_{\text {test }}, F_{\text {test }}, z_{\text {test }}\right) & =\text { ApproxGradient }\left(x_{\text {test }}, \mathcal{M}\right) .
\end{aligned}
$$

The main characters:

- the sequence $\left(x_{k}\right)_{k \geq 0}$ that minimizes F;
- the sequence $\left(z_{k}\right)_{k \geq 0}$ produced by \mathcal{M} that minimizes f;
- the gradient approximations $g_{k} \approx \nabla F\left(x_{k}\right)$;
- the function value approximations $F_{k} \approx F\left(x_{k}\right)$;
- an L-BFGS update with inexact gradients;
- an approximate sufficient descent condition.

10: enaror
output last proximal mapping z_{K} (solution).

Requirements on \mathcal{M} and restarts

Method \mathcal{M}

- Say a sub-problem consists of minimizing h; we want \mathcal{M} to produce a sequence of iterates $\left(w_{t}\right)_{t \geq 0}$ with linear convergence rate

$$
h\left(w_{t}\right)-h^{\star} \leq C_{\mathcal{M}}\left(1-\tau_{\mathcal{M}}\right)^{t}\left(h\left(w_{0}\right)-h^{\star}\right)
$$

Restarts

- When f is smooth, we initialize $w_{0}=x$ when solving

$$
\min _{w \in \mathbb{R}^{d}}\left\{f(w)+\frac{\kappa}{2}\|w-x\|^{2}\right\}
$$

- When $f=f_{0}+\psi$ is composite, we use the initialization

$$
w_{0}=\underset{w \in \mathbb{R}^{d}}{\arg \min }\left\{f_{0}(x)+\left\langle\nabla f_{0}(x), w-x\right\rangle+\frac{L+\kappa}{2}\|w-x\|^{2}+\psi(w)\right\}
$$

When do we stop the method \mathcal{M} ?

Three strategies to balance outer and inner computations
(a) use a pre-defined sequence $\left(\varepsilon_{k}\right)_{k \geq 0}$ and stop the optimization method \mathcal{M} when the approximate proximal mapping is ε_{k}-accurate.
(b) define an adaptive stopping criterion that depends on quantities that are available at iteration k.
(c) use a pre-defined budget $T_{\mathcal{M}}$ of iterations of the method \mathcal{M} for solving each sub-problem.

When do we stop the method \mathcal{M} ?

Three strategies to balance outer and inner computations
(a) use a pre-defined sequence $\left(\varepsilon_{k}\right)_{k \geq 0}$ and stop the optimization method \mathcal{M} when the approximate proximal mapping is ε_{k}-accurate.
(b) define an adaptive stopping criterion that depends on quantities that are available at iteration k.
(c) use a pre-defined budget $T_{\mathcal{M}}$ of iterations of the method \mathcal{M} for solving each sub-problem.

Remarks

- (a) is the less practical strategy.
- (b) is simpler to use and conservative (compatible with theory).
- (c) requires $T_{\mathcal{M}}$ to be large enough in theory. The aggressive strategy $T_{\mathcal{M}}=n$ for an incremental method is extremely simple to use and effective in practice.

When do we stop the method \mathcal{M} ?

Three strategies for μ-strongly convex objectives f
(a) use a pre-defined sequence $\left(\varepsilon_{k}\right)_{k \geq 0}$ and stop the optimization method \mathcal{M} when the approximate proximal mapping is ε_{k}-accurate.

$$
\varepsilon_{k}=\frac{1}{2} C(1-\rho)^{k+1} \quad \text { with } \quad C \geq f\left(x_{0}\right)-f^{*} \quad \text { and } \quad \rho=\frac{\mu}{4(\mu+\kappa)}
$$

(b) For minimizing $h(w)=f(w)+(\kappa / 2)\|w-x\|^{2}$, stop when

$$
h\left(w_{t}\right)-h^{\star} \leq \frac{\kappa}{36}\left\|w_{t}-x\right\|^{2} .
$$

