Optimization methods for large-scale machine learning and sparse estimation

# Julien Mairal

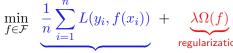
Inria Grenoble

Nantes, Mascot-Num, 2018 Part II



# Common paradigm: optimization for machine learning

Optimization is central to machine learning. For instance, in supervised learning, the goal is to learn a prediction function  $f: \mathcal{X} \to \mathcal{Y}$  given labeled training data  $(x_i, y_i)_{i=1,...,n}$  with  $x_i$  in  $\mathcal{X}$ , and  $y_i$  in  $\mathcal{Y}$ :



empirical risk, data fit

regularization



[Vapnik, 1995, Bottou, Curtis, and Nocedal, 2016]...

Let us consider again the classical scientific paradigm:

- observe the world (gather data);
- propose models of the world (design and learn);
- **1** test on new data (estimate the generalization error).

Let us consider again the classical scientific paradigm:

- observe the world (gather data);
- propose models of the world (design and learn);
- **test** on new data (estimate the generalization error).

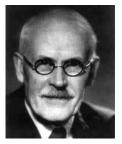
#### But...

- it is not always possible to distinguish the generalization error of various models based on available data.
- when a complex model A performs slightly better than a simple model B, should we prefer A or B?
- generalization error requires a predictive task: what about unsupervised learning? which measure should we use?
- we are also leaving aside the problem of non i.i.d. train/test data, biased data, testing with counterfactual reasoning...

[Corfield et al., 2009, Bottou et al., 2013, Schölkopf et al., 2012].



(a) Dorothy Wrinch 1894–1980



(b) Harold Jeffreys 1891–1989

The existence of simple laws is, then, apparently, to be regarded as a quality of nature; and accordingly we may infer that it is justifiable to prefer a simple law to a more complex one that fits our observations slightly better.

[Wrinch and Jeffreys, 1921].

#### Remarks: sparsity is...

- appealing for experimental sciences for model interpretation;
- (too-)well understood in some mathematical contexts:

$$\min_{w \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n L\left(y_i, w^\top x_i\right)}_{\text{empirical risk, data fit}} + \underbrace{\frac{\lambda \|w\|_1}{x_i}}_{\text{regularization}}.$$

 extremely powerful for unsupervised learning in the context of matrix factorization, and simple to use.

[Olshausen and Field, 1996, Chen, Donoho, and Saunders, 1999, Tibshirani, 1996]...

#### Remarks: sparsity is...

- appealing for experimental sciences for model interpretation;
- (too-)well understood in some mathematical contexts:

$$\min_{w \in \mathbb{R}^p} \underbrace{\frac{1}{n} \sum_{i=1}^n L\left(y_i, w^\top x_i\right)}_{\text{empirical risk, data fit}} + \underbrace{\frac{\lambda \|w\|_1}{\sum_{i=1}^n L\left(y_i, w^\top x_i\right)}}_{\text{regularization}}.$$

 extremely powerful for unsupervised learning in the context of matrix factorization, and simple to use.

#### Today's challenges

- Develop sparse and stable (and invariant?) models.
- Go beyond clustering / low-rank / union of subspaces.

[Olshausen and Field, 1996, Chen, Donoho, and Saunders, 1999, Tibshirani, 1996]...

# Some references

#### On kernel methods

- B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization, optimization, and beyond. 2002.
- J. Shawe-Taylor and N. Cristianini. An introduction to support vector machines and other kernel-based learning methods. 2004.
- 635 slides:

http://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/course/2018mva/

#### On sparse estimation

- M. Elad. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. 2010.
- J. Mairal, F. Bach, and J. Ponce. Sparse Modeling for Image and Vision Processing. 2014. free online.

# Some references

#### On large-scale optimization

- L. Bottou, F. E. Curtis and J. Nocedal. Optimization methods for large-scale machine learning, preprint arXiv:1606.04838, 2016.
- Y. Nesterov. Introductory lectures on convex optimization: A basic course. Springer .2013.
- S. Bubeck. Convex optimization: Algorithms and complexity. Foundations and Trends in Machine Learning. 2015.
- 387 slides by F. Bach:

http://www.di.ens.fr/~fbach/fbach\_frejus\_2017.pdf.

# Material on sparse estimation (freely available on arXiv)

J. Mairal, F. Bach and J. Ponce. *Sparse Modeling for Image and Vision Processing*. Foundations and Trends in Computer Graphics and Vision. 2014.



#### Foundations and Trends<sup>®</sup> in Machine Learning 4:1

#### Optimization with Sparsity-Inducing Penalties

Francis Bach, Rodolphe Jenatton, Julien Mairal and Guillaume Obozinski

OOU

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. *Optimization with sparsity-inducing penalties.* Foundations and Trends in Machine Learning, 4(1). 2012.

イロト イポト イヨト イヨト

# Part I: Large-scale optimization for machine learning

# Focus of this part

#### Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) \stackrel{\scriptscriptstyle \Delta}{=} \frac{1}{n} \sum_{i=1}^n f_i(x) + \psi(x) \right\},\,$$

where each  $f_i$  is *L*-smooth and convex and  $\psi$  is a convex regularization penalty but not necessarily differentiable.

# Focus of this part

#### Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$\min_{x \in \mathbb{R}^d} \left\{ f(x) \stackrel{\scriptscriptstyle \Delta}{=} \frac{1}{n} \sum_{i=1}^n f_i(x) + \psi(x) \right\},\,$$

where each  $f_i$  is *L*-smooth and convex and  $\psi$  is a convex regularization penalty but not necessarily differentiable.

#### Why this setting?

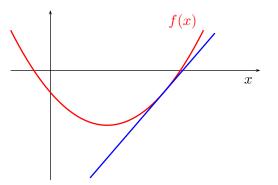
- convexity makes it easy to obtain complexity bounds.
- convex optimization is often effective for non-convex problems.

#### What we will not cover

• performance of approaches in terms of test error.

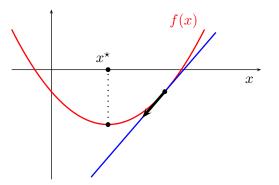
### Introduction of a few optimization principles Convex Functions

Why do we care about convexity?



# Introduction of a few optimization principles Convex Functions

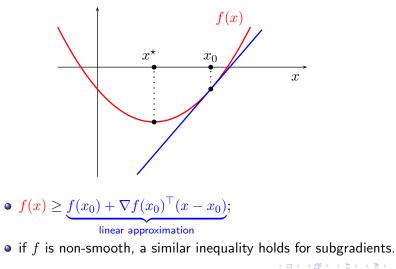
Local observations give information about the global optimum



- ∇f(x) = 0 is a necessary and sufficient optimality condition for differentiable convex functions;
- it is often easy to upper-bound  $f(x) f^{\star}$ .

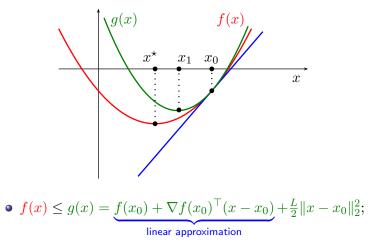
An important inequality for L-smooth convex functions

If f is convex and smooth



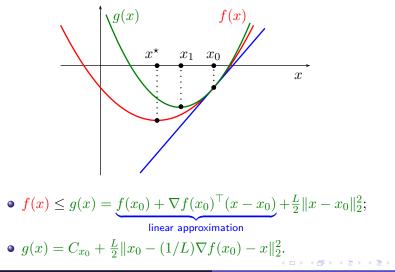
An important inequality for smooth functions

If  $\nabla f$  is *L*-Lipschitz continuous (*f* does not need to be convex)



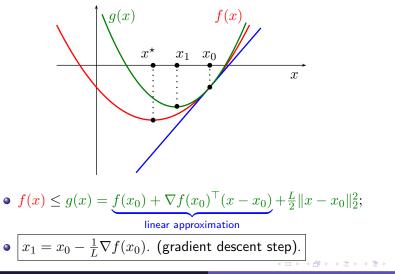
An important inequality for smooth functions

If  $\nabla f$  is *L*-Lipschitz continuous (*f* does not need to be convex)



An important inequality for smooth functions

If  $\nabla f$  is *L*-Lipschitz continuous (*f* does not need to be convex)



#### Introduction of a few optimization principles Gradient Descent Algorithm

Assume that f is convex and L-smooth ( $\nabla f$  is L-Lipschitz).

