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Part I: Several Paradigms in Machine Learning
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Common paradigm: optimization for machine learning

Optimization is central to machine learning. For instance, in supervised
learning, the goal is to learn a prediction function f : X → Y given
labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

[Vapnik, 1995, Bottou, Curtis, and Nocedal, 2016]...
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labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

The scalars yi are in

{−1,+1} for binary classification problems.

{1, . . . ,K} for multi-class classification problems.

R for regression problems.

Rk for multivariate regression problems.
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learning, the goal is to learn a prediction function f : X → Y given
labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

Example with linear models: logistic regression, SVMs, etc.

assume there exists a linear relation between y and features x in Rp.

f(x) = w>x+ b is parametrized by w, b in Rp+1;

L is often a convex loss function;

Ω(f) is often the squared `2-norm ‖w‖2.
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Common paradigm: optimization for machine learning

A few examples of linear models with no bias b:

Ridge regression: min
w∈Rp

1

n

n∑
i=1

1

2
(yi − w>xi)2 + λ‖w‖22.

Linear SVM: min
w∈Rp

1

n

n∑
i=1

max(0, 1− yiw>xi) + λ‖w‖22.

Logistic regression: min
w∈Rp

1

n

n∑
i=1

log
(

1 + e−yiw
>xi
)

+ λ‖w‖22.
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Common paradigm: optimization for machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).
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Common paradigm: optimization for machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

A general principle

It underlies many paradigms:

deep neural networks,

kernel methods,

sparse estimation. (tomorrow’s lecture)
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Common paradigm: optimization for machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

Even with simple linear models, it leads to challenging problems in
optimization: develop algorithms that

scale both in the problem size n and dimension p;

are able to exploit the problem structure (sum, composite);

come with convergence and numerical stability guarantees;

come with statistical guarantees.
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Common paradigm: optimization for machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

It is not limited to supervised learning

min
f∈F

1

n

n∑
i=1

L(f(xi)) + λΩ(f).

L is not a classification loss any more;

K-means, PCA, EM with mixture of Gaussian, matrix
factorization,... can be expressed that way.

Julien Mairal Foundations of DL from a kernel point of view 5/74



Paradigm 1: Deep neural networks

The goal is to learn a prediction function f : Rp → R given labeled
training data (xi, yi)i=1,...,n with xi in Rp, and yi in R:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.
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Paradigm 1: Deep neural networks

The goal is to learn a prediction function f : Rp → R given labeled
training data (xi, yi)i=1,...,n with xi in Rp, and yi in R:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

What is specific to multilayer neural networks?

The “neural network” space F is explicitly parametrized by:

f(x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)).

Linear operations are either unconstrained (fully connected) or
involve parameter sharing (e.g., convolutions).

Finding the optimal A1,A2, . . . ,Ak yields a non-convex
optimization problem in huge dimension.
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Paradigm 1: Deep neural networks

Picture from LeCun et al. [1998]

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model local stationarity of images at several scales;

they are state-of-the-art in many fields.
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Paradigm 1: Deep neural networks

The keywords: multi-scale, compositional, invariant, local features.
Picture from Y. LeCun’s tutorial:
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Paradigm 1: Deep neural networks

Picture from Olah et al. [2017]:
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Paradigm 1: Deep neural networks

Picture from Olah et al. [2017]:
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Paradigm 1: Deep neural networks

ImageNet: 1000 image categories, 10M hand-labeled images.
Picture from unknown source:

Figure: Top-5 error rate
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Paradigm 1: Deep neural networks

What are current high-potential problems to solve?

1 lack of stability (see next slide).

2 learning with few labeled data.

3 learning with no supervision (see Tab. from Bojanowski and Joulin, 2017).
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Paradigm 1: Deep neural networks

Illustration of instability. Picture from Kurakin et al. [2016].

Figure: Adversarial examples are generated by computer; then printed on paper;
a new picture taken on a smartphone fools the classifier.
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Paradigm 1: Deep neural networks

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

The issue of regularization

today, heuristics are used (DropOut, weight decay, early stopping)...