(c) use a pre-defined budget $T_{\mathcal{M}}$ of iterations of the method \mathcal{M} for solving each sub-problem with

$$
T_{\mathcal{M}}=\frac{1}{\tau_{\mathcal{M}}} \log \left(19 C_{\mathcal{M}} \frac{L+\kappa}{\kappa}\right) \cdot \text { (be more aggressive in practice) }
$$

Remarks and worst-case global complexity

Composite objectives and sparsity

Consider a composite problem with a sparse solution (e.g., $\psi=\ell_{1}$). The method produces two sequences $\left(x_{k}\right)_{k \geq 0}$ and $\left(z_{k}\right)_{k \geq 0}$;

- $F\left(x_{k}\right) \rightarrow F^{\star}$, minimizes the smoothed objective \Rightarrow no sparsity;
- $f\left(z_{k}\right) \rightarrow f^{\star}$, minimizes the true objective \Rightarrow the iterates may be sparse if \mathcal{M} handles composite optimization problems;

Global complexity
The number of iterations of \mathcal{M} to guarantee $f\left(z_{k}\right)-f^{\star} \leq \varepsilon$ is at most

- $\tilde{O}\left(\frac{\mu+\kappa}{\tau_{\mathcal{M}} \mu} \log (1 / \varepsilon)\right)$ for μ-strongly convex problems.
- $\tilde{O}\left(\frac{\kappa R^{2}}{\tau_{\mathcal{M}} \varepsilon}\right)$ for convex problems.

Global Complexity and choice of κ

Example for gradient descent
With the right step-size, we have $\tau_{\mathcal{M}}=(\mu+\kappa) /(L+\kappa)$ and the complexity for $\mu>0$ becomes

$$
\tilde{O}\left(\frac{L+\kappa}{\mu} \log (1 / \varepsilon)\right) .
$$

Example for SVRG for minimizing the sum of n functions $\tau_{\mathcal{M}}=\min (1 / n,(\mu+\kappa) /(L+\kappa))$ and the complexity for $\mu>0$ is

$$
\tilde{O}\left(\max \left(\frac{\mu+\kappa}{\mu} n, \frac{L+\kappa}{\mu}\right) \log (1 / \varepsilon)\right) .
$$

Global Complexity and choice of κ

Example for gradient descent
With the right step-size, we have $\tau_{\mathcal{M}}=(\mu+\kappa) /(L+\kappa)$ and the complexity for $\mu>0$ becomes

$$
\tilde{O}\left(\frac{L+\kappa}{\mu} \log (1 / \varepsilon)\right) .
$$

Example for SVRG for minimizing the sum of n functions $\tau_{\mathcal{M}}=\min (1 / n,(\mu+\kappa) /(L+\kappa))$ and the complexity for $\mu>0$ is

$$
\tilde{O}\left(\max \left(\frac{\mu+\kappa}{\mu} n, \frac{L+\kappa}{\mu}\right) \log (1 / \varepsilon)\right) .
$$

QuickeNing does not provide any theoretical acceleration, but it does not degrade significantly the worst-case performance of \mathcal{M} (unlike L-BFGS vs gradient descent).

Global Complexity and choice of κ

Example for gradient descent
With the right step-size, we have $\tau_{\mathcal{M}}=(\mu+\kappa) /(L+\kappa)$ and the complexity for $\mu>0$ becomes

$$
\tilde{O}\left(\frac{L+\kappa}{\mu} \log (1 / \varepsilon)\right) .
$$

Example for SVRG for minimizing the sum of n functions $\tau_{\mathcal{M}}=\min (1 / n,(\mu+\kappa) /(L+\kappa))$ and the complexity for $\mu>0$ is

$$
\tilde{O}\left(\max \left(\frac{\mu+\kappa}{\mu} n, \frac{L+\kappa}{\mu}\right) \log (1 / \varepsilon)\right) .
$$

Then, how to choose κ ?
(i) assume that L-BFGS steps do as well as Nesterov.
(ii) choose κ as in Catalyst.

