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Purpose of the talk

introduce the literature on structured sparsity;

introduce structured sparsity tools for graphs;

solve the related combinatorial problems.
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Part I: Introduction to Structured Sparsity
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Wavelet coefficients

Zero-tree wavelets coding [Shapiro, 1993];

block thresholding [Cai, 1999].
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Sparse linear models for natural image patches
Image restoration
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Sparse linear models for natural image patches
Image restoration
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Structured dictionary for natural image patches
[Jenatton, Mairal, Obozinski, and Bach, 2010]
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Structured dictionary for natural image patches
[Mairal, Jenatton, Obozinski, and Bach, 2011]
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Tree of topics
[Jenatton, Mairal, Obozinski, and Bach, 2010]
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Metabolic network of the budding yeast
from Rapaport, Zinovyev, Dutreix, Barillot, and Vert [2007]
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Metabolic network of the budding yeast
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Questions about structured sparsity

min
w∈Rp

R(w)
︸ ︷︷ ︸

convex, smooth

+ λΩ(w)
︸ ︷︷ ︸

regularization

,

Ω should encode some a priori knowledge about w.

, In this talk, we will see

how to design structured sparsity-inducing functions Ω;

How to solve the corresponding estimation/inverse problems.

/ out of the scope of this talk:

consistency, recovery, theoretical properties.
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Regularizing with the ℓ1-norm

w1

w2ℓ1-ball

‖w‖1 ≤ T

The projection onto a convex set is “biased” towards singularities.
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Regularizing with the ℓ2-norm

w1

w2ℓ2-ball

‖w‖2 ≤ T

The ℓ2-norm is isotropic.
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Regularizing with the ℓ∞-norm

w1

w2ℓ∞-ball

‖w‖∞ ≤ T

The ℓ∞-norm encourages |w1| = |w2|.
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In 3D.
Copyright G. Obozinski
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What about more complicated norms?
Copyright G. Obozinski
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What about more complicated norms?
Copyright G. Obozinski
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Group Lasso
Grandvalet and Canu [1999], Turlach et al. [2005], Yuan and Lin [2006]

the ℓ1/ℓq-norm : Ω(w) =
∑

g∈G

‖wg‖q.

G is a partition of {1, . . . , p};

q = 2 or q =∞ in practice;

can be interpreted as the ℓ1-norm of [‖wg‖q]g∈G .

Ω(w) = ‖w{1,2}‖2 + |w3|.
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Structured sparsity with overlapping groups

Warning: Under the name “structured sparsity” appear in fact
significantly different formulations!

1 non-convex

zero-tree wavelets [Shapiro, 1993];
predefined collection of sparsity patterns: [Baraniuk et al., 2010];
select a union of groups: [Huang et al., 2009];
structure via Markov Random Fields: [Cehver et al., 2008];

2 convex (norms)

tree-structure: [Zhao et al., 2009];
select a union of groups: [Jacob et al., 2009];
zero-pattern is a union of groups: [Jenatton et al., 2009];
other norms: [Micchelli et al., 2011].
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Group Lasso with overlapping groups
[Jenatton, Audibert, and Bach, 2009]

Ω(w) =
∑

g∈G

‖wg‖q.

What happens when the groups overlap?

the pattern of non-zero variables is an intersection of groups;

the zero pattern is a union of groups.

Ω(w) = ‖w‖2 + |w2|+ |w3|.
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Hierarchical Norms
[Zhao, Rocha, and Yu, 2009]

A node can be active only if its ancestors are active.
The selected patterns are rooted subtrees.
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Modelling Patterns as Unions of Groups
the non-convex penalty of Huang, Zhang, and Metaxas [2009]

Warning: different point of view than the two previous slides

ϕ(w)
△

= min
J⊆G

{ ∑

g∈J

ηg s.t. Supp(w) ⊆
⋃

g∈J

g
}

.

the penalty is non-convex.

is NP-hard to compute (set cover problem).

The pattern of non-zeroes in w is a union of (a few) groups.

It can be rewritten as a boolean linear program:

ϕ(w) = min
x∈{0,1}|G|

{

η⊤x s.t. Nx ≥ Supp(w)
}

.
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Modelling Patterns as Unions of Groups
convex relaxation and the penalty of Jacob, Obozinski, and Vert [2009]

The penalty of Huang et al. [2009]:

ϕ(w) = min
x∈{0,1}|G|

{

η⊤x s.t. Nx ≥ Supp(w)
}

.