...but they are not sufficient.

how to control variations of prediction functions?

|f(x)− f(x′)| should be close if x and x′ are “similar”.

what does it mean for x and x′ to be “similar”?

what should be a good regularization function Ω?
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Paradigm 2: Kernel methods

min
f∈H

1

n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2H.

map data x in X to a Hilbert space and work with linear forms:

ϕ : X → H and f(x) = 〈ϕ(x), f〉H.
φ

X F

[Shawe-Taylor and Cristianini, 2004, Schölkopf and Smola, 2002]...
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Paradigm 2: Kernel methods

min
f∈H

1

n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2H.

First purpose: embed data in a vectorial space where

many geometrical operations exist (angle computation, projection
on linear subspaces, definition of barycenters....).

one may learn potentially rich infinite-dimensional models.

regularization is natural (see next...)

The principle is generic and does not assume anything about the nature
of the set X (vectors, sets, graphs, sequences).
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Paradigm 2: Kernel methods

Second purpose: unhappy with the current Euclidean structure?

lift data to a higher-dimensional space with nicer properties (e.g.,
linear separability, clustering structure).

then, the linear form f(x) = 〈ϕ(x), f〉H in H may correspond to a
non-linear model in X .

2R

x1

x2

x1

x2

2
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Paradigm 2: Kernel methods

How does it work? representation by pairwise comparisons

Define a “comparison function”: K : X × X 7→ R.
Represent a set of n data points S = {x1, . . . , xn} by the n× n
matrix:

Kij := K(xi, xj).

1    0.5  0.3
0.5  1    0.6
0.3  0.6  1

K=

X

S

(S)=(aatcgagtcac,atggacgtct,tgcactact)φ
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Paradigm 2: Kernel methods

Theorem (Aronszajn, 1950)

K : X × X → R is a positive definite kernel if and only if there exists a
Hilbert space H and a mapping ϕ : X → H, such that

for any x, x′ in X , K(x, x′) = 〈ϕ(x), ϕ(x′)〉H.

φ
X F
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Paradigm 2: Kernel methods

Mathematical details

the only thing we require about K is symmetry and positive
definiteness

∀x1, . . . , xn ∈ X , α1, . . . , αn ∈ R,
∑
ij

αiαjK(xi, xj) ≥ 0.

then, there exists a Hilbert space H of functions f : X → R, called
the reproducing kernel Hilbert space (RKHS) such that

∀f ∈ H, x ∈ X , f(x) = 〈ϕ(x), f〉H,

and the mapping ϕ : X → H (from Aronszajn’s theorem) satisfies

ϕ(x) : y 7→ K(x, y).
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Paradigm 2: Kernel methods

Why mapping data in X to the functional space H?

it becomes feasible to learn a prediction function f ∈ H:

min
f∈H

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λ‖f‖2H︸ ︷︷ ︸
regularization

.

(why? the solution lives in a finite-dimensional hyperplane).

non-linear operations in X become inner-products in H since

∀f ∈ H, x ∈ X , f(x) = 〈ϕ(x), f〉H.

the norm of the RKHS is a natural regularization function:

|f(x)− f(x′)| ≤ ‖f‖H‖ϕ(x)− ϕ(x′)‖H.
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Paradigm 2: Kernel methods

What are the main features of kernel methods?

builds well-studied functional spaces to do machine learning;

decoupling of data representation and learning algorithm;

typically, convex optimization problems in a supervised context;

versatility: applies to vectors, sequences, graphs, sets,. . . ;

natural regularization function to control the learning capacity;

But...

decoupling of data representation and learning may not be a good
thing, according to recent supervised deep learning success.

requires kernel design.

O(n2) scalability problems.

[Shawe-Taylor and Cristianini, 2004, Schölkopf and Smola, 2002, Müller et al., 2001]
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Kernels and deep learning

What is the relation?

it is possible to design functional spaces H where deep neural
networks live [Mairal, 2016].

f(x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)) = 〈f, ϕ(x)〉H.

we call the construction “convolutional kernel networks” (in
short, replace u 7→ σ(〈a, u〉) by a kernel mapping u 7→ ϕk(u).

Why do we care?

ϕ(x) is related to the network architecture and is independent
of training data. Is it stable? Does it lose signal information?

f is a predictive model. Can we control its stability?

|f(x)− f(x′)| ≤ ‖f‖H‖ϕ(x)− ϕ(x′)‖H.
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Part II: Convolutional Kernel Networks
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Challenges of deep kernel machines

Build functional spaces for deep learning, where we can quantify
invariance and stability to perturbations, signal recovery
properties, and the complexity of the function class.

do deep learning with a geometrical interpretation (learn
collections of linear subspaces, perform projections).

exploit kernels for structured objects (graph, sequences) within
deep architectures.

show that end-to-end learning is natural with kernel methods.

build models that are stable by design?
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Convolutional Kernel Networks

The (happy?) marriage of kernel methods and CNNs

1 a multilayer convolutional kernel for images: A hierarchy of
kernels for local image neighborhoods (aka, receptive fields).