Experiments: formulations

- ℓ_{2}-regularized Logistic Regression:

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \log \left(1+\exp \left(-b_{i} a_{i}^{T} x\right)\right)+\frac{\mu}{2}\|x\|^{2}
$$

- ℓ_{1}-regularized Linear Regression (LASSO):

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{2 n} \sum_{i=1}^{n}\left(b_{i}-a_{i}^{T} x\right)^{2}+\lambda\|x\|_{1}
$$

- $\ell_{1}-\ell_{2}^{2}$-regularized Linear Regression (Elastic-Net):

$$
\min _{x \in \mathbb{R}^{d}} \frac{1}{2 n} \sum_{i=1}^{n}\left(b_{i}-a_{i}^{T} x\right)^{2}+\lambda\|x\|_{1}+\frac{\mu}{2}\|x\|^{2},
$$

Experiments: Datasets

We consider four standard machine learning datasets with different characteristics in terms of size and dimension

name	covtype	alpha	real-sim	rcv1
n	581012	250000	72309	781265
d	54	500	20958	47152

- we simulate the ill-conditioned regime $\mu=1 /(100 n)$;
- λ for the Lasso leads to about 10% non-zero coefficients.

Experiments: QuickeNing-SVRG

We consider the methods

- SVRG: the Prox-SVRG algorithm of Xiao and Zhang [2014].
- Catalyst-SVRG: Catalyst applied to SVRG;
- L-BFGS (for smooth objectives): Mark Schmidt's implementation.
- QuickeNing-SVRG1: QuickeNing with aggressive strategy (c): one pass over the data in the inner loop.
- QuickeNing-SVRG2: strategy (b), compatible with theory.

We produce 12 figures (3 formulations, 4 datasets).

Experiments: QuickeNing-SVRG (log scale)

- QuickeNing-SVRG1 \geq SVRG, QuickeNing-SVRG2;
- QuickeNing-SVRG2 \geq SVRG;
- QuickeNing-SVRG1 \geq Catalyst-SVRG in $10 / 12$ cases.

Experiments: QuickeNing-ISTA

We consider the methods

- ISTA: the proximal gradient descent method with line search.
- FISTA: the accelerated ISTA of Beck and Teboulle [2009].
- L-BFGS (for smooth objectives): Mark Schmidt's implementation.
- QuickeNing-ISTA1: QuickeNing with aggressive strategy (c): one pass over the data in the inner loop.
- QuickeNing-ISTA2: strategy (b), compatible with theory.

Experiments: QuickeNing-ISTA (log scale)

- L-BFGS (for smooth f) is slightly better than QuickeNing-ISTA1;
- QuickeNing-ISTA \geq or \gg FISTA in $11 / 12$ cases.
- QuickeNing-ISTA1 \geq QuickeNing-ISTA2.

Experiments: Influence of κ

- κ_{0} is the parameter (same as in Catalyst) used in all experiments;
- QuickeNing slows down when using $\kappa>\kappa_{0}$;
- here, for SVRG, QuickeNing is robust to small values of κ !

Experiments: Influence of /

- $I=100$ in all previous experiments;
- $I=5$ seems to be a reasonable choice in many cases, especially for sparse problems.

Conclusions and perspectives

- A simple generic Quasi-Newton method for composite functions, with simple sub-problems, and complexity guarantees.
- We also have a variant for dual approaches.
- Does not solve the gap between theory and practice for L-BFGS.

Perspectives

- QuickeNing-BCD, QuickeNing-SAG,SAGA,SDCA...
- Other types of smoothing? \Rightarrow Links with recent Quasi-Newton methods applied to other envelopes [Stella et al., 2016].