#### Theorem

Consider the algorithm

$$x_t \leftarrow x_{t-1} - \frac{1}{L} \nabla f(x_{t-1}).$$

Then,

$$f(x_t) - f^* \le \frac{L \|x_0 - x^*\|_2^2}{2t}$$

# Proof (1/2)

Proof of the main inequality for smooth functions

We want to show that for all x and z,

$$f(x) \le f(z) + \nabla f(z)^{\top} (x-z) + \frac{L}{2} ||x-z||_2^2$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

# Proof (1/2)

Proof of the main inequality for smooth functions

We want to show that for all x and z,

$$f(x) \le f(z) + \nabla f(z)^{\top} (x-z) + \frac{L}{2} ||x-z||_2^2$$

By using Taylor's theorem with integral form,

$$f(x) - f(z) = \int_0^1 \nabla f(tx + (1-t)z)^\top (x-z) dt.$$

Then,

$$\begin{split} f(x) - f(z) - \nabla f(z)^{\top} (x - z) &\leq \int_{0}^{1} (\nabla f(tx + (1 - t)z) - \nabla f(z))^{\top} (x - z) dt \\ &\leq \int_{0}^{1} |(\nabla f(tx + (1 - t)z) - \nabla f(z))^{\top} (x - z)| dt \\ &\leq \int_{0}^{1} ||\nabla f(tx + (1 - t)z) - \nabla f(z)||_{2} ||x - z||_{2} dt \quad (C.-S.) \\ &\leq \int_{0}^{1} Lt ||x - z||_{2}^{2} dt = \frac{L}{2} ||x - z||_{2}^{2}. \end{split}$$

#### Proof (2/2)Proof of the theorem

We have shown that for all x,

$$f(x) \le g_t(x) = f(x_{t-1}) + \nabla f(x_{t-1})^\top (x - x_{t-1}) + \frac{L}{2} ||x - x_{t-1}||_2^2.$$

 $g_t$  is minimized by  $x_t$ ; it can be rewritten  $g_t(x) = g_t(x_t) + \frac{L}{2} ||x - x_t||_2^2$ . Then,

$$f(x_t) \leq g_t(x_t) = g_t(x^*) - \frac{L}{2} \|x^* - x_t\|_2^2$$
  
=  $f(x_{t-1}) + \nabla f(x_{t-1})^\top (x^* - x_{t-1}) + \frac{L}{2} \|x^* - x_{t-1}\|_2^2 - \frac{L}{2} \|x^* - x_t\|_2^2$   
 $\leq f^* + \frac{L}{2} \|x^* - x_{t-1}\|_2^2 - \frac{L}{2} \|x^* - x_t\|_2^2.$ 

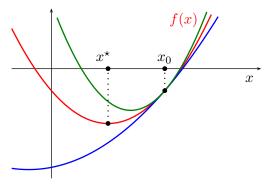
By summing from t = 1 to T, we have a telescopic sum

$$T(f(x_T) - f^{\star}) \leq \sum_{t=1}^{T} f(x_t) - f^{\star} \leq \frac{L}{2} \|x^{\star} - x^0\|_2^2 - \frac{L}{2} \|x^{\star} - x_T\|_2^2.$$

伺 ト イ ヨ ト イ ヨ ト

#### Introduction of a few optimization principles An important inequality for smooth and $\mu$ -strongly convex functions

If  $\nabla f$  is L-Lipschitz continuous and  $f \mu$ -strongly convex



•  $f(x) \le f(x_0) + \nabla f(x_0)^\top (x - x_0) + \frac{L}{2} ||x - x_0||_2^2;$ •  $f(x) \ge f(x_0) + \nabla f(x_0)^\top (x - x_0) + \frac{\mu}{2} ||x - x_0||_2^2;$ 

#### Proposition

When f is  $\mu\text{-strongly convex and }L\text{-smooth},$  the gradient descent algorithm with step-size 1/L produces iterates such that

$$f(x_t) - f^* \le \left(1 - \frac{\mu}{L}\right)^t \frac{L \|x_0 - x^*\|_2^2}{2}$$

We call that a linear convergence rate.

#### Remarks

- if f is twice differentiable, L and  $\mu$  represent the larget and smallest eigenvalues of the Hessian, respectively.
- $L/\mu$  is called the condition number.

#### Proof

We start from an inequality from the previous proof

$$f(x_t) \leq f(x_{t-1}) + \nabla f(x_{t-1})^\top (x^* - x_{t-1}) + \frac{L}{2} \|x^* - x_{t-1}\|_2^2 - \frac{L}{2} \|x^* - x_t\|_2^2$$
  
$$\leq f^* + \frac{L - \mu}{2} \|x^* - x_{t-1}\|_2^2 - \frac{L}{2} \|x^* - x_t\|_2^2.$$

In addition, we have that  $f(x_t) \geq f^\star + rac{\mu}{2} \|x_t - x^\star\|_2^2$ , and thus

$$\|x^{\star} - x_{t}\|_{2}^{2} \leq \frac{L - \mu}{L + \mu} \|x^{\star} - x_{t-1}\|_{2}^{2}$$
$$\leq \left(1 - \frac{\mu}{L}\right) \|x^{\star} - x_{t-1}\|_{2}^{2}.$$

Finally,

$$f(x_t) - f^* \le \frac{L}{2} ||x_t - x^*||_2^2$$
$$\le \left(1 - \frac{\mu}{L}\right)^t \frac{L ||x^* - x_0||_2^2}{2}$$

(4回) (1回) (1回))

э

Remark: with stepsize 1/L, gradient descent may be interpreted as a **majorization-minimization** algorithm:

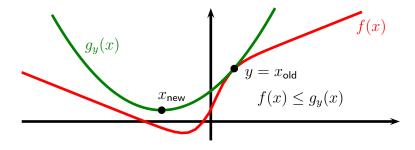
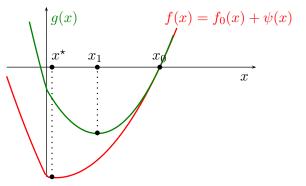


Figure: At each step, we update  $x \in \arg\min_{x \in \mathbb{R}^p} g_y(x)$ 

An important inequality for composite functions

If  $\nabla f_0$  is *L*-Lipschitz continuous



- $f_0(x) + \psi(x) \le f_0(x_0) + \nabla f_0(x_0)^\top (x x_0) + \frac{L}{2} ||x x_0||_2^2 + \psi(x);$
- $x_1$  minimizes g.

Gradient descent for minimizing f consists of

$$x_t \leftarrow \operatorname*{arg\,min}_{x \in \mathbb{R}^p} g_t(x) \quad \iff \quad x_t \leftarrow x_{t-1} - \frac{1}{L} \nabla f(x_{t-1}).$$

The proximal gradient method for minimizing  $f = f_0 + \psi$  consists of

$$x_t \leftarrow \operatorname*{arg\,min}_{x \in \mathbb{R}^p} g_t(x),$$

which is equivalent to

$$x_t \leftarrow \operatorname*{arg\,min}_{x \in \mathbb{R}^p} \frac{1}{2} \left\| x_{t-1} - \frac{1}{L} \nabla f_0(x_{t-1}) - x \right\|_2^2 + \frac{1}{L} \psi(x).$$

It requires computing efficiently the **proximal operator** of  $\psi$ .

$$y \mapsto \underset{x \in \mathbb{R}^p}{\operatorname{arg\,min}} \ \frac{1}{2} \|y - x\|_2^2 + \psi(x).$$

#### Remarks

- also known as forward-backward algorithm;
- has similar convergence rates as the gradient descent method (the proof is nearly identical).
- there exists line search schemes to automatically tune L;

# The case of $\ell_1$

The proximal operator of  $\lambda \|.\|_1$  is the soft-thresholding operator

$$x[j] = \operatorname{sign}(y[j])(|y[j]| - \lambda)^+.$$

The resulting algorithm is called iterative soft-thresholding.

[Nowak and Figueiredo, 2001, Daubechies et al., 2004, Combettes and Wajs, 2006, Beck and Teboulle, 2009, Wright et al., 2009, Nesterov, 2013]...