2 unsupervised scheme for large-scale learning: the kernel beeing
too computationally expensive, the Nyström approximation at each
layer yields a new type of unsupervised deep neural network.

3 end-to-end learning: learning subspaces in the RKHSs can be
achieved with a supervised loss function.
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1 a multilayer convolutional kernel for images: A hierarchy of
kernels for local image neighborhoods (aka, receptive fields).

2 unsupervised scheme for large-scale learning: the kernel beeing
too computationally expensive, the Nyström approximation at each
layer yields a new type of unsupervised deep neural network.

3 end-to-end learning: learning subspaces in the RKHSs can be
achieved with a supervised loss function.

First proof of concept with unsupervised learning
J. Mairal, P. Koniusz, Z. Harchaoui and C. Schmid. Convolutional Kernel
Networks. NIPS 2014.

Application to image retrieval
M. Paulin, J. Mairal, M. Douze, Z. Harchaoui, F. Perronnin, and C. Schmid.
Convolutional Patch Representations for Image Retrieval: an Unsupervised
Approach. IJCV. 2017.
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Convolutional Kernel Networks

The (happy?) marriage of kernel methods and CNNs

1 a multilayer convolutional kernel for images: A hierarchy of
kernels for local image neighborhoods (aka, receptive fields).

2 unsupervised scheme for large-scale learning: the kernel beeing
too computationally expensive, the Nyström approximation at each
layer yields a new type of unsupervised deep neural network.

3 end-to-end learning: learning subspaces in the RKHSs can be
achieved with a supervised loss function.

Conceptually better model, with supervised learning
J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel
Networks. NIPS 2016.

Application to biological sequences
D. Chen, L. Jacob, and J. Mairal. Predicting Transcription Factor Binding Sites
with Convolutional Kernel Networks. preprint BiorXiv. 2017.
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Convolutional Kernel Networks

The (happy?) marriage of kernel methods and CNNs

1 a multilayer convolutional kernel for images: A hierarchy of
kernels for local image neighborhoods (aka, receptive fields).

2 unsupervised scheme for large-scale learning: the kernel beeing
too computationally expensive, the Nyström approximation at each
layer yields a new type of unsupervised deep neural network.

3 end-to-end learning: learning subspaces in the RKHSs can be
achieved with a supervised loss function.

Theory of stability and invariance

A. Bietti and J. Mairal. Group Invariance, Stability to Deformations, and
Complexity of Deep Convolutional Representations. preprint arXiv 2017.

A. Bietti and J. Mairal. Invariance and Stability of Deep Convolutional
Representations. NIPS 2017.
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Convolutional Kernel Networks

x : Ω → A
x(u) ∈ A P0x(v1) ∈ P0 (patch)

x0 : Ω0 → H0

x0(v1) = ϕ0(P0x(v1)) ∈ H0

domain-specific kernel
P1x0(v2) ∈ P1

x0.5 : Ω0 → H1

x0.5(v2) = ϕ1(P1x0(v2)) ∈ H1

dot-product kernel

x1 : Ω1 → H1

x1(v3) ∈ H1

linear pooling

xk ∈ Hk y
prediction layer

embedding
layer

convolutional
kernel layer

Illustration of multilayer convolutional kernel for 1D discrete signals.
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Convolutional Kernel Networks

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

xk–0.5(v) = ϕk(Pkxk–1(v)) ∈ Hk
xk–0.5 : Ω → Hk

xk : Ω → Hk

linear pooling
xk(w) ∈ Hk

Illustration of multilayer convolutional kernel for 2D continuous signals.

Julien Mairal Foundations of DL from a kernel point of view 28/74



Convolutional Kernel Networks

I0

x

x′

kernel trick

projection on F1

M1

ψ1(x)

ψ1(x
′)

I1
linear pooling

Hilbert space H1

F1

ϕ1(x)

ϕ1(x
′)

Learning mechanism of CKNs between layers 0 and 1.
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Convolutional Kernel Networks

Main principles

A multilayer kernel, which builds upon similar principles as a
convolutional neural net (multiscale, local stationarity).

