Complexity Analysis of the Lasso Regularization Path

Julien Mairal and Bin Yu

Inria, UC Berkeley

San Diego, SIAM Optimization, May 2014

What this work is about

- another paper about the Lasso/Basis Pursuit [Tibshirani, 1996, Chen et al., 1999]:

$$
\begin{equation*}
\min _{\mathbf{w} \in \mathbb{R}^{p}} \frac{1}{2}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1} \tag{1}
\end{equation*}
$$

- the first complexity analysis of the homotopy method [Ritter, 1962, Osborne et al., 2000, Efron et al., 2004] for solving (1);

Some conclusions reminiscent of

- the simplex algorithm [Klee and Minty, 1972];
- the SVM regularization path [Gärtner, Jaggi, and Maria, 2010].

The Lasso Regularization Path and the Homotopy

Under uniqueness assumption of the Lasso solution, the regularization path is piecewise linear:

Our Main Results

Theorem - worst case analysis
In the worst-case, the regularization path of the Lasso has exactly $\left(3^{p}+1\right) / 2$ linear segments.

Proposition - approximate analysis
There exists an ε-approximate path with $O(1 / \sqrt{\varepsilon})$ linear segments.

Brief Introduction to the Homotopy Algorithm

Piecewise linearity
Under uniqueness assumptions of the Lasso solution, the regularization path $\lambda \mapsto \mathbf{w}^{\star}(\lambda)$ is continuous and piecewise linear.

Brief Introduction to the Homotopy Algorithm

Piecewise linearity
Under uniqueness assumptions of the Lasso solution, the regularization path $\lambda \mapsto \mathbf{w}^{\star}(\lambda)$ is continuous and piecewise linear.

Recipe of the homotopy method - main ideas
(1) finds a trivial solution $\mathbf{w}^{\star}\left(\lambda_{\infty}\right)=0$ with $\lambda_{\infty}=\left\|\mathbf{X}^{\top} \mathbf{y}\right\|_{\infty}$;
(2) compute the direction of the current linear segment of the path;
(3) follow the direction of the path by decreasing λ;
() stop at the next "kink" and go back to 2 .

Brief Introduction to the Homotopy Algorithm

Piecewise linearity

Under uniqueness assumptions of the Lasso solution, the regularization path $\lambda \mapsto \mathbf{w}^{\star}(\lambda)$ is continuous and piecewise linear.

Recipe of the homotopy method - main ideas
(1) finds a trivial solution $\mathbf{w}^{\star}\left(\lambda_{\infty}\right)=0$ with $\lambda_{\infty}=\left\|\mathbf{X}^{\top} \mathbf{y}\right\|_{\infty}$;
(2) compute the direction of the current linear segment of the path;
(3) follow the direction of the path by decreasing λ;
((stop at the next "kink" and go back to 2 .

Caveats

- kinks can be very close to each other;
- the direction of the path can involve ill-conditioned matrices;
- worst-case exponential complexity (main result of this work).

Worst case analysis

Theorem - worst case analysis
In the worst-case, the regularization path of the Lasso has exactly $\left(3^{p}+1\right) / 2$ linear segments.

Regularization path, $\mathrm{p}=6$

Worst case analysis

Consider a Lasso problem $\left(\mathbf{y} \in \mathbb{R}^{n}, \mathbf{X} \in \mathbb{R}^{n \times p}\right)$.
Define the vector $\tilde{\mathbf{y}}$ in \mathbb{R}^{n+1} and the matrix $\tilde{\mathbf{X}}$ in $\mathbb{R}^{(n+1) \times(p+1)}$ as follows:

$$
\tilde{\mathbf{y}} \triangleq\left[\begin{array}{c}
\mathbf{y} \\
y_{n+1}
\end{array}\right], \quad \tilde{\mathbf{x}} \triangleq\left[\begin{array}{cc}
\mathbf{X} & 2 \alpha \mathbf{y} \\
0 & \alpha y_{n+1}
\end{array}\right]
$$

where $y_{n+1} \neq 0$ and $0<\alpha<\lambda_{1} /\left(2 \mathbf{y}^{\top} \mathbf{y}+y_{n+1}^{2}\right)$.
Adverserial strategy
If the regularization path of the Lasso (\mathbf{y}, \mathbf{X}) has k linear segments, the path of $(\tilde{\mathbf{y}}, \tilde{\mathbf{X}})$ has $3 k-1$ linear segments.

