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Motivation: large-scale machine learning

Minimizing large finite sums of functions

Given data points xi , i = 1, . . . , n, learn some model parameters θ
in Rp by minimizing

min
θ∈Rp

1

n

n
∑

i=1

ℓ(xi , θ) + ψ(θ),

where ℓ measures the data fit, and ψ is a regularization function.

Minimizing expectations

If the amount of data is infinite, we may also need to minimize the
expected cost

min
θ∈Rp

Ex[ℓ(x, θ)] + ψ(θ),

leading to a stochastic optimization problem.
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Motivation: large-scale machine learning

A few examples from the convex world

Ridge regression: min
x∈Rp

1

n

n
∑

i=1

1

2
(yi − ⟨θ, xi ⟩)2 +

λ

2
∥θ∥22.

Linear SVM: min
x∈Rp

1

n

n
∑

i=1

max(0, 1− yi ⟨θ, xi ⟩) +
λ

2
∥θ∥22.

Logistic regression: min
x∈Rp

1

n

n
∑

i=1

log
(

1 + e−yi ⟨θ,xi ⟩
)

+
λ

2
∥θ∥22.
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Methodology

We will consider optimization methods that iteratively build a model of
the objective before updating the variable:

θt ∈ argmin
θ∈Rp

gt(θ),

where gt is easy to minimize and exploits the objective structure: large
finite sum, expectation, (strong) convexity, composite?

There is a large body of related work

Kelley’s and bundle methods;

incremental and online EM algorithms;

incremental and stochastic proximal gradient methods;

variance-reduction techniques for minimizing finite sums.

[Neal and Hinton, 1998, Duchi and Singer, 2009, Bertsekas, 2011, Schmidt et al.,

2013, Defazio et al., 2014a, Shalev-Shwartz and Zhang, 2012, Lan, 2012, 2015]...
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Outline of the talk

1) stochastic majorization-minimization

min
θ∈Rp

Ex[ℓ(x, θ)] + ψ(θ),

where ℓ is not necessarily smooth or convex.

2) incremental majorization-minimization

min
θ∈Rp

1

n

n
∑

i=1

ℓ(xi , θ) + ψ(θ).

⇒ The MISO algorithm for non-convex functions.

3) faster schemes for composite strongly-convex functions

⇒ Another MISO algorithm for strongly-convex functions.

4) ??
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Majorization-minimization principle

f (θ)gt(θ)

θt−1
θt

Iteratively minimize locally tight upper bounds of the objective.

The objective monotonically decreases.

Under some assumptions, we get similar convergence rates as
classical first-order approaches in the convex case.

Julien Mairal, Inria MISO 7/26



Setting: first-order surrogate functions

ht(θ)
f (θ)gt(θ)

θt−1
θt

gt(θt) ≥ f (θt) for θt in argminθ∈Θ gt(θ);

the approximation error ht
△
= gt − f is differentiable, and ∇ht is

L-Lipschitz. Moreover, ht(θt−1) = 0 and ∇ht(θt−1) = 0;

we may also need gt to be strongly convex.
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Examples of first-order surrogate functions

Lipschitz gradient surrogates:
f is L-smooth (differentiable + L-Lipschitz gradient).

g : θ )→ f (κ) +∇f (κ)⊤(θ − κ) +
L

2
∥θ − κ∥22.

Minimizing g yields a gradient descent step θ ← κ− 1
L∇f (κ).

Proximal gradient surrogates:
f = f ′ + ψ with f ′ smooth.

g : θ )→ f ′(κ) +∇f ′(κ)⊤(θ − κ) +
L

2
∥θ − κ∥22 + ψ(θ).

Minimizing g amounts to one step of the forward-backward, ISTA,
or proximal gradient descent algorithm.

[Nesterov, 2004, 2013, Beck and Teboulle, 2009, Wright et al., 2009]...
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Examples of first-order surrogate functions

Linearizing concave functions and dc-programming:
f = f1 + f2 with f2 smooth and concave.

g : θ )→ f1(θ) + f2(κ) +∇f2(κ)⊤(θ − κ).

when f1 is convex, the algorithm is called dc-programming.

Quadratic surrogates:
f is twice differentiable, and H is a uniform upper bound of ∇2f :

g : θ )→ f (κ) +∇f (κ)⊤(θ − κ) +
1

2
(θ − κ)⊤H(θ − κ).

Upper-bounds based on Jensen’s inequality. . .
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Theoretical guarantees of the basic MM algorithm

When using first-order surrogates,

for convex problems: f (θt)− f ⋆ = O(L/t).

for µ-strongly convex ones: O((1− µ/L)t).

for non-convex problems: f (θt) monotonically decreases and

lim inf
t→+∞

inf
θ∈Θ

∇f (θt , θ − θt)
∥θ − θt∥2

≥ 0, (1)

which we call asymptotic stationary point condition.

Directional derivative

∇f (θ,κ) = lim
ε→0+

f (θ + εκ)− f (θ)

ε
.

when Θ = Rp and f is smooth, (1) is equivalent to ∇f (θt)→ 0.
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Stochastic majorization minimization [Mairal, 2013]

Assume that f is an expectation:

f (θ) = Ex[ℓ(θ, x)].