Outer-loop convergence analysis

Lemma: approximate descent property

$$
F\left(x_{k+1}\right) \leq f\left(z_{k}\right) \leq F\left(x_{k}\right)-\frac{1}{4 \kappa}\left\|\nabla F\left(x_{k}\right)\right\|_{2}^{2}+2 \varepsilon_{k} .
$$

Then, ε_{k} should be smaller than $\frac{1}{4 \kappa}\left\|\nabla F\left(x_{k}\right)\right\|_{2}^{2}$, and indeed

Outer-loop convergence analysis

Lemma: approximate descent property

$$
F\left(x_{k+1}\right) \leq f\left(z_{k}\right) \leq F\left(x_{k}\right)-\frac{1}{4 \kappa}\left\|\nabla F\left(x_{k}\right)\right\|_{2}^{2}+2 \varepsilon_{k} .
$$

Then, ε_{k} should be smaller than $\frac{1}{4 \kappa}\left\|\nabla F\left(x_{k}\right)\right\|_{2}^{2}$, and indeed
Proposition: convergence with impractical ε_{k} and $\mu>0$
If $\varepsilon_{k} \leq \frac{1}{16 \kappa}\left\|\nabla F\left(x_{k}\right)\right\|_{2}^{2}$, define $\rho=\frac{\mu}{4(\mu+\kappa)}$, then

$$
F\left(x_{k+1}\right)-F^{*} \leq f\left(z_{k}\right)-f^{*} \leq(1-\rho)^{k+1}\left(f\left(x_{0}\right)-f^{*}\right) .
$$

Unfortunately, $\left\|\nabla F\left(x_{k}\right)\right\|$ is unknown.

Outer-loop convergence analysis

Lemma: approximate descent property

$$
F\left(x_{k+1}\right) \leq f\left(z_{k}\right) \leq F\left(x_{k}\right)-\frac{1}{4 \kappa}\left\|\nabla F\left(x_{k}\right)\right\|_{2}^{2}+2 \varepsilon_{k} .
$$

Then, ε_{k} should be smaller than $\frac{1}{4 \kappa}\left\|\nabla F\left(x_{k}\right)\right\|_{2}^{2}$, and indeed
Proposition: convergence with impractical ε_{k} and $\mu>0$
If $\varepsilon_{k} \leq \frac{1}{16 \kappa}\left\|\nabla F\left(x_{k}\right)\right\|_{2}^{2}$, define $\rho=\frac{\mu}{4(\mu+\kappa)}$, then

$$
F\left(x_{k+1}\right)-F^{*} \leq f\left(z_{k}\right)-f^{*} \leq(1-\rho)^{k+1}\left(f\left(x_{0}\right)-f^{*}\right) .
$$

Unfortunately, $\left\|\nabla F\left(x_{k}\right)\right\|$ is unknown.
Lemma: convergence with adaptive ε_{k} and $\mu>0$
If $\varepsilon_{k} \leq \frac{1}{36 k}\left\|g_{k}\right\|^{2}$, then $\varepsilon_{k} \leq \frac{1}{16}\left\|\nabla F\left(x_{k}\right)\right\|^{2}$.
This is strategy (b). g_{k} is known and easy to compute.

Inner-loop complexity analysis

Restart for L-smooth functions

For minimizing h, initialize the method \mathcal{M} with $w_{0}=x$. Then,

$$
\begin{equation*}
h\left(w_{0}\right)-h^{*} \leq \frac{L+\kappa}{2 \kappa^{2}}\|\nabla F(x)\|^{2} \tag{1}
\end{equation*}
$$

Proof.

We have the optimality condition $\nabla f\left(w^{*}\right)+\kappa\left(w^{*}-x\right)=0$. As a result,

$$
\begin{aligned}
& h\left(w_{0}\right)-h^{*} \\
& \quad=f(x)-\left(f\left(w^{*}\right)+\frac{\kappa}{2}\left\|w^{*}-x\right\|^{2}\right) \\
& \leq f\left(w^{*}\right)+\left\langle\nabla f\left(w^{*}\right), x-w^{*}\right\rangle+\frac{L}{2}\left\|x-w^{*}\right\|^{2}-\left(f\left(w^{*}\right)+\frac{\kappa}{2}\left\|w^{*}-x\right\|^{2}\right) \\
& \quad=\frac{L+\kappa}{2}\left\|w^{*}-x\right\|^{2}=\frac{L+\kappa}{2 \kappa^{2}}\|\nabla F(x)\|^{2} .
\end{aligned}
$$