Worst case analysis

$$
\tilde{\mathbf{y}} \triangleq\left[\begin{array}{c}
\mathbf{y} \\
y_{n+1}
\end{array}\right], \quad \tilde{\mathbf{x}} \triangleq\left[\begin{array}{cc}
\mathbf{x} & 2 \alpha \mathbf{y} \\
0 & \alpha y_{n+1}
\end{array}\right]
$$

Let us denote by $\left\{\boldsymbol{\eta}^{1}, \ldots, \boldsymbol{\eta}^{k}\right\}$ the sequence of k sparsity patterns in $\{-1,0,1\}^{p}$ encountered along the path of the Lasso (\mathbf{y}, \mathbf{X}).

The new sequence of sparsity patterns for $(\tilde{\mathbf{y}}, \tilde{\mathbf{X}})$ is

$$
\begin{aligned}
& \overbrace{\left[\begin{array}{c}
\boldsymbol{\eta}^{1}=0 \\
0
\end{array}\right],\left[\begin{array}{c}
\boldsymbol{\eta}^{2} \\
0
\end{array}\right], \ldots,\left[\begin{array}{c}
\boldsymbol{\eta}^{k} \\
0
\end{array}\right]}^{\text {first } k \text { patterns }}, \overbrace{\left[\begin{array}{c}
\boldsymbol{\eta}^{k} \\
1
\end{array}\right],\left[\begin{array}{c}
\boldsymbol{\eta}^{k-1} \\
1
\end{array}\right], \ldots,\left[\begin{array}{c}
\boldsymbol{\eta}^{1}=0 \\
1
\end{array}\right]}^{\text {middle } k} \text { patterns } \\
&\underbrace{\left[\begin{array}{c}
-\boldsymbol{\eta}^{2} \\
1
\end{array}\right],\left[\begin{array}{c}
-\boldsymbol{\eta}^{3} \\
1
\end{array}\right], \ldots,\left[\begin{array}{c}
-\boldsymbol{\eta}^{k} \\
1
\end{array}\right]}_{\text {last } k-1 \text { patterns }}\}
\end{aligned}
$$

Worst case analysis

We are now in shape to build a pathological path with $\left(3^{p}+1\right) / 2$ linear segments. Note that this lower-bound complexity is tight.

$$
\mathbf{y} \triangleq\left[\begin{array}{c}
1 \\
1 \\
1 \\
\vdots \\
1
\end{array}\right], \quad \mathbf{X} \triangleq\left[\begin{array}{ccccc}
\alpha_{1} & 2 \alpha_{2} & 2 \alpha_{3} & \ldots & 2 \alpha_{p} \\
0 & \alpha_{2} & 2 \alpha_{3} & \ldots & 2 \alpha_{p} \\
0 & 0 & \alpha_{3} & \ldots & 2 \alpha_{p} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \alpha_{p}
\end{array}\right]
$$

Approximate Complexity

Refinement of Giesen, Jaggi, and Laue [2010] for the Lasso

Strong Duality

Strong duality means that $\max _{\kappa} g(\kappa)=\min _{\mathbf{w}} f(\mathbf{w})$

Approximate Complexity

Duality Gaps

Strong duality means that $\max _{\kappa} g(\boldsymbol{\kappa})=\min _{\mathbf{w}} f(\mathbf{w})$
The duality gap guarantees us that $0 \leq f(\tilde{\mathbf{w}})-f\left(\mathbf{w}^{\star}\right) \leq \delta(\tilde{\mathbf{w}}, \tilde{\kappa})$.