When going up in the hierarchy, we represent larger
neighborhoods with more invariance;

The first layer may encode domain-specific knowledge;

We build a sequence of functional spaces and data representations
that are decoupled from learning...

But, we learn linear subspaces in RKHSs, where we project data,
providing a new type of CNN with a geometric interpretation.

Learning may be unsupervised (reduce approximation error) or
supervised (via backpropagation).
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Basic component: dot-product kernels

A simple link between kernels and neural networks can be obtained by
considering dot-product kernels.

A classical old result [Schoenberg, 1942]

Let X = Sd−1 be the unit sphere of Rd. The kernel K : X 2 → R

K(x, y) = κ(〈x, y〉Rd)

is positive definite for any dimension p if and only if κ is smooth,
non-zero, and its Taylor expansion coefficients are non-negative.

Remark

the proposition holds if X is the unit sphere of some Hilbert space
and 〈x, y〉Rd is replaced by the corresponding inner-product.

[Smola, Ovari, and Williamson, 2001]...
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Basic component: dot-product kernels

linear kernel 〈z, z′〉
exponential kernel eα(〈z,z′〉−1)

inverse polynomial kernel 1
2−〈z,z′〉

polynomial kernel of degree p (c+ 〈z, z′〉)p

arc-cosine kernel of degree 1 1
π (sin(θ) + (π − θ) cos(θ))

with θ = arccos(〈z, z′〉)
Vovk’s kernel of degree 3 1

3

(
1−〈z,z′〉3
1−〈z,z′〉

)
= 1

3

(
1 + 〈z, z′〉+ 〈z, z′〉2

)

Remark

if ‖z‖ = ‖z′‖ = 1, the exponential kernel recovers the Gaussian kernel

κexp(〈z, z′〉) = eα(〈z,z′〉−1) = e−
α
2
‖z−z′‖2 ,
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Basic component: dot-product kernels + Nyström

The Nyström method consists of replacing any point ϕ(x) in H, for x
in X by its orthogonal projection onto a finite-dimensional subspace

F = span(ϕ(z1), . . . , ϕ(zp)),

for some anchor points Z = [z1, . . . , zp] in Rd×p

Hilbert space H

F

ϕ(x)

ϕ(x′)
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Basic component: dot-product kernels + Nyström

The projection is equivalent to

ΠF [x]
M
=

p∑
j=1

β?jϕ(zj) with β? ∈ arg min
β∈Rp

∥∥∥∥∥∥ϕ(x)−
p∑
j=1

βjϕ(zj)

∥∥∥∥∥∥
2

H

,

Then, it is possible to show that with K(x, y) = 〈ϕ(x), ϕ(y)〉H,

K(x, y) ≈ 〈ΠF [x],ΠF [y]〉H = 〈ψ(x), ψ(y)〉Rp ,

with
ψ(x) = κ(Z>Z)−1/2κ(Z>x),

where the function κ is applied pointwise to its arguments. The resulting
ψ can be interpreted as a neural network performing (i) linear operation,
(ii) pointwise non-linearity, (iii) linear operation.

[Williams and Seeger, 2001, Smola and Schölkopf, 2000, Fine and Scheinberg, 2001].
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The multilayer convolutional kernel

Definition: image feature maps

An image feature map is a function I : Ω→ H, where Ω is a 2D grid
representing “coordinates” in the image and H is a Hilbert space.

I0 : Ω0 → H0I0(ω0) ∈ H0

Pω1 ∈ P0 (patch)

Kernel trick

I0.5(ω1) = ϕ1(Pω1) ∈ H1
I0.5 : Ω0 → H1

I1 : Ω1 → H1

Linear pooling

I1(ω2) ∈ H1
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The multilayer convolutional kernel

Definition: image feature maps

An image feature map is a function I : Ω→ H, where Ω is a 2D grid
representing “coordinates” in the image and H is a Hilbert space.

Motivation and examples

Each point I(ω) carries information about an image neighborhood,
which is motivated by the local stationarity of natural images.

We will construct a sequence of maps I0, . . . , Ik. Going up in the
hierarchy yields larger receptive fields with more invariance.

I0 may simply be the input image, where H0 = R3 for RGB.

How do we go from I0 : Ω0 → H0 to I1 : Ω1 → H1?