Quasi-Newton and L-BFGS

Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Quasi-Newton methods work with the parameter and gradient differences between successive iterations:

$$
s_{k} \triangleq x_{k+1}-x_{k}, \quad y_{k} \triangleq \nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)
$$

Quasi-Newton and L-BFGS

Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Quasi-Newton methods work with the parameter and gradient differences between successive iterations:

$$
s_{k} \triangleq x_{k+1}-x_{k}, \quad y_{k} \triangleq \nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)
$$

- They start with an initial approximation $B_{0} \triangleq \sigma l$, and choose B_{k+1} to interpolate the gradient difference:

$$
B_{k+1} s_{k}=y_{k} .
$$

Quasi-Newton and L-BFGS

Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Quasi-Newton methods work with the parameter and gradient differences between successive iterations:

$$
s_{k} \triangleq x_{k+1}-x_{k}, \quad y_{k} \triangleq \nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)
$$

- They start with an initial approximation $B_{0} \triangleq \sigma l$, and choose B_{k+1} to interpolate the gradient difference:

$$
B_{k+1} s_{k}=y_{k} .
$$

- Since B_{k+1} is not unique, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method chooses the symmetric matrix whose difference with B_{k} is minimal:

$$
B_{k+1}=B_{k}-\frac{B_{k} s_{k} s_{k} B_{k}}{s_{k} B_{k} s_{k}}+\frac{y_{k} y_{k}^{\top}}{y_{k}^{\top} s_{k}}
$$

Quasi-Newton and L-BFGS

Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.

Quasi-Newton and L-BFGS

Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
- They perform updates of the form

$$
x_{k+1} \leftarrow x_{k}-\eta_{k} B_{k}^{-1} \nabla f\left(x_{k}\right)
$$

Quasi-Newton and L-BFGS

Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
- They perform updates of the form

$$
x_{k+1} \leftarrow x_{k}-\eta_{k} B_{k}^{-1} \nabla f\left(x_{k}\right)
$$

- The BFGS method has a superlinear convergence rate.

Quasi-Newton and L-BFGS

Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
- They perform updates of the form

$$
x_{k+1} \leftarrow x_{k}-\eta_{k} B_{k}^{-1} \nabla f\left(x_{k}\right)
$$

- The BFGS method has a superlinear convergence rate.
- But, it still uses a dense $p \times p$ matrix B_{k}.

Quasi-Newton and L-BFGS

Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
- They perform updates of the form

$$
x_{k+1} \leftarrow x_{k}-\eta_{k} B_{k}^{-1} \nabla f\left(x_{k}\right)
$$

- The BFGS method has a superlinear convergence rate.
- But, it still uses a dense $p \times p$ matrix B_{k}.
- Instead of storing B_{k}, the limited-memory BFGS (L-BFGS) method stores the previous / differences s_{k} and y_{k}.

Quasi-Newton and L-BFGS

Presentation borrowed from Mark Schmidt, NIPS OPT 2010

- Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep B_{k+1} positive-definite.
- They perform updates of the form

$$
x_{k+1} \leftarrow x_{k}-\eta_{k} B_{k}^{-1} \nabla f\left(x_{k}\right)
$$

- The BFGS method has a superlinear convergence rate.
- But, it still uses a dense $p \times p$ matrix B_{k}.
- Instead of storing B_{k}, the limited-memory BFGS (L-BFGS) method stores the previous / differences s_{k} and y_{k}.
- We can solve a linear system involving these updates when B_{0} is diagonal in $O(d I)$ [Nocedal, 1980].

References I

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.
J.V. Burke and Maijian Qian. On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating. Mathematical Programming, 88(1):157-181, 2000.
R. H. Byrd, J. Nocedal, and F. Oztoprak. An inexact successive quadratic approximation method for L-1 regularized optimization. Mathematical Programming, 157(2):375-396, 2015.
R.H. Byrd, SL Hansen, Jorge Nocedal, and Y Singer. A stochastic quasi-Newton method for large-scale optimization. SIAM Journal on Optimization, 26(2):1008-1031, 2016.
Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of mathematical imaging and vision, 40(1):120-145, 2011.