Approximate Complexity

$$
\begin{gather*}
\min _{\mathbf{w}}\left\{f_{\lambda}(\mathbf{w}) \triangleq \frac{1}{2}\|\mathbf{y}-\mathbf{X} \mathbf{w}\|_{2}^{2}+\lambda\|\mathbf{w}\|_{1}\right\}, \tag{primal}\\
\max _{\boldsymbol{\kappa}}\left\{g_{\lambda}(\boldsymbol{\kappa}) \triangleq-\frac{1}{2} \boldsymbol{\kappa}^{\top} \boldsymbol{\kappa}-\boldsymbol{\kappa}^{\top} \mathbf{y} \text { s.t. }\left\|\mathbf{X}^{\top} \boldsymbol{\kappa}\right\|_{\infty} \leq \lambda\right\} . \tag{dual}
\end{gather*}
$$

ε-approximate solution
\mathbf{w} satisfies $\operatorname{APPROX}_{\lambda}(\varepsilon)$ when there exists a dual variable $\boldsymbol{\kappa}$ s.t.

$$
\delta_{\lambda}(\mathbf{w}, \boldsymbol{\kappa})=f_{\lambda}(\mathbf{w})-g_{\lambda}(\boldsymbol{\kappa}) \leq \varepsilon f_{\lambda}(\mathbf{w}) .
$$

ε-approximate path

A path $\mathcal{P}: \lambda \mapsto \mathbf{w}(\lambda)$ is an approximate path if it always contains ε-approximate solutions.
(see Giesen et al. [2010] for generic results on approximate paths)

Approximate Complexity

Main relation

$$
\operatorname{APPROX}_{\lambda}(0) \Longrightarrow \operatorname{APPROX}_{\lambda(1-\sqrt{\varepsilon})}(\varepsilon)
$$

Key: find an appropriate dual variable $\boldsymbol{\kappa}(\mathbf{w})+$ simple calculation;
Proposition - approximate analysis
there exists an ε-approximate path with at most $\left\lceil\frac{\log \left(\lambda_{\infty} / \lambda_{1}\right)}{\sqrt{\varepsilon}}\right\rceil$ segments.

Approximate Homotopy

Recipe - main ideas/features

- Maintain approximate optimality conditions along the path;
- Make steps in λ greater than or equal to $\lambda(1-\theta \sqrt{\varepsilon})$;
- When the kinks are too close to each other, make a large step and use a first-order method instead;
- Between λ_{∞} and λ_{1}, the number of iterations is upper-bounded by $\left\lceil\frac{\log \left(\lambda_{\infty} / \lambda_{1}\right)}{\theta \sqrt{\varepsilon}}\right\rceil$.

A Few Messages to Conclude

- Despite its exponential complexity, the homotopy algorithm remains extremely powerful in practice;
- the main issue of the homotopy algorithm might be its numerical stability;
- when one does not care about precision, the worst-case complexity of the path can significantly be reduced.

Advertisement SPAMS toolbox (open-source)

- C++ interfaced with Matlab, R, Python.
- proximal gradient methods for ℓ_{0}, ℓ_{1}, elastic-net, fused-Lasso, group-Lasso, tree group-Lasso, tree- ℓ_{0}, sparse group Lasso, overlapping group Lasso...
- ...for square, logistic, multi-class logistic loss functions.
- handles sparse matrices, provides duality gaps.
- fast implementations of OMP and LARS - homotopy.
- dictionary learning and matrix factorization (NMF, sparse PCA).
- coordinate descent, block coordinate descent algorithms.
- fast projections onto some convex sets.

Try it! http://www.di.ens.fr/willow/SPAMS/

References I

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20:33-61, 1999.
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of statistics, 32(2):407-499, 2004.
B. Gärtner, M. Jaggi, and C. Maria. An exponential lower bound on the complexity of regularization paths. preprint arXiv:0903.4817v2, 2010.
J. Giesen, M. Jaggi, and S. Laue. Approximating parameterized convex optimization problems. In Algorithms - ESA, Lectures Notes Comp. Sci. 2010.
V. Klee and G. J. Minty. How good is the simplex algorithm? In O. Shisha, editor, Inequalities, volume III, pages 159-175. Academic Press, New York, 1972.