Recipe

Draw a single function ft : θ )→ ℓ(θ, xt) at iteration t;

Choose a first-order surrogate function g̃t for ft at θt−1;

Update the model gt = (1−wt)gt−1 + wt g̃t with appropriate wt ;

Update θt by minimizing gt .

Related Work
online-EM;

online matrix factorization.

[Neal and Hinton, 1998, Mairal et al., 2010, Razaviyayn et al., 2013]...
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Stochastic majorization minimization [Mairal, 2013]

Theoretical Guarantees - Non-Convex Problems
under a set of reasonable assumptions,

f (θt) almost surely converges;

the function gt asymptotically behaves as a first-order surrogate;

asymptotic stationary point conditions hold almost surely.

Theoretical Guarantees - Convex Problems
under a few assumptions, for proximal gradient surrogates, we obtain
similar expected rates as SGD with averaging: O(1/t) for strongly
convex problems, O(log(t)/

√
t) for convex ones.

The most interesting feature of this principle is probably the
ability to deal with some non-smooth non-convex problems.
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Stochastic majorization minimization [Mairal, 2013]

Update Rule for Proximal Gradient Surrogate

θt ← argmin
θ∈Θ

t
∑

i=1

w i
t

[

∇fi (θi−1)⊤θ +
L
2∥θ − θi−1∥22 + ψ(θ)

]

. (SMM)

Other schemes in the literature [Duchi and Singer, 2009]:

θt ← argmin
θ∈Θ

∇ft(θt−1)⊤θ +
1
2ηt
∥θ − θt−1∥22 + ψ(θ), (FOBOS)

or regularized dual averaging (RDA) of Xiao [2010]:

θt ← argmin
θ∈Θ

1

t

t
∑

i=1

∇fi (θi−1)⊤θ +
1
2ηt
∥θ∥22 + ψ(θ). (RDA)

or others...
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Outline of the talk
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n

n
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MISO (MM) for non-convex optimization [Mairal, 2015]

Assume that f splits into many components:

f (θ) =
1

n

n
∑

i=1

f i (θ).

Recipe

Draw at random a single index it at iteration t;

Compute a first-order surrogate g it
t of f it at θt−1;

Incrementally update the approximate surrogate

gt
△
=

1

n

n
∑

i=1

g i
t = gt−1 +

1

n
(g it

t − g it
t−1).

Update θt by minimizing gt .
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MISO (MM) for non-convex optimization [Mairal, 2015]

Theoretical Guarantees - Non-Convex Problems
same as the basic MM algorithm with probability one.

Theoretical Guarantees - Convex Problems
when using proximal gradient surrogates,

for convex problems, f (θ̂t)− f ⋆ = O(nL/t).

for µ-strongly convex problems, f (θt)− f ⋆ = O((1− µ/(nL))t).

The computational complexity is the same as ISTA.

Related work for non-convex problems

incremental EM;

more specific incremental MM algorithms.

[Neal and Hinton, 1998, Ahn et al., 2006].
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MISO for µ-strongly convex smooth functions

Strong convexity provides simple quadratic surrogate functions:

g i
t : θ )→ f i (θt−1) +∇f i (θt−1)

⊤(θ − θt−1) +
µ

2
∥θ − θt−1∥22. (2)

This time, the model of the objective is a lower bound.

Proposition: MISO with lower bounds [Mairal, 2015]

When the functions fi are µ-strongly convex, L-smooth, and
non-negative, MISO with the surrogates (2) guarantees that

E[f (θt)− f ⋆] ≤
(

1−
1

3n

)t

nf ⋆,

under the “big data” condition n ≥ 2L/µ.

Remark

When n ≤ 2L/µ, the algorithm may diverge.
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MISO for µ-strongly convex composite functions
[Lin, Mairal, and Harchaoui, 2015]

First goal: allow a composite term ψ

f (θ)
△
=

1

n

n
∑

i=1

f i (θ) + ψ(θ),

by simply using the composite lower-bounds

g i
t : θ )→ f i (θt−1) +∇f i (θt−1)

⊤(θ − θt−1) +
µ

2
∥θ − θt−1∥22 + ψ(θ). (⋆)

Second goal: remove the condition n ≥ 2L/µ

g i
t : θ )→ (1− δ)g i

t−1(θ) + δ(⋆), (3)

with δ = min
(

1, µn
2(L−µ)

)

instead of δ = 1 previously.

Julien Mairal, Inria MISO 20/26



MISO for µ-strongly convex composite functions
[Lin, Mairal, and Harchaoui, 2015]

Convergence of MISO-prox

When the functions fi are µ-strongly convex, L-smooth, MISO-prox with
the surrogates (3) guarantees that

E[f (θt)]− f ∗ ≤
1

τ
(1− τ)t+1 (f (θ0)− g0(θ0)) with τ ≥ min

{

µ

4L
,
1

2n

}

.

Furthermore, we also have fast convergence of the certificate

E[f (θt)− gt(θt)] ≤
1

τ
(1− τ)t (f ∗ − g0(θ0)) .
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MISO for µ-strongly convex composite functions
[Lin, Mairal, and Harchaoui, 2015]

Relation with SDCA [Shalev-Shwartz and Zhang, 2012].