The proximal operator for the group Lasso penalty

$$\min_{x \in \mathbb{R}^p} \ \frac{1}{2} \|y - x\|_2^2 + \lambda \sum_{g \in \mathcal{G}} \|x[g]\|_q.$$

For q = 2,

$$x[g] = \frac{y[g]}{\|y[g]\|_2} (\|y[g]\|_2 - \lambda)^+, \quad \forall g \in \mathcal{G}.$$

For  $q = \infty$ ,

$$x[g] = y[g] - \Pi_{\parallel \cdot \parallel_1 \le \lambda}[y[g]], \quad \forall g \in \mathcal{G}.$$

These formula generalize soft-thresholding to groups of variables.

# A few proximal operators:

- $\ell_0$ -penalty: hard-thresholding;
- $\ell_1$ -norm: soft-thresholding;
- group-Lasso: group soft-thresholding;
- fused-lasso (1D total variation): [Hoefling, 2010];
- total variation: [Chambolle and Darbon, 2009];
- hierarchical norms: [Jenatton et al., 2011], O(p) complexity;
- overlapping group Lasso with  $\ell_{\infty}$ -norm: [Mairal et al., 2010];

# Accelerated gradient descent methods

Nesterov introduced in the 80's an acceleration scheme for the gradient descent algorithm. It was generalized later to the composite setting.

FISTA

$$\begin{split} x_t &\leftarrow \operatorname*{arg\,min}_{x \in \mathbb{R}^p} \frac{1}{2} \left\| x - \left( y_{t-1} - \frac{1}{L} \nabla f_0(y_{t-1}) \right) \right\|_2^2 + \frac{1}{L} \psi(x); \\ \text{Find } \alpha_t &> 0 \quad \text{s.t.} \quad \alpha_t^2 = (1 - \alpha_t) \alpha_{t-1}^2 + \frac{\mu}{L} \alpha_t; \\ y_t &\leftarrow x_t + \beta_t (x_t - x_{t-1}) \quad \text{with} \quad \beta_t = \frac{\alpha_{t-1}(1 - \alpha_{t-1})}{\alpha_{t-1}^2 + \alpha_t}. \end{split}$$

•  $f(x_t) - f^{\star} = O(1/t^2)$  for convex problems;

•  $f(x_t) - f^* = O((1 - \sqrt{\mu/L})^t)$  for  $\mu$ -strongly convex problems;

Acceleration works in many practical cases.

see [Beck and Teboulle, 2009, Nesterov, 1983, 2004, 2013]

# What do we mean by "acceleration"?

#### Complexity analysis for large finite sums

Since f is a sum of n functions, computing  $\nabla f$  requires computing n gradients  $\nabla f_i$ . The complexity to reach an  $\varepsilon$ -solution is given below

$$\begin{array}{c|c} \mu > 0 & \mu = 0 \\ \hline \text{ISTA} & O\left(n\frac{L}{\mu}\log\left(\frac{1}{\varepsilon}\right)\right) & O\left(\frac{nL}{\varepsilon}\right) \\ \hline \text{FISTA} & O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right) & O\left(n\sqrt{\frac{L}{\varepsilon}}\right) \end{array}$$

#### Remarks

- $\varepsilon$ -solution means here  $f(x_t) f^* \leq \varepsilon$ .
- For n = 1, the rates of FISTA are optimal for a "first-order local black box" [Nesterov, 2004].
- For L = 1 and  $\mu = 1/n$ , scales at best in  $n^{3/2}$ .

# How does "acceleration" work?

Unfortunately, the literature does not provide any simple geometric explanation...

# How does "acceleration" work?

Unfortunately, the literature does not provide any simple geometric explanation... but they are a few obvious facts and a mechanism introduced by Nesterov, called "estimate sequence".

#### **Obvious** fact

- Simple gradient descent steps are "blind" to the past iterates, and are based on a **purely local** model of the objective.
- Accelerated methods usually involve an extrapolation step  $y_t = x_t + \beta_t (x_t x_{t-1})$  with  $\beta_t$  in (0, 1).
- Nesterov interprets acceleration as relying on a better model of the objective called estimate sequence.

### How does "acceleration" work?

#### Definition of estimate sequence [Nesterov].

A pair of sequences  $(\varphi_t)_{t\geq 0}$  and  $(\lambda_t)_{t\geq 0}$ , with  $\lambda_t \geq 0$  and  $\varphi_t : \mathbb{R}^p \to \mathbb{R}$ , is called an **estimate sequence** of function f if  $\lambda_t \to 0$  and

for any  $x \in \mathbb{R}^p$  and all  $t \ge 0$ ,  $\varphi_t(x) - f(x) \le \lambda_t(\varphi_0(x) - f(x))$ .

In addition, if for some sequence  $(x_t)_{t\geq 0}$  we have

$$f(x_t) \le \varphi_t^{\star} \stackrel{\scriptscriptstyle \Delta}{=} \min_{x \in \mathbb{R}^p} \varphi_t(x),$$

then

$$f(x_t) - F^* \le \lambda_t(\varphi_0(x^*) - f^*),$$

where  $x^{\star}$  is a minimizer of f.

## How does "acceleration" work?

# In summary, we need two properties • $\varphi_t(x) \le (1 - \lambda_t) f(x) + \lambda_t \varphi_0(x);$ • $f(x_t) \le \varphi_t^{\star} \stackrel{\triangle}{=} \min_{x \in \mathbb{R}^p} \varphi_t(x).$

### Remarks

- $\varphi_t$  is neither an upper-bound, nor a lower-bound;
- Finding the right estimate sequence is often nontrivial.

## How does "acceleration" work?

In summary, we need two properties •  $\varphi_t(x) \le (1 - \lambda_t) f(x) + \lambda_t \varphi_0(x);$ •  $f(x_t) \le \varphi_t^{\star} \triangleq \min_{x \in \mathbb{R}^p} \varphi_t(x).$ 

How to build an estimate sequence? Define  $\varphi_t$  recursively

$$\varphi_t(x) \stackrel{\scriptscriptstyle \Delta}{=} (1 - \alpha_t)\varphi_{t-1}(x) + \alpha_t d_t(x),$$

where  $d_t$  is a lower-bound, e.g., if F is smooth,

$$d_t(x) \stackrel{\scriptscriptstyle \Delta}{=} F(y_t) + \nabla F(y_t)^\top (x - y_t) + \frac{\mu}{2} \|x - y_t\|_2^2,$$

Then, work hard to choose  $\alpha_t$  as large as possible, and  $y_t$  and  $x_t$  such that property 2 holds. Subsequently,  $\lambda_t = \prod_{t=1}^t (1 - \alpha_t)$ .

## The stochastic (sub)gradient descent algorithm

Consider now the minimization of an expectation

$$\min_{x \in \mathbb{R}^p} f(x) = \mathbb{E}_z[\ell(x, z)],$$

To simplify, we assume that for all  $z, x \mapsto \ell(x, z)$  is differentiable.

### Algorithm

At iteration t,

- Randomly draw one example  $z_t$  from the training set;
- Update the current iterate

$$x_t \leftarrow x_{t-1} - \eta_t \nabla f_t(x_{t-1})$$
 with  $f_t(x) = \ell(x, z_t)$ .

• Perform online averaging of the iterates (optional)

$$\tilde{x}_t \leftarrow (1 - \gamma_t) \tilde{x}_{t-1} + \gamma_t x_t.$$

# The stochastic (sub)gradient descent algorithm

There are various learning rates strategies (constant, varying step-sizes), and averaging strategies. Depending on the problem assumptions and choice of  $\eta_t$ ,  $\gamma_t$ , classical convergence rates may be obtained:

- $f(\tilde{x}_t) f^{\star} = O(1/\sqrt{t})$  for convex problems;
- $f(\tilde{x}_t) f^{\star} = O(1/t)$  for strongly-convex ones;

Remarks

- The convergence rates are not great, but the complexity **per-iteration** is small (1 gradient evaluation for minimizing an empirical risk versus *n* for the batch algorithm).
- When the amount of data is infinite, the method **minimizes the expected risk** (which is what we want).
- Choosing a good learning rate automatically is an open problem.

向下 イヨト イヨト

Proof of an  $O(1/\sqrt{t})$  rate for the convex case Inspired by (aka, stolen from) F. Bach's slides

#### Assumptions

- The solution lies in a bounded domain  $C = \{ \|x\| \le D \}.$
- The sub-gradients are bounded on  $\mathcal{C}$ :  $\|\nabla f_t(x)\| \leq B$ .
- Fix in advance the number of iterations T and choose  $\eta_t = \frac{2D}{B\sqrt{T}}$ .
- Choose Polyak-Ruppert averaging  $\tilde{x}_T = (1/T) \sum_{t=0}^{T-1} x_t$ .