References II

M. R. Osborne, B. Presnell, and B. A. Turlach. On the Lasso and its dual. Journal of Computational and Graphical Statistics, 9(2):319-37, 2000.
K. Ritter. Ein verfahren zur lösung parameterabhängiger, nichtlinearer maximum-probleme. Mathematical Methods of Operations Research, 6(4):149-166, 1962.
R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society. Series B, 58(1):267-288, 1996.

Worst case analysis - Backup Slide

$$
\tilde{\mathbf{y}} \triangleq\left[\begin{array}{c}
\mathbf{y} \\
y_{n+1}
\end{array}\right], \quad \tilde{\mathbf{x}} \triangleq\left[\begin{array}{cc}
\mathbf{x} & 2 \alpha \mathbf{y} \\
0 & \alpha y_{n+1}
\end{array}\right],
$$

Some intuition about the adverserial strategy:
(1) the patterns of the new path must be $\left[\boldsymbol{\eta}^{i \top}, 0\right]^{\top}$ or $\left[\pm \boldsymbol{\eta}^{i \top}, 1\right]^{\top}$;
(2) the factor α ensures the $(p+1)$-th variable to enter late the path;
(3) after the k first kinks, we have $\mathbf{y} \approx \mathbf{X} \mathbf{w}^{\star}(\lambda)$ and thus

$$
\tilde{\mathbf{X}}\left[\begin{array}{c}
\mathbf{w}^{\star}(\lambda) \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
y_{n+1}
\end{array}\right] \approx \tilde{\mathbf{y}} \approx \tilde{\mathbf{X}}\left[\begin{array}{c}
-\mathbf{w}^{\star}(\lambda) \\
1 / \alpha
\end{array}\right]
$$

Worst case analysis - Backup Slide 2

$$
\min _{\tilde{\mathbf{w}} \in \mathbb{R}^{P}, \tilde{w} \in \mathbb{R}} \frac{1}{2}\left\|\tilde{\mathbf{y}}-\tilde{\mathbf{X}}\left[\begin{array}{c}
\tilde{\mathbf{w}} \\
\tilde{w}
\end{array}\right]\right\|_{2}^{2}+\lambda\left\|\left[\begin{array}{c}
\tilde{\mathbf{w}} \\
\tilde{w}
\end{array}\right]\right\|_{1}=
$$

$$
\min _{\tilde{\mathbf{w}} \in \mathbb{R}^{P}, \tilde{w} \in \mathbb{R}} \frac{1}{2}\|(1-2 \alpha \tilde{w}) \mathbf{y}-\mathbf{X} \tilde{\mathbf{w}}\|_{2}^{2}+\frac{1}{2}\left(y_{n+1}-\alpha y_{n+1} \tilde{w}\right)^{2}+\lambda\|\tilde{\mathbf{w}}\|_{1}+\lambda|\tilde{w}| .
$$

is equivalent to

$$
\min _{\tilde{\mathbf{w}}^{\prime} \in \mathbb{R}^{p}} \frac{1}{2}\left\|\mathbf{y}-\mathbf{X} \tilde{\mathbf{w}}^{\prime}\right\|_{2}^{2}+\frac{\lambda}{\left|1-2 \alpha \tilde{w}^{\star}\right|}\left\|\tilde{\mathbf{w}}^{\prime}\right\|_{1}
$$

and then

$$
\tilde{\mathbf{w}}^{\star}=\left\{\begin{array}{ll}
\left(1-2 \alpha \tilde{w}^{\star}\right) \mathbf{w}^{\star}\left(\frac{\lambda}{\left|1-2 \alpha \tilde{w}^{\star}\right|}\right) & \text { if } \tilde{w}^{\star} \neq \frac{1}{2 \alpha} \\
0 & \text { otherwise }
\end{array} .\right.
$$