Variant “5” of SDCA is identical to MISO-Prox with δ = µn
L+µn ;

The construction is primal. The proof of convergence and the
algorithm do not use duality, whereas SDCA is a dual ascent
technique;

gt(θt) is a lower-bound of f ⋆; it plays the same role as the dual
lower bound in SDCA, but is easier to evaluate.

Another viewpoint about SDCA without duality [Shalev-Shwartz, 2015].
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MISO for µ-strongly convex composite functions

We may now compare the expected complexity, using the fact that
incremental algorithms require to compute a single ∇f i per iteration.

µ > 0

grad. desc., ISTA, MISO-MM O
(

n L
µ log

(

1
ε

)

)

FISTA, acc. grad. desc. O
(

n
√

L
µ log

(

1
ε

)

)

SVRG, SAG, SAGA, SDCA, MISOµ, Finito O
(

max
(

n, Lµ

)

log
(

1
ε

)

)

SVRG, SAG, SAGA, SDCA, MISO, Finito improve upon FISTA when

max

(

n,
L

µ

)

≤ n

√

L

µ
⇔

√

L

µ
≤ n,

[Schmidt et al., 2013, Xiao and Zhang, 2014, Defazio et al., 2014a,b,
Shalev-Shwartz and Zhang, 2012, Zhang and Xiao, 2015]
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Can we do better? [Lin, Mairal, and Harchaoui, 2015]

SVRG, SAG, SAGA, SDCA, MISO, Finito improve upon FISTA but
they are not “accelerated” in the sense of Nesterov.

[Beck and Teboulle, 2009, Nesterov, 2013, Shalev-Shwartz and Zhang, 2014,
Lan, 2015, Agarwal and Bottou, 2015, Allen-Zhu, 2016]
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Can we do better? [Lin, Mairal, and Harchaoui, 2015]

SVRG, SAG, SAGA, SDCA, MISO, Finito improve upon FISTA but
they are not “accelerated” in the sense of Nesterov.

How to improve the previous complexities?
1 read classical paper about accelerated gradient methods;

2 stay in the room and listen to G. Lan’s talk;

3 Listen to Hongzhou’s Lin talk tomorrow.

Tuesday, 2:45pm, room 5A

[Beck and Teboulle, 2009, Nesterov, 2013, Shalev-Shwartz and Zhang, 2014,
Lan, 2015, Agarwal and Bottou, 2015, Allen-Zhu, 2016]
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Conclusion

a large class of majorization-minimization algorithms for
non-convex, possibly non-smooth, optimization;

fast algorithms for minimizing large sums of convex functions
(using lower bounds).

see Hongzhou Lin’s talk on acceleration tomorrow.

Related publications

J. Mairal. Optimization with First-Order Surrogate Functions. ICML, 2013.

J. Mairal. Stochastic Majorization-Minimization Algorithms for Large-Scale
Optimization. NIPS, 2013.

J. Mairal. Incremental Majorization-Minimization Optimization with Application
to Large-Scale Machine Learning. SIAM Journal on Optimization, 2015;

H. Lin, J. Mairal, and Z. Harchaoui. A Universal Catalyst for First-Order
Optimization. NIPS, 2015;
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Online Sparse Matrix Factorization

Consider some signals x in Rm. We want to find a dictionary D
in Rm×p. The quality of D is measured through the loss

ℓ(x,D)
△
= min

α∈RK

1

2
∥x−Dα∥22 + λ1∥α∥1 +

λ2
2
∥α∥22.

Then, learning the dictionary amounts to solving

min
D∈D

Ex [ℓ(x,D)] + ϕ(D),

Why is it a matrix factorization problem?

min
D∈D,A∈Rp×n

1

n

[

1

2
∥X−DA∥2F +

n
∑

i=1

λ1∥αi∥1 +
λ2
2
∥αi∥22

]

+ ϕ(D).

Julien Mairal, Inria MISO 27/26



Online Sparse Matrix Factorization

when D = {D ∈ Rm×p s.t. ∥dj∥2 ≤ 1} and ϕ = 0, the problem is
called sparse coding or dictionary learning [Olshausen and Field,
1996, Elad and Aharon, 2006, Mairal et al., 2010].

non-negativity constraints can be easily added. It yields an online
nonnegative matrix factorization algorithm.

ϕ can be a function encouraging a particular structure
in D [Jenatton et al., 2011].
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Online Sparse Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

0s on an old laptop 1.2GHz dual-core CPU. (initialization)
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Online Sparse Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

1.15s on an old laptop 1.2GHz dual-core CPU (0.1 pass)
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Online Sparse Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

5.97s on an old laptop 1.2GHz dual-core CPU (0.5 pass)
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Online Sparse Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

12.44s on an old laptop 1.2GHz dual-core CPU (1 pass)
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Online Sparse Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

23.22s on an old laptop 1.2GHz dual-core CPU (2 passes)
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Online Sparse Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

60.60s on an old laptop 1.2GHz dual-core CPU (5 passes)
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