Perform updates with projections

$$x_t \leftarrow \Pi_{\mathcal{C}}[x_{t-1} - \eta_t \nabla f_t(x_{t-1})].$$

Proposition

$$\mathbb{E}[f(\tilde{x}_t) - f^\star] \le \frac{2DB}{\sqrt{T}}.$$

Proof of an  $O(1/\sqrt{t})$  rate for the convex case Inspired by (aka, stolen from) F. Bach's slides

•  $\mathcal{F}_t$ : information up to time t.

•  $||x|| \le D$  and  $||\nabla f_t(x)|| \le B$ . Besides  $\mathbb{E}[\nabla f_t(x)|\mathcal{F}_{t-1}] = \nabla f(x)$ .

$$\begin{aligned} \|x_t - x^{\star}\|^2 &\leq \|x_{t-1} - \eta_t \nabla f_t(x_{t-1}) - x^{\star}\|^2 \\ &\leq \|x_{t-1} - x^{\star}\|^2 + B^2 \eta_t^2 - 2\eta_t (x_{t-1} - x^{\star})^\top \nabla f_t(x_{t-1}). \end{aligned}$$

Take now conditional expectations

$$\mathbb{E}[\|x_t - x^*\|^2 | \mathcal{F}_{t-1}] \le \|x_{t-1} - x^*\|^2 + B^2 \eta_t^2 - 2\eta_t (x_{t-1} - x^*)^\top \nabla f(x_{t-1}) \\ \le \|x_{t-1} - x^*\|^2 + B^2 \eta_t^2 - 2\eta_t (f(x_{t-1}) - f^*).$$

Take now full expectations

$$\mathbb{E}[\|x_t - x^*\|^2] \le \mathbb{E}[\|x_{t-1} - x^*\|^2] + B^2 \eta_t^2 - 2\eta_t \mathbb{E}[f(x_{t-1}) - f^*],$$

and, after reorganizing the terms

$$\mathbb{E}[f(x_{t-1}) - f^{\star}] \le \frac{B^2 \eta_t^2}{2} + \frac{1}{2\eta_t} \left( \mathbb{E}[\|x_{t-1} - x^{\star}\|^2] - \mathbb{E}[\|x_t - x^{\star}\|^2] \right).$$

Proof of an  $O(1/\sqrt{t})$  rate for the convex case Inspired by (aka, stolen from) F. Bach's slides

We start again from

$$\mathbb{E}[f(x_{t-1}) - f^{\star}] \leq \frac{B^2 \eta_t^2}{2} + \frac{1}{2\eta_t} \left( \mathbb{E}[\|x_{t-1} - x^{\star}\|^2] - \mathbb{E}[\|x_t - x^{\star}\|^2] \right).$$

and we exploit the telescopic sum

$$\begin{split} \sum_{t=1}^{T} \mathbb{E}[f(x_{t-1}) - f^{\star}] &\leq \sum_{t=1}^{T} \frac{B^2 \eta_t^2}{2} + \sum_{t=1}^{T} \frac{1}{2\eta_t} \left( \mathbb{E}[\|x_{t-1} - x^{\star}\|^2] - \mathbb{E}[\|x_t - x^{\star}\|^2] \right) \\ &\leq T \frac{B^2 \eta^2}{2} + \frac{4D^2}{2\eta} \leq 2DB\sqrt{T} \quad \text{with} \quad \gamma = \frac{2D}{B\sqrt{T}}. \end{split}$$

Finally, we conclude by using a convexity inequality

$$\mathbb{E}f\left(\frac{1}{T}\sum_{t=0}^{T-1}\right) - f^{\star} \le \frac{2DB}{\sqrt{T}}.$$

## Back to finite sums

Consider now the case of interest for us today:

$$\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n f_i(x),$$

#### Question

Can we do as well as SGD in terms of cost per iteration, while enjoying a fast (linear) convergence rate like (accelerated or not) gradient descent?

#### For n = 1, no!

The rates are optimal for a "first-order local black box" [Nesterov, 2004].

For  $n \ge 1$ , yes! We need to design algorithms

- whose per-iteration **computational complexity** is smaller than *n*;
- whose convergence rate may be worse than FISTA....
- ...but with a better expected computational complexity.

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}.$$

Several randomized algorithms are designed with one  $\nabla f_i$  computed per iteration, with fast convergence rates, e.g., SAG [Schmidt et al., 2013]:

$$x_k \leftarrow x_{k-1} - \frac{\gamma}{Ln} \sum_{i=1}^n y_i^k \quad \text{with} \quad y_i^k = \begin{cases} \nabla f_i(x_{k-1}) & \text{if} \quad i = i_k \\ y_i^{k-1} & \text{otherwise} \end{cases}$$

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}.$$

Several **randomized** algorithms are designed with one  $\nabla f_i$  computed per iteration, with **fast convergence rates**, e.g., SAG [Schmidt et al., 2013]:

$$x_k \leftarrow x_{k-1} - \frac{\gamma}{Ln} \sum_{i=1}^n y_i^k$$
 with  $y_i^k = \begin{cases} \nabla f_i(x_{k-1}) & \text{if } i = i_k \\ y_i^{k-1} & \text{otherwise} \end{cases}$ 

See also SVRG, SAGA, SDCA, MISO, Finito... Some of these algorithms perform updates of the form

$$x_k \leftarrow x_{k-1} - \eta_k g_k$$
 with  $\mathbb{E}[g_k] = \nabla f(x_{k-1}),$ 

but  $g_k$  has lower variance than in SGD.

[Schmidt et al., 2013, Xiao and Zhang, 2014, Defazio et al., 2014a,b, Shalev-Shwartz and Zhang, 2012, Mairal, 2015, Zhang and Xiao, 2015]

These methods achieve low (worst-case) complexity in expectation. The number of gradients evaluations to ensure  $f(x_k) - f^* \leq \varepsilon$  is

|                                     | $\mu > 0$                                                                                     |
|-------------------------------------|-----------------------------------------------------------------------------------------------|
| FISTA                               | $O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right)$                   |
| SVRG, SAG, SAGA, SDCA, MISO, Finito | $O\left(\max\left(n, \frac{\bar{L}}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$ |

These methods achieve low (worst-case) complexity in expectation. The number of gradients evaluations to ensure  $f(x_k) - f^* \leq \varepsilon$  is

|                                     | $\mu > 0$                                                                                     |
|-------------------------------------|-----------------------------------------------------------------------------------------------|
| FISTA                               | $O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right)$                   |
| SVRG, SAG, SAGA, SDCA, MISO, Finito | $O\left(\max\left(n, \frac{\bar{L}}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$ |

### Main features vs. stochastic gradient descent

- Same complexity per-iteration (but higher memory footprint).
- Faster convergence (exploit the finite-sum structure).
- Less parameter tuning than SGD.
- Some variants are compatible with a composite term  $\psi$ .

These methods achieve low (worst-case) complexity in expectation. The number of gradients evaluations to ensure  $f(x_k) - f^* \leq \varepsilon$  is

|                                     | $\mu > 0$                                                                                     |
|-------------------------------------|-----------------------------------------------------------------------------------------------|
| FISTA                               | $O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right)$                   |
| SVRG, SAG, SAGA, SDCA, MISO, Finito | $O\left(\max\left(n, \frac{\bar{L}}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$ |

#### Important remarks

- When  $f_i(x) = \ell(z_i^{\top}x)$ , the memory footprint is O(n) otherwise O(dn), except for SVRG (O(d)).
- Some algorithms require an estimate of  $\mu$ ;
- $\overline{L}$  is the average (or max) of the Lipschitz constants of the  $\nabla f_i$ 's.
- The L for fista is the Lipschitz constant of  $\nabla f$ :  $L \leq \overline{L}$ .

stealing again a bit from F. Bach's slides.

### Variance reduction

Consider two random variables X, Y and define

$$Z = X - Y + \mathbb{E}[Y].$$

Then,

• 
$$\mathbb{E}[Z] = \mathbb{E}[X]$$

•  $\operatorname{Var}(Z) = \operatorname{Var}(X) + \operatorname{Var}(Y) - 2\operatorname{cov}(X, Y).$ 

The variance of Z may be smaller if X and Y are positively correlated.

stealing again a bit from F. Bach's slides.