First, define a p.d. kernel on patches of I0!
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The multilayer convolutional kernel

Going from I0 to I0.5: kernel trick

Patches of size e0 × e0 can be defined as elements of the Cartesian
product P0

M
= He0×e00 endowed with its natural inner-product.

Define a p.d. kernel on such patches: For all x, x′ in P0,

K1(x, x′) = ‖x‖P0‖x′‖P0κ1

( 〈x, x′〉P0

‖x‖P0‖x′‖P0

)
if x, x′ 6= 0 and 0 otherwise.

Note that for y, y′ normalized, we may choose

κ1

(
〈y, y′〉P0

)
= eα1(〈y,y′〉P0

−1) = e
−α1

2
‖y−y′‖2P0 .

We call H1 the RKHS and define a mapping ϕ1 : P0 → H1.

Then, we may define the map I0.5 : Ω0 → H1 that carries the
representations in H1 of the patches from I0 at all locations in Ω0.
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The multilayer convolutional kernel

I0 : Ω0 → H0I0(ω0) ∈ H0

Pω1 ∈ P0 (patch)

Kernel trick

I0.5(ω1) = ϕ1(Pω1) ∈ H1
I0.5 : Ω0 → H1

I1 : Ω1 → H1

Linear pooling

I1(ω2) ∈ H1

How do we go from I0.5 : Ω0 → H1 to I1 : Ω1 → H1?

Linear pooling!
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The multilayer convolutional kernel

Going from I0.5 to I1: linear pooling

For all ω in Ω1:

I1(ω) =
∑
ω′∈Ω0

I0.5(ω′)e−β1‖ω′−ω‖22 .

The Gaussian weight can be interpreted as an anti-aliasing filter for
downsampling the map I0.5 to a different resolution.

Linear pooling is compatible with the kernel interpretation: linear
combinations of points in the RKHS are still points in the RKHS.

Finally,

We may now repeat the process and build I0, I1, . . . , Ik.

and obtain the multilayer convolutional kernel

K(Ik, I
′
k) =

∑
ω∈Ωk

〈Ik(ω), I ′k(ω)〉Hk .
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The multilayer convolutional kernel

In summary

The multilayer convolutional kernel builds upon similar principles as
a convolutional neural net (multiscale, local stationarity).

Invariance to local translations is achieved through linear pooling
in the RKHS.

It remains a conceptual object due to its high complexity.

Learning and modelling are still decoupled.

Let us first address the second point (scalability).
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Unsupervised learning for convolutional kernel networks

Learn linear subspaces of finite-dimensions where we project the data

M0

x

x′

kernel trick

projection on F1

M0.5

ψ1(x)

ψ1(x
′)

M1

linear pooling
Hilbert space H1

F1

ϕ1(x)

ϕ1(x
′)

Figure: The convolutional kernel network model between layers 0 and 1.
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Unsupervised learning for convolutional kernel networks

Formally, this means using the Nyström approximation

We now manipulate finite-dimensional maps Mj : Ωj → Rpj .
Every linear subspace is parametrized by anchor points

Fj M
= Span

(
ϕ(zj,1), . . . , ϕ(zj,pj )

)
,

where the z1,j ’s are in Rpj−1e
2
j−1 for patches of size ej−1 × ej−1.

The encoding function at layer j is

ψj(x)
M
= ‖x‖κj(Z>j Zj)−1/2κ1

(
Z>j

x

‖x‖

)
if x 6= 0 and 0 otherwise,

where Zj = [zj,1, . . . , zj,pj ] and ‖.‖ is the Euclidean norm.

The interpretation is convolution with filters Zj , pointwise
non-linearity, 1× 1 convolution, contrast normalization.
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Unsupervised learning for convolutional kernel networks

The pooling operation keeps points in the linear subspace Fj , and
pooling M0.5 : Ω0 → Rp1 is equivalent to pooling I0.5 : Ω0 → H1.

M0

x

x′

kernel trick

projection on F1

M0.5

ψ1(x)

ψ1(x
′)

M1

linear pooling
Hilbert space H1

F1

ϕ1(x)

ϕ1(x
′)

Figure: The convolutional kernel network model between layers 0 and 1.
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Unsupervised learning for convolutional kernel networks

How do we learn the filters with no supervision?

we learn one layer at a time, starting from the bottom one.

we extract a large number—say 100 000 patches from layers j − 1
computed on an image database and normalize them;

perform a spherical K-means algorithm to learn the filters Zj ;

compute the projection matrix κj(Z>j Zj)
−1/2.