References II

Xiaojun Chen and Masao Fukushima. Proximal quasi-Newton methods for nondifferentiable convex optimization. Mathematical Programming, 85(2): 313-334, 1999.

Patrick L Combettes and Valérie R Wajs. Signal recovery by proximal forward-backward splitting. Multiscale Modeling \& Simulation, 4(4): 1168-1200, 2005.
Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In Advances in Neural Information Processing Systems (NIPS), 2014a.

Aaron Defazio, Justin Domke, and Tibério S Caetano. Finito: A faster, permutable incremental gradient method for big data problems. In Proceedings of the International Conferences on Machine Learning (ICML), 2014b.
Michael P Friedlander and Mark Schmidt. Hybrid deterministic-stochastic methods for data fitting. SIAM Journal on Scientific Computing, 34(3): A1380-A1405, 2012.

References III

Roy Frostig, Rong Ge, Sham M Kakade, and Aaron Sidford. Un-regularizing: approximate proximal point and faster stochastic algorithms for empirical risk minimization. In Proceedings of the International Conferences on Machine Learning (ICML), 2015.
Marc Fuentes, Jérôme Malick, and Claude Lemaréchal. Descentwise inexact proximal algorithms for smooth optimization. Computational Optimization and Applications, 53(3):755-769, 2012.
Masao Fukushima and Liqun Qi. A globally and superlinearly convergent algorithm for nonsmooth convex minimization. SIAM Journal on Optimization, 6(4):1106-1120, 1996.
S. Ghadimi, G. Lan, and H. Zhang. Generalized Uniformly Optimal Methods for Nonlinear Programming. arxiv:1508.07384, 2015.
R. M. Gower, D. Goldfarb, and P. Richtárik. Stochastic block BFGS: Squeezing more curvature out of data. In Proceedings of the International Conferences on Machine Learning (ICML), 2016.
O. Güler. New proximal point algorithms for convex minimization. SIAM Journal on Optimization, 2(4):649-664, 1992.

References IV

Jason Lee, Yuekai Sun, and Michael Saunders. Proximal Newton-type methods for convex optimization. In Advances in Neural Information Processing Systems (NIPS), 2012.
Claude Lemaréchal and Claudia Sagastizábal. Practical aspects of the Moreau-Yosida regularization: Theoretical preliminaries. SIAM Journal on Optimization, 7(2):367-385, 1997.
Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimization. In Advances in Neural Information Processing Systems (NIPS), 2015.
J. Mairal. Incremental majorization-minimization optimization with application to large-scale machine learning. SIAM Journal on Optimization, 25(2): 829-855, 2015.
Bernard Martinet. Brève communication. régularisation d'inéquations variationnelles par approximations successives. 4(3):154-158, 1970.
Robert Mifflin. A quasi-second-order proximal bundle algorithm. Mathematical Programming, 73(1):51-72, 1996.

References V

Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming, 140(1):125-161, 2013.
Jorge Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of Computation, 35(151):773-782, 1980.
R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 14(5):877-898, 1976.
Katya Scheinberg and Xiaocheng Tang. Practical inexact proximal quasi-Newton method with global complexity analysis. Mathematical Programming, 160(1):495-529, 2016.
M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient. Mathematical Programming, 160(1):83-112, 2017.
S. Shalev-Shwartz and T. Zhang. Proximal stochastic dual coordinate ascent. arXiv:1211.2717, 2012.
Lorenzo Stella, Andreas Themelis, and Panagiotis Patrinos. Forward-backward quasi-newton methods for nonsmooth optimization problems. arXiv preprint arXiv:1604.08096, 2016.

References VI

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing, 57(7): 2479-2493, 2009.
L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. SIAM Journal on Optimization, 24(4):2057-2075, 2014.
Jin Yu, SVN Vishwanathan, Simon Günter, and Nicol N Schraudolph. A quasi-Newton approach to non-smooth convex optimization. In Proceedings of the International Conferences on Machine Learning (ICML), 2008.
Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for regularized empirical risk minimization. In Proceedings of the International Conferences on Machine Learning (ICML), 2015.