### Variance reduction

Consider two random variables X, Y and define

$$Z = X - Y + \mathbb{E}[Y].$$

Then,

- $\mathbb{E}[Z] = \mathbb{E}[X]$
- $\operatorname{Var}(Z) = \operatorname{Var}(X) + \operatorname{Var}(Y) 2\operatorname{cov}(X, Y).$

The variance of Z may be smaller if X and Y are positively correlated.

#### Why is it useful for stochatic optimization?

- step-sizes for SGD have to decrease to ensure convergence.
- with variance reduction, one may use constant step-sizes.

#### **SVRG**

$$x_t = x_{t-1} - \gamma \left( \nabla f_{i_t}(x_{t-1}) - \nabla f_{i_t}(y) + \nabla f(y) \right),$$

where y is updated every epoch and  $\mathbb{E}[\nabla f_{i_t}(y)|\mathcal{F}_{t-1}] = \nabla f(y)$ .

SAGA

$$\begin{aligned} x_t &= x_{t-1} - \gamma \left( \nabla f_{i_t}(x_{t-1}) - y_{i_t}^{t-1} + \frac{1}{n} \sum_{i=1}^n y_i^{t-1} \right), \\ \text{where } \mathbb{E}[y_{i_t}^{t-1} | \mathcal{F}_{t-1}] &= \frac{1}{n} \sum_{i=1}^n y_i^{t-1} \text{ and } y_i^t = \begin{cases} \nabla f_i(x_{t-1}) & \text{if } i = i_t \\ y_i^{t-1} & \text{otherwise.} \end{cases} \end{aligned}$$

MISO/Finito: for  $n \ge L/\mu$ , same form as SAGA but

$$\frac{1}{n} \sum_{i=1}^{n} y_{i}^{t-1} = -\mu x_{t-1} \quad \text{and} \quad y_{i}^{t} = \begin{cases} \nabla f_{i}(x_{t-1}) - \mu x_{t-1} & \text{if } i = i_{t} \\ y_{i}^{t-1} & \text{otherwise.} \end{cases}$$

# Can we do even better for large finite sums?

#### Without vs with acceleration

|                                     | $\mu > 0$                                                                                                    |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------|
| FISTA                               | $O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right)$                                  |
| SVRG, SAG, SAGA, SDCA, MISO, Finito | $O\left(\max\left(n, \frac{\bar{L}}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$                |
| Accelerated versions                | $\tilde{O}\left(\max\left(n,\sqrt{n\frac{\bar{L}}{\mu}}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$ |

- Acceleration for specific algorithms [Shalev-Shwartz and Zhang, 2014, Lan, 2015, Allen-Zhu, 2016].
- Generic acceleration: Catalyst [Lin et al., 2015].
- see [Agarwal and Bottou, 2015] for discussions about optimality.

# What we have not (or should have) covered

### Import approaches and concepts

- distributed optimization.
- proximal splitting / ADMM.
- Quasi-Newton approaches.

# What we have not (or should have) covered

### Import approaches and concepts

- distributed optimization.
- proximal splitting / ADMM.
- Quasi-Newton approaches.

### The question

Should we care that much about minimizing finite sums when all we want is minimizing an expectation?

## Part II: Sparse estimation

## Chronological overview of parsimony

- 14th century: Ockham's razor;
- 1921: Wrinch and Jeffreys' simplicity principle;
- 1952: Markowitz's portfolio selection;
- 60 and 70's: best subset selection in statistics;
- 70's: use of the  $\ell_1$ -norm for signal recovery in geophysics;
- 90's: wavelet thresholding in signal processing;
- 1996: Olshausen and Field's dictionary learning;
- 1996–1999: Lasso (statistics) and basis pursuit (signal processing);
- 2006: compressed sensing (signal processing) and Lasso consistency (statistics);
- 2006-now: applications of dictionary learning in various scientific fields such as image processing and computer vision.

# Sparsity in the statistics literature from the 60's and 70's

#### How to choose k?

- Mallows's  $C_p$  statistics [Mallows, 1964, 1966];
- Akaike information criterion (AIC) [Akaike, 1973];
- Bayesian information critertion (BIC) [Schwarz, 1978];
- Minimum description length (MDL) [Rissanen, 1978].

These approaches lead to penalized problems

$$\min_{\boldsymbol{\theta}\in\mathbb{R}^p}\mathcal{L}(\boldsymbol{\theta})+\lambda\|\boldsymbol{\theta}\|_0,$$

with different choices of  $\lambda$  depending on the chosen criterion.

Sparsity in the statistics literature from the 60's and 70's How to solve the best k-subset selection problem? Unfortunately...

...the problem is NP-hard [Natarajan, 1995].

### Two strategies

- combinatorial exploration with branch-and-bound techniques [Furnival and Wilson, 1974] → leaps and bounds, exact algorithm but exponential complexity;
- greedy approach: forward selection [Efroymson, 1960] (originally developed for observing *intermediate* solutions), already contains all the ideas of matching pursuit algorithms.

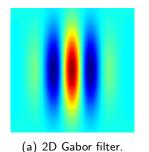
**Important reference:** [Hocking, 1976]. The analysis and selection of variables in linear regression. Biometrics.

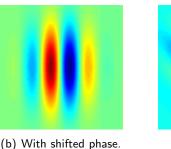
伺 と く ヨ と く ヨ と

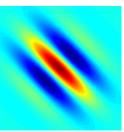
# Wavelet thresholding in signal processing from the 90's

Wavelets where the topic of a long quest for representing natural images

- 2D-Gabors [Daugman, 1985];
- steerable wavelets [Simoncelli et al., 1992];
- curvelets [Candès and Donoho, 2002];
- countourlets [Do and Vertterli, 2003];
- bandlets [Le Pennec and Mallat, 2005];
- ★-lets (joke).



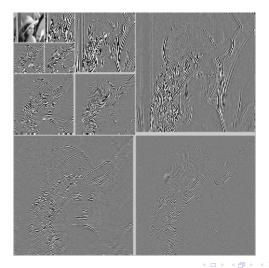




(c) With rotation.

## Wavelet thresholding in signal processing from 90's

The theory of wavelets is well developed for continuous signals, *e.g.*, in  $L^2(\mathbb{R})$ , but also for discrete signals  $\mathbf{x}$  in  $\mathbb{R}^n$ .



## Wavelet thresholding in signal processing from 90's

Given an orthogonal wavelet basis  $\mathbf{D} = [\mathbf{d}_1, \dots, \mathbf{d}_n]$  in  $\mathbb{R}^{n \times n}$ , the wavelet decomposition of  $\mathbf{x}$  in  $\mathbb{R}^n$  is simply

$$oldsymbol{eta} = \mathbf{D}^{ op} \mathbf{x}$$
 and we have  $\mathbf{x} = \mathbf{D}oldsymbol{eta}.$ 

The k-sparse approximation problem

$$\min_{oldsymbol{lpha} \in \mathbb{R}^p} rac{1}{2} \| \mathbf{x} - \mathbf{D} oldsymbol{lpha} \|_2^2 \;\; ext{s.t.} \;\; \| oldsymbol{lpha} \|_0 \leq k,$$

is not NP-hard here: since  ${\bf D}$  is orthogonal, it is equivalent to

$$\min_{oldsymbol{lpha}\in\mathbb{R}^p}rac{1}{2}\|oldsymbol{eta}-oldsymbol{lpha}\|_2^2 extrm{ s.t. } \|oldsymbol{lpha}\|_0\leq k.$$

# Wavelet thresholding in signal processing from 90's

Given an orthogonal wavelet basis  $\mathbf{D} = [\mathbf{d}_1, \dots, \mathbf{d}_n]$  in  $\mathbb{R}^{n \times n}$ , the wavelet decomposition of  $\mathbf{x}$  in  $\mathbb{R}^n$  is simply

 $\boldsymbol{\beta} = \mathbf{D}^{\top} \mathbf{x}$  and we have  $\mathbf{x} = \mathbf{D} \boldsymbol{\beta}$ .

The k-sparse approximation problem

1

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^p} \frac{1}{2} \| \mathbf{x} - \mathbf{D} \boldsymbol{\alpha} \|_2^2 \quad \text{s.t.} \quad \| \boldsymbol{\alpha} \|_0 \le k,$$

The solution is obtained by hard-thresholding:

$$\boldsymbol{\alpha}^{\mathsf{ht}}[j] = \delta_{|\boldsymbol{\beta}[j]| \ge \mu} \boldsymbol{\beta}[j] = \left\{ \begin{array}{ll} \boldsymbol{\beta}[j] & \text{if } |\boldsymbol{\beta}[j]| \ge \mu \\ 0 & \text{otherwise} \end{array} \right.,$$

where  $\mu$  the k-th largest value among the set  $\{|\beta[1]|, \ldots, |\beta[p]|\}$ .