Remarks

with kernels, we map patches in infinite dimension; with the
projection, we manipulate finite-dimensional objects.

we obtain an unsupervised convolutional net with a geometric
interpretation, where we perform projections in the RKHSs.
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Convolutional kernel networks with supervised learning

How do we learn the filters with supervision?

Given a kernel K and RKHS H, the ERM objective is

min
f∈H

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+
λ

2
‖f‖2H︸ ︷︷ ︸

regularization

.

here, we use the parametrized kernel

KZ(I0, I
′
0) =

∑
ω∈Ωk

〈Mk(ω),M ′k(ω)〉 = 〈Mk,M
′
k〉F,

and we obtain the simple formulation

min
W∈Rpk×|Ωk|

1

n

n∑
i=1

L(yi, 〈W,M i
k〉F) +

λ

2
‖W‖2F. (1)
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Convolutional kernel networks with supervised learning

How do we learn the filters with supervision?

we jointly optimize w.r.t. Z (set of filters) and W .

we alternate between the optimization of Z and of W ;

for W , the problem is strongly-convex and can be tackled with
recent algorithms that are much faster than SGD;

for Z, we derive backpropagation rules and use classical tricks for
learning CNNs (SGD+momentum);

The only tricky part is to differentiate κj(Z
>
j Zj)

−1/2 w.r.t Zj , which is
a non-standard operation in classical CNNs.
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Convolutional kernel networks

In summary

a multilayer kernel for images, which builds upon similar principles
as a convolutional neural net (multiscale, local stationarity).

A new type of convolutional neural network with a geometric
interpretation: orthogonal projections in RKHS.

Learning may be unsupervised: align subspaces with data.

Learning may be supervised: subspace learning in RKHSs.
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Related work on deep kernel machines

Related work

proof of concept for combining kernels and deep learning [Cho and
Saul, 2009];

hierarchical kernel descriptors [Bo et al., 2011];

other multilayer models [Bouvrie et al., 2009, Montavon et al.,
2011, Anselmi et al., 2015];

deep Gaussian processes [Damianou and Lawrence, 2013].

multilayer PCA [Schölkopf et al., 1998].

old kernels for images [Scholkopf, 1997].

RBF networks [Broomhead and Lowe, 1988].
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Related work on deep kernel machines

Composition of feature spaces

Consider a p.d. kernel K1 : X 2 → R and its RKHS H1 with mapping
ϕ1 : X → H1. Consider also a p.d. kernel K2 : H2

1 → R and its RKHS
H2 with mapping ϕ2 : H1 → H2. Then, K3 : X 2 → R below is also p.d.

K3(x, x′) = K2(ϕ1(x), ϕ1(x′)),

Examples

K3(x, x′) = e
− 1

2σ2 ‖ϕ1(x)−ϕ1(x′)‖2H1 .

K3(x, x′) = 〈ϕ1(x), ϕ1(x′)〉2H1
= K1(x, x′)2.
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Related work on deep kernel machines

Remarks on the composition of feature spaces

we can iterate the process many times.

the idea appears early in the literature of kernel methods [see
Schölkopf et al., 1998, for a multilayer variant of kernel PCA].

Is this idea sufficient to make kernel methods more powerful?

Probably not:

K2 is doomed to be a simple kernel (dot-product or RBF kernel).

K3 and K1 operate on the same type of object; it is not clear
why desining K3 is easier than designing K1 directly.

CKNs rely on this principle, but exploit the multi-scale and spatial
structure of the signal to operate on more and more complex objects.
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Related work on deep kernel machines: infinite NN

A large class of kernels on Rp may be defined as an expectation

K(x, y) = Ew[s(w>x)s(w>y)],

where s : R→ R is a nonlinear function. The encoding can be seen as a
one-layer neural network with infinite number of random weights.