## Wavelet thresholding in signal processing, 90's

Another key operator is the **soft-thresholding** operator [see Donoho and Johnstone, 1994] :

$$\boldsymbol{\alpha}^{\mathsf{st}}[j] \stackrel{\scriptscriptstyle \Delta}{=} \mathsf{sign}(\boldsymbol{\beta}[j]) \max(|\boldsymbol{\beta}[j]| - \lambda, 0) = \begin{cases} \boldsymbol{\beta}[j] - \lambda & \text{if } \boldsymbol{\beta}[j] \ge \lambda \\ \boldsymbol{\beta}[j] + \lambda & \text{if } \boldsymbol{\beta}[j] \le -\lambda \\ 0 & \text{otherwise} \end{cases},$$

where  $\lambda$  is a parameter playing the same role as  $\mu$  previously.

With  $\beta \stackrel{\scriptscriptstyle \Delta}{=} \mathbf{D}^\top \mathbf{x}$  and  $\mathbf{D}$  orthogonal, it provides the solution of the following sparse reconstruction problem:

$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^p}\frac{1}{2}\|\mathbf{x}-\mathbf{D}\boldsymbol{\alpha}\|_2^2+\lambda\|\boldsymbol{\alpha}\|_1,$$

which will be of high importance later.

# Wavelet thresholding in signal processing, 90's

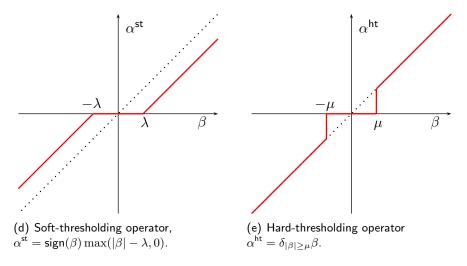
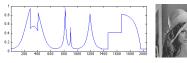


Figure: Soft- and hard-thresholding operators, which are commonly used for signal estimation with orthogonal wavelet basis.

## The modern parsimony and the $\ell_1\text{-norm}$

Sparse linear models in signal processing

Let  $\mathbf{x}$  in  $\mathbb{R}^n$  be a signal.





Let  $\mathbf{D} = [\mathbf{d}_1, \dots, \mathbf{d}_p] \in \mathbb{R}^{n \times p}$  be a set of elementary signals. We call it **dictionary**.



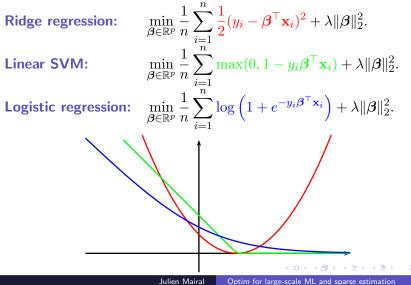


**D** is "adapted" to **x** if it can represent it with a few elements—that is, there exists a sparse vector  $\alpha$  in  $\mathbb{R}^p$  such that  $\mathbf{x} \approx \mathbf{D}\alpha$ . We call  $\alpha$  the sparse code.

$$\underbrace{\begin{pmatrix} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \in \mathbb{R}^{n} \end{cases} \approx \underbrace{\begin{pmatrix} \mathbf{d}_{1} & \mathbf{d}_{2} & \cdots & \mathbf{d}_{p} \\ \mathbf{D} \in \mathbb{R}^{n \times p} & \underbrace{\begin{pmatrix} \boldsymbol{\alpha} [1] \\ \boldsymbol{\alpha} [2] \\ \vdots \\ \boldsymbol{\alpha} [p] \end{pmatrix}}_{\mathbf{D} \in \mathbb{R}^{n \times p}} \underbrace{\begin{pmatrix} \boldsymbol{\alpha} [n] \\ \boldsymbol{\alpha} [2] \\ \vdots \\ \boldsymbol{\alpha} [p] \end{pmatrix}}_{\mathbf{D} \in \mathbb{R}^{n \times p}} \underbrace{\langle \boldsymbol{\alpha} [n] \\ \mathbf{D} \in \mathbb{R}^{n \times p} & \underbrace{\langle \boldsymbol{\alpha} [n] \\ \mathbf{D} \in \mathbb{R}^{n \times p} \\ \mathbf{D} \in \mathbb{R}^{n \times p} & \underbrace{\langle \boldsymbol{\alpha} [n] \\ \mathbf{D} \in \mathbb{R}^{n \times p} \\ \mathbf{D} \in \mathbb{R}^{n \times p} \\ \mathbf{D} \in \mathbb{R}^{n \times p} & \underbrace{\langle \boldsymbol{\alpha} [n] \\ \mathbf{D} \in \mathbb{R}^{n \times p} \\ \mathbf{D} \in \mathbb{R}^{n \times$$

The modern parsimony and the  $\ell_1$ -norm Sparse linear models: machine learning/statistics point of view

A few examples:



53/71

The modern parsimony and the  $\ell_1$ -norm Sparse linear models: machine learning/statistics point of view

A few examples:

**Ridge regression:** 

Linear SVM:

Logistic regression:

$$\min_{\boldsymbol{\beta}\in\mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (y_{i} - \boldsymbol{\beta}^{\top}\mathbf{x}_{i})^{2} + \lambda \|\boldsymbol{\beta}\|_{2}^{2}.$$
$$\min_{\boldsymbol{\beta}\in\mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_{i}\boldsymbol{\beta}^{\top}\mathbf{x}_{i}) + \lambda \|\boldsymbol{\beta}\|_{2}^{2}.$$
$$\min_{\boldsymbol{\beta}\in\mathbb{R}^{p}} \frac{1}{n} \sum_{i=1}^{n} \log\left(1 + e^{-y_{i}\boldsymbol{\beta}^{\top}\mathbf{x}_{i}}\right) + \lambda \|\boldsymbol{\beta}\|_{2}^{2}.$$

The squared  $\ell_2$ -norm induces "smoothness" in  $\beta$ . When one knows in advance that  $\beta$  should be sparse, one should use a sparsity-inducing regularization such as the  $\ell_1$ -norm. [Chen et al., 1999, Tibshirani, 1996]

### The modern parsimony and the $\ell_1$ -norm

### Why does the $\ell_1$ -norm induce sparsity?

Can we get some intuition from the simplest isotropic case?

$$\hat{\boldsymbol{\alpha}}(\lambda) = \operatorname*{arg\,min}_{\boldsymbol{\alpha} \in \mathbb{R}^p} \frac{1}{2} \| \mathbf{x} - \boldsymbol{\alpha} \|_2^2 + \lambda \| \boldsymbol{\alpha} \|_1,$$

or equivalently the Euclidean projection onto the  $\ell_1$ -ball?

$$ilde{oldsymbol{lpha}}(\mu) = \operatorname*{arg\,min}_{oldsymbol{lpha} \in \mathbb{R}^p} rac{1}{2} \| \mathbf{x} - oldsymbol{lpha} \|_2^2 \ \ ext{s.t.} \ \|oldsymbol{lpha}\|_1 \leq \mu.$$

"equivalent" means that for all  $\lambda > 0$ , there exists  $\mu \ge 0$  such that  $\tilde{\alpha}(\mu) = \hat{\alpha}(\lambda)$ .

### The modern parsimony and the $\ell_1$ -norm

### Why does the $\ell_1$ -norm induce sparsity?

Can we get some intuition from the simplest isotropic case?

$$\hat{\boldsymbol{\alpha}}(\lambda) = \operatorname*{arg\,min}_{\boldsymbol{lpha} \in \mathbb{R}^p} rac{1}{2} \| \mathbf{x} - \boldsymbol{lpha} \|_2^2 + \lambda \| \boldsymbol{lpha} \|_1,$$

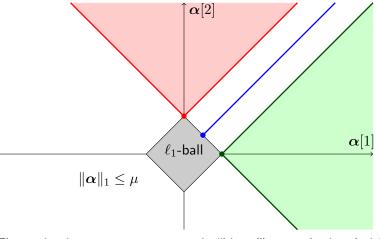
or equivalently the Euclidean projection onto the  $\ell_1$ -ball?

$$ilde{oldsymbol{lpha}}(\mu) = \operatorname*{arg\,min}_{oldsymbol{lpha} \in \mathbb{R}^p} rac{1}{2} \| \mathbf{x} - oldsymbol{lpha} \|_2^2 \ \ ext{s.t.} \ \|oldsymbol{lpha}\|_1 \leq \mu.$$

"equivalent" means that for all  $\lambda > 0$ , there exists  $\mu \ge 0$  such that  $\tilde{\alpha}(\mu) = \hat{\alpha}(\lambda)$ . The relation between  $\mu$  and  $\lambda$  is unknown a priori.