Examples

random Fourier features

κ(x− y) = Ew∼q(w),b∼U [0,2π]

[√
2 cos(w>x+ b)

√
2 cos(w>y + b)

]
Gaussian kernel

e−
1

2σ2 ‖x−y‖22 ∝ Ew
[
e

2
σ2w

>xe
2
σ2w

>y
]

with w ∼ N (0, (σ2/4)I).
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Related work on deep kernel machines: infinite NN

Example, arc-cosine kernels

K(x, y) ∝ Ew
[
max

(
w>x, 0

)α
max

(
w>y, 0

)α]
with w ∼ N (0, I),

for x, y on the hyper-sphere Sm−1. Interestingly, the non-linearity s are
typical ones from the neural network literature.

s(u) = max(0, u) (rectified linear units) leads to
K1(x, y) = sin(θ) + (π − θ) cos(θ) with θ = cos−1(x>y);

s(u) = max(0, u)2 (squared rectified linear units) leads to
K2(x, y) = 3 sin(θ) cos(θ) + (π − θ)(1 + 2 cos2(θ));

Remarks

infinite neural nets were discovered by Neal, 1994; then revisited
many times [Le Roux, 2007, Cho and Saul, 2009].

the concept does not lead to more powerful kernel methods...
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Image classification

Experiments were conducted on classical “deep learning” datasets, on
CPUs with no model averaging and no data augmentation.

Dataset ] classes im. size ntrain ntest

CIFAR-10 10 32× 32 50 000 10 000

SVHN 10 32× 32 604 388 26 032

Figure: Figure from the NIPS’16 paper. Error rates in percents.

Remarks on CIFAR-10

10% is the standard “good” result for single model with no data
augmentation.

the best unsupervised architecture has two layers, is wide
(1024-16384 filters), and achieves 14.2%;
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Image super-resolution

The task is to predict a high-resolution y image from low-resolution
one x. This may be formulated as a multivariate regression problem.

(a) Low-resolution y (b) High-resolution x

Julien Mairal Foundations of DL from a kernel point of view 54/74



Image super-resolution

The task is to predict a high-resolution y image from low-resolution
one x. This may be formulated as a multivariate regression problem.

(c) Low-resolution y (d) Bicubic interpolation
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Image super-resolution

Fact. Dataset Bicubic SC CNN CSCN SCKN

x2
Set5 33.66 35.78 36.66 36.93 37.07
Set14 30.23 31.80 32.45 32.56 32.76
Kodim 30.84 32.19 32.80 32.94 33.21

x3
Set5 30.39 31.90 32.75 33.10 33.08
Set14 27.54 28.67 29.29 29.41 29.50
Kodim 28.43 29.21 29.64 29.76 29.88

Table: Reconstruction accuracy for super-resolution in PSNR (the higher, the
better). All CNN approaches are without data augmentation at test time.

Remarks

CNN is a “vanilla CNN” [Dong et al., 2016];

Very recent work does better with very deep CNNs and residual
learning [Kim et al., 2016];

CSCN combines ideas from sparse coding and CNNs;

[Zeyde et al., 2010, Dong et al., 2016, Wang et al., 2015, Kim et al., 2016].
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Image super-resolution

Bicubic Sparse coding CNN SCKN (Ours)

Figure: Results for x3 upscaling.
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Image super-resolution

Figure: Bicubic
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Image super-resolution

Figure: SCKN
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Image super-resolution

Figure: Bicubic
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Image super-resolution

Figure: SCKN
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Image super-resolution

Figure: Bicubic
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Image super-resolution

Figure: SCKN
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Image super-resolution

Bicubic CNN SCKN (Ours)

Figure: Results for x3 upscaling.
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Image super-resolution

Figure: Bicubic
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Image super-resolution

Figure: SCKN
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Part III: Invariance, Stability, and Complexity of
Deep Convolutional Representations
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Understanding deep convolutional representations

Questions

Are they stable to deformations?

How can we achieve invariance to transformation groups?

Do they preserve signal information?

How can we measure model complexity?

A. Bietti and J. Mairal. Group Invariance, Stability to
Deformations, and Complexity of Deep Convolutional
Representations. arXiv:1706.03078. 2017.

A. Bietti and J. Mairal. Invariance and Stability of Deep
Convolutional Representations. NIPS. 2017.
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Construct a functional space for deep learning

Main ideas
1 use the kernel construction of CKNs;

2 notice that the functional space contains some CNNs;

3 derive theoretical results for CKNs and CNNs.

Why? Separate learning from representation: f(x) = 〈f,Φ(x)〉
Φ(x): CNN architecture (stability, invariance, signal preservation)

f : CNN model, learning, generalization through ‖f‖

|f(x)− f(x′)| ≤ ‖f‖ · ‖Φ(x)− Φ(x′)‖.