## Why does the $\ell_1$ -norm induce sparsity?

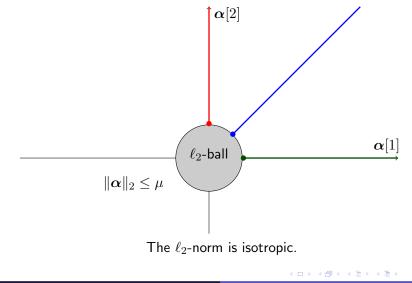
Regularizing with the  $\ell_1$ -norm



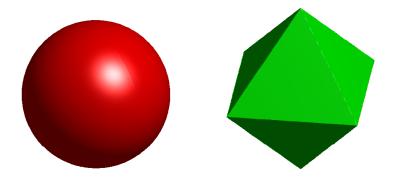
The projection onto a convex set is "biased" towards singularities.

#### Why does the $\ell_1$ -norm induce sparsity?

Regularizing with the  $\ell_2$ -norm

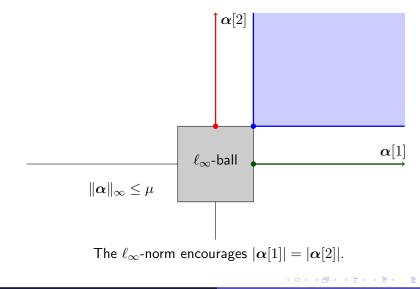


#### Why does the $\ell_1$ -norm induce sparsity? In 3D. (images produced by G. Obozinski)



#### Why does the $\ell_1$ -norm induce sparsity?

Regularizing with the  $\ell_\infty\text{-norm}$ 



Why does the  $\ell_1$ -norm induce sparsity? Analytical point of view: 1D case

$$\min_{\alpha \in \mathbb{R}} \frac{1}{2} (x - \alpha)^2 + \lambda |\alpha|$$

Piecewise quadratic function with a kink at zero.

Derivative at  $0_+$ :  $g_+ = -x + \lambda$  and  $0_-$ :  $g_- = -x - \lambda$ .

Optimality conditions.  $\alpha$  is optimal iff:

• 
$$|\alpha| > 0$$
 and  $(x - \alpha) + \lambda \operatorname{sign}(\alpha) = 0$ 

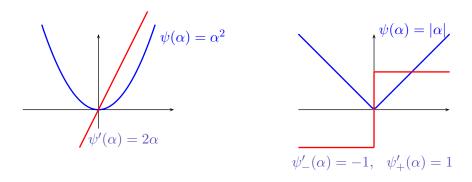
• 
$$lpha=0$$
 and  $g_+\geq 0$  and  $g_-\leq 0$ 

The solution is a soft-thresholding:

$$\alpha^{\star} = \operatorname{sign}(x)(|x| - \lambda)^{+}.$$

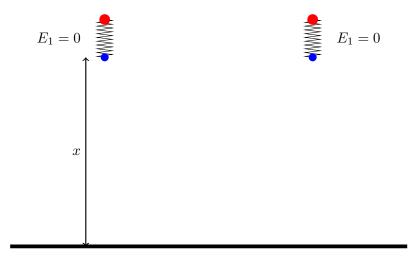
Why does the  $\ell_1$ -norm induce sparsity?

Comparison with  $\ell_2$ -regularization in 1D

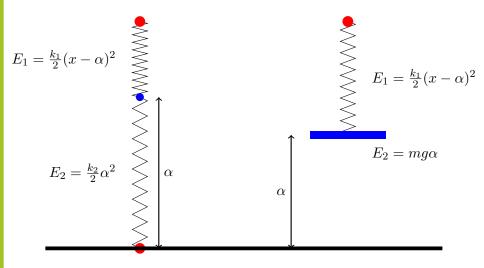


The gradient of the  $\ell_2$ -penalty vanishes when  $\alpha$  get close to 0. On its differentiable part, the norm of the gradient of the  $\ell_1$ -norm is constant.

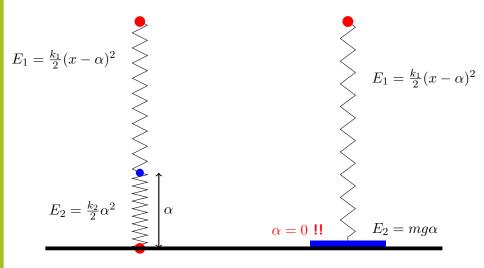
## Why does the $\ell_1$ -norm induce sparsity? Physical illustration



#### Why does the $\ell_1$ -norm induce sparsity? Physical illustration



#### Why does the $\ell_1$ -norm induce sparsity? Physical illustration



Why does the  $\ell_1$ -norm induce sparsity?

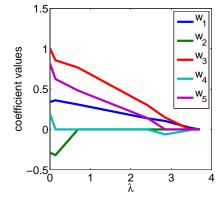


Figure: The regularization path of the Lasso.

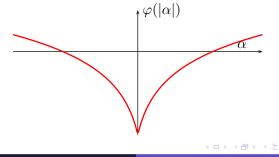
$$\min_{\boldsymbol{\alpha}\in\mathbb{R}^p}\frac{1}{2}\|\mathbf{x}-\mathbf{D}\boldsymbol{\alpha}\|_2^2+\lambda\|\boldsymbol{\alpha}\|_1.$$

#### Non-convex sparsity-inducing penalties

# Exploiting concave functions with a kink at zero $\psi(\alpha) = \sum_{j=1}^{p} \varphi(|\alpha[j]|).$

- $\ell_q$ -penalty, with 0 < q < 1:  $\psi(\alpha) \triangleq \sum_{j=1}^p |\alpha[j]|^q$ , [Frank and Friedman, 1993];
- log penalty,  $\psi(\alpha) \stackrel{\vartriangle}{=} \sum_{j=1}^p \log(|\alpha[j]| + \varepsilon).$

 $\varphi$  is any function that looks like this:



#### Non-convex sparsity-inducing penalties

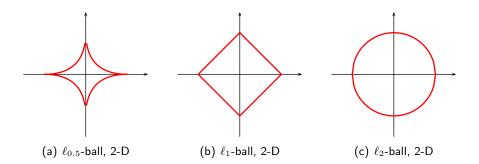
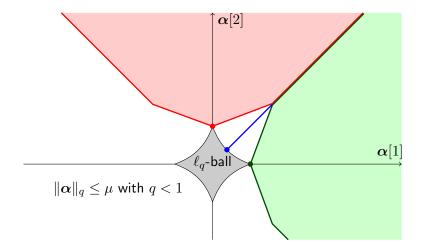


Figure: Open balls in 2-D corresponding to several  $\ell_q$ -norms and pseudo-norms.

#### Non-convex sparsity-inducing penalties

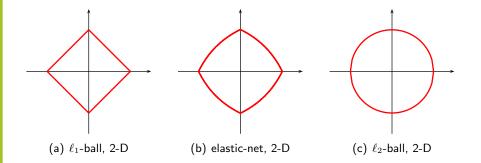


#### Elastic-net

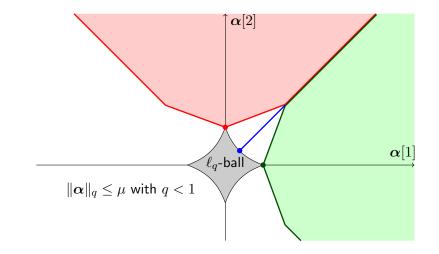
The elastic net introduced by [Zou and Hastie, 2005]

$$\psi(\boldsymbol{\alpha}) = \|\boldsymbol{\alpha}\|_1 + \gamma \|\boldsymbol{\alpha}\|_2^2,$$

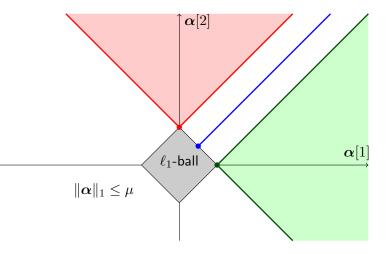
The penalty provides more stable (but less sparse) solutions.



#### vs other penalties



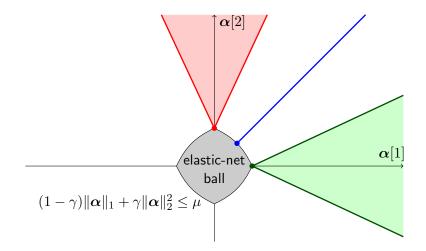
#### vs other penalties



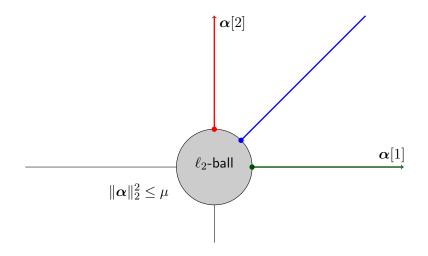
э

< ∃ > < ∃ >

#### vs other penalties



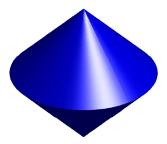
#### vs other penalties



문 > 문

## Structured sparsity

images produced by G. Obozinski





#### Structured sparsity images produced by G. Obozinski





## Mark the date! July 2-6th, Grenoble

Along with Naver Labs, Inria is organizing a summer school in Grenoble on artificial intelligence. Visit https://project.inria.fr/paiss/.

#### Among the distinguished speakers

- Lourdes Agapito (UCL)
- Kyunghyun Cho (NYU/Facebook)
- Emmanuel Dupoux (EHESS)
- Martial Hebert (CMU)
- Hugo Larochelle (Google Brain)
- Yann LeCun (Facebook/NYU)
- Jean Ponce (Inria)

Θ ...

- Cordelia Schmid (Inria)
- Andrew Zisserman (Oxford/Google DeepMind).

#### References I

- A. Agarwal and L. Bottou. A lower bound for the optimization of finite sums. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2015.
- H. Akaike. Information theory and an extension of the maximum likelihood principle. In *Second International Symposium on Information Theory*, volume 1, pages 267–281, 1973.
- Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. *arXiv preprint arXiv:1603.05953*, 2016.
- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.
- Léon Bottou, Jonas Peters, Joaquin Quiñonero-Candela, Denis X Charles, D Max Chickering, Elon Portugaly, Dipankar Ray, Patrice Simard, and Ed Snelson. Counterfactual reasoning and learning systems: The example of computational advertising. *The Journal of Machine Learning Research*, 14 (1):3207–3260, 2013.

・ 同 ト ・ ヨ ト ・ ヨ ト

#### References II

- Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine learning. *arXiv preprint arXiv:1606.04838*, 2016.
- E. J. Candès and D. L. Donoho. Recovering edges in ill-posed inverse problems: Optimality of curvelet frames. *Annals of Statistics*, 30(3):784–842, 2002.
- Antonin Chambolle and Jérôme Darbon. On total variation minimization and surface evolution using parametric maximum flows. *International journal of computer vision*, 84(3):288, 2009.
- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. *SIAM Journal on Scientific Computing*, 20:33–61, 1999.
- P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. *SIAM Multiscale Modeling and Simulation*, 4(4):1168–1200, 2006.
- David Corfield, Bernhard Schölkopf, and Vladimir Vapnik. Falsificationism and statistical learning theory: Comparing the popper and vapnik-chervonenkis dimensions. *Journal for General Philosophy of Science*, 40(1):51–58, 2009.
- I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. *Communications on Pure and Applied Mathematics*, 57(11):1413–1457, 2004.

A B > A B >

### References III

- J. G. Daugman. Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. *Journal of the Optical Society of America A*, 2(7):1160–1169, 1985.
- A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In Advances in Neural Information Processing Systems (NIPS), 2014a.
- A. J. Defazio, T. S. Caetano, and J. Domke. Finito: A faster, permutable incremental gradient method for big data problems. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2014b.
- M. Do and M. Vertterli. Contourlets, Beyond Wavelets. Academic Press, 2003.
- D. L. Donoho and J. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage. *Biometrika*, 81(3):425–455, 1994.
- M. A. Efroymson. Multiple regression analysis. *Mathematical methods for digital computers*, 9(1):191–203, 1960.
- I. E Frank and J. H. Friedman. A statistical view of some chemometrics regression tools. *Technometrics*, 35(2):109–135, 1993.

ヘロン 人間と 人間と 人間と

#### References IV

- G. M. Furnival and R. W. Wilson. Regressions by leaps and bounds. *Technometrics*, 16(4):499–511, 1974.
- R. R. Hocking. A Biometrics invited paper. The analysis and selection of variables in linear regression. *Biometrics*, 32:1–49, 1976.
- H. Hoefling. A path algorithm for the fused lasso signal approximator. *Journal of Computational and Graphical Statistics*, 19(4):984–1006, 2010.
- R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for hierarchical sparse coding. *Journal of Machine Learning Research*, 12: 2297–2334, 2011.
- Guanghui Lan. An optimal randomized incremental gradient method. *arXiv* preprint arXiv:1507.02000, 2015.
- E. Le Pennec and S. Mallat. Sparse geometric image representations with bandelets. *IEEE Transactions on Image Processing*, 14(4):423–438, 2005.
- H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In *Advances in Neural Information Processing Systems*, 2015.

・ロト ・回ト ・ヨト ・

## References V

- J. Mairal. Incremental majorization-minimization optimization with application to large-scale machine learning. *SIAM Journal on Optimization*, 25(2): 829–855, 2015.
- J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for structured sparsity. In *Advances in Neural Information Processing Systems* (*NIPS*), 2010.
- C. L. Mallows. Choosing variables in a linear regression: A graphical aid. unpublished paper presented at the Central Regional Meeting of the Institute of Mathematical Statistics, Manhattan, Kansas, 1964.
- C. L. Mallows. Choosing a subset regression. unpublished paper presented at the Joint Statistical Meeting, Los Angeles, California, 1966.
- B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24:227–234, 1995.
- Y. Nesterov. *Introductory lectures on convex optimization: a basic course*. Kluwer Academic Publishers, 2004.
- Y. Nesterov. Gradient methods for minimizing composite objective function. *Mathematical Programming*, 140(1):125–161, 2013.

高 と く ヨ と く ヨ と

#### References VI

- Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o (1/k2). In *Doklady an SSSR*, volume 269, pages 543–547, 1983.
- R. D. Nowak and M. A. T. Figueiredo. Fast wavelet-based image deconvolution using the EM algorithm. In *Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers.*, 2001.
- B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. *Nature*, 381: 607–609, 1996.
- J. Rissanen. Modeling by shortest data description. *Automatica*, 14(5): 465–471, 1978.
- M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient. *arXiv:1309.2388*, 2013.
- Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij. On causal and anticausal learning. *arXiv preprint arXiv:1206.6471*, 2012.

#### References VII

- G. Schwarz. Estimating the dimension of a model. *Annals of Statistics*, 6(2): 461–464, 1978.
- S. Shalev-Shwartz and T. Zhang. Proximal stochastic dual coordinate ascent. arXiv:1211.2717, 2012.
- S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization. *Mathematical Programming*, pages 1–41, 2014.
- E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger. Shiftable multiscale transforms. *IEEE Transactions on Information Theory*, 38(2): 587–607, 1992.
- R. Tibshirani. Regression shrinkage and selection via the Lasso. *Journal of the Royal Statistical Society: Series B*, 58(1):267–288, 1996.
- Vladimir Vapnik. *The nature of statistical learning theory*. Springer science & business media, 1995.
- S.J. Wright, R.D. Nowak, and M.A.T. Figueiredo. Sparse reconstruction by separable approximation. *IEEE Transactions on Signal Processing*, 57(7): 2479–2493, 2009.

・ 同 ト ・ ヨ ト ・ ヨ ト

## References VIII

- D. Wrinch and H. Jeffreys. XLII. On certain fundamental principles of scientific inquiry. *Philosophical Magazine Series 6*, 42(249):369–390, 1921.
- L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. *SIAM Journal on Optimization*, 24(4):2057–2075, 2014.
- Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for regularized empirical risk minimization. In *Proceedings of the International Conference on Machine Learning (ICML)*, 2015.
- H. Zou and T. Hastie. Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society Series B*, 67(2):301–320, 2005.

伺 ト イヨト イヨト