‖f‖ controls both stability and generalization!

→ discriminating small deformations requires large ‖f‖
→ learning stable functions is “easier”
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Construct a functional space for deep learning

Which CNNs live in the RKHS of CKNs?

The RKHS construction provides a linearization of some CNNs:

f(x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)) = 〈f, ϕ(x)〉H.

Remember that the patch kernels are defined as

Kk(z, z
′) = ‖z‖‖z′‖κk

( 〈z, z′〉
‖z‖‖z′‖

)
, κk(u) =

∞∑
j=0

bju
j

The RKHS for patches contains activation functions σ that are

homogeneous: σ : z 7→ ‖z‖σ̃(〈g, z〉/‖z‖)
smooth: σ̃(u) =

∑∞
j=0 aju

j

with norm: ‖σ‖2Hk ≤ C
2
σ(‖g‖2) =

∑∞
j=0

a2
j

bj
‖g‖2j <∞.

Homogeneous version of [Zhang et al., 2017]
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Construct a functional space for deep learning

Examples

σ(u) = u (linear): C2
σ(λ2) = O(λ2)

σ(u) = up (polynomial): C2
σ(λ2) = O(λ2p)

σ ≈ sin, sigmoid, smooth ReLU: C2
σ(λ2) = O(ecλ

2
)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

f : x (x)
ReLU
sReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

f(x
)

f : x |x| (wx/|x|)
ReLU, w=1
sReLU, w = 0
sReLU, w = 0.5
sReLU, w = 1
sReLU, w = 2
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Stability

τ : Ω→ Ω: C1-diffeomorphism

Lτx(u) = x(u− τ(u)): action operator

Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Representation ϕ(·) is stable [Mallat, 2012] if:

‖ϕ(Lτx)− ϕ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation

‖τ‖∞ = supu |τ(u)| controls translation
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Stability and signal recovery

Proposition [Bietti and Mairal, 2017]

if ‖∇τ‖∞ ≤ 1/2 and Φn is the representation at layer n,

‖Φn(Lτx)− Φn(x)‖ ≤
(
C1 (1 + n) ‖∇τ‖∞ +

C2

σn
‖τ‖∞

)
‖x‖

Remarks and additional results

The result requires the receptive field sizes at layer k to be of the
same order or smaller than the pooling bandwidth of layer k − 1.

To preserve information when discretizing, we need subsampling
factors that are smaller than the patch sizes at layer k.

This points to small patches, small subsampling factors, and several
layers, as in recent architectures.
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Group invariance

Convolutions and pooling provides translation invariance

We encode more general transformation groups in the
architecture (e.g. rotations, roto-translations, rigid motion)

Related work: [Cohen and Welling, 2016, Mallat, 2012, Sifre and
Mallat, 2013, Raj et al., 2016]
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Model complexity and generalization

How do we measure model complexity of CKNs and CNNs?

Can we get meaningful bounds on generalization error?

Summary of results:

Some CNNs are contained in the RKHS of CKNs.
we may control the RKHS norm of a generic CNN
The choice of activation function is important.
Same norm also controls stability (“stable functions generalize
better”)

Related work: [Zhang et al., 2017]

Spoiler: should classical CNNs be regularized with products of
spectral norms [Bartlett et al., 2017]?
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Conclusion and Perspectives

Stability and generalization are related through regularization. There
are two types of perpectives for this approach:

For existing deep networks

new regularization functions, along with algorithmic tools to learn
with less labeled data, and obtain more stable models?
⇒ on-going work with spectral regularization.

For designing new deep models

design deep models that are stable by design?
⇒ We already have models that are stable w.r.t hyper-parameter
choices. Are they robust to adversarial perturbations?
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Mark the date! July 2-6th, Grenoble

Along with Naver Labs, Inria is organizing a summer school in Grenoble
on artificial intelligence. Visit https://project.inria.fr/paiss/.

Among the distinguished speakers

Lourdes Agapito (UCL)

Kyunghyun Cho (NYU/Facebook)

Emmanuel Dupoux (EHESS)

Martial Hebert (CMU)

Hugo Larochelle (Google Brain)

Yann LeCun (Facebook/NYU)

Jean Ponce (Inria)

Cordelia Schmid (Inria)

Andrew Zisserman (Oxford/Google DeepMind).

...
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