A convex LP-relaxation:

ψ(w)
△

= min
x∈R

|G|
+

{

η⊤x s.t. Nx ≥ |w|
}

.

Lemma: ψ is the penalty of Jacob et al. [2009] with the ℓ∞-norm:

ψ(w)= min
(ξg∈Rp)g∈G

∑

g∈G

ηg‖ξ
g‖∞ s.t. w=

∑

g∈G

ξg and ∀g , Supp(ξg ) ⊆ g ,

Julien Mairal Neyman seminar, UC Berkeley 25/48



Modelling Patterns as Unions of Groups
The norm of Jacob et al. [2009] in 3D

ψ(w) with G = {{1, 2}, {2, 3}, {1, 3}}.
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First-order/proximal methods

min
w∈Rp

R(w) + λΩ(w)

R is convex and differentiable with a Lipshitz gradient.

Generalizes the idea of gradient descent

wk+1←argmin
w∈Rp

R(wk)+∇R(wk)⊤(w −wk)
︸ ︷︷ ︸

linear approximation

+
L

2
‖w −wk‖22

︸ ︷︷ ︸

quadratic term

+λΩ(w)

← argmin
w∈Rp

1

2
‖w − (wk −

1

L
∇R(wk))‖22 +

λ

L
Ω(w)

When λ = 0, wk+1 ← wk − 1
L
∇R(wk), this is equivalent to a

classical gradient descent step.
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First-order/proximal methods

They require solving efficiently the proximal operator

min
w∈Rp

1

2
‖u−w‖22 + λΩ(w)

For the ℓ1-norm, this amounts to a soft-thresholding:

w⋆

i = sign(ui )(ui − λ)
+.

There exists accelerated versions based on Nesterov optimal
first-order method (gradient method with “extrapolation”) [Beck
and Teboulle, 2009, Nesterov, 2007, 1983];

suited for large-scale experiments;

can be used for non-convex optimization.
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First-order/proximal methods

A few proximal operators:

ℓ0-penalty: hard-thresholding;

ℓ1-norm: soft-thresholding;

group-Lasso: group soft-thresholding;

fused-lasso (1D total variation): [Hoefling, 2010];

hierarchical norms: [Jenatton et al., 2010], O(p) complexity;

overlapping group Lasso with ℓ∞-norm: [Mairal et al., 2010],
(link with network flow optimization);
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Part II: Structured Sparsity for Graphs

joint work with B. Yu
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Graph sparsity
G = (V ,E ), with V = {1, . . . , p}
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Graph sparsity
Encouraging patterns with a small number of connected components
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Formulation

min
w∈Rp

R(w)
︸ ︷︷ ︸

convex, smooth

+ λΩ(w)
︸ ︷︷ ︸

regularization

,

Ω should encourage connected patterns in the graph.

the penalty of Huang et al. [2009]:

ϕ(w) = min
x∈{0,1}|G|

{

η⊤x s.t. Nx ≥ Supp(w)
}

.

a convex LP-relaxation (penalty of Jacob et al. [2009]):

ψ(w)
△

= min
x∈R

|G|
+

{

η⊤x s.t. Nx ≥ |w|
}

.
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Structured sparsity for graphs
Group structure for graphs.

Natural choices to encourage connectivity in the graph is to define G as

1 pairs of vertices linked by an arc. only models local interactions;

2 all connected subgraphs up to a size L. cumbersome/intractable;

3 all connected subgraphs. intractable.

Question

Can we replace connected subgraphs by another structure which (i) is
rich enough to model long-range interactions in the graph, and (ii) leads
to computationally feasible penalties?
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Our solution when the graph is a DAG

1 Define G to be the set of all paths in the DAG.
2 Define ηg to be γ + |g | (the cost of selecting a path g).
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Graph sparsity for DAGs

Decomposability of the weights ηg = γ + |g |
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Quick introduction to network flows

References:

Ahuja, Magnanti and Orlin. Network Flows, 1993

Bertsekas. Network Optimization, 1998

A flow f in F is a non-negative function on arcs that respects
conservation constraints (Kirchhoff’s law)

1

1
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Quick introduction to network flows
Properties

Flows usually go from a source node s to a sink node t.

s t
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Quick introduction to network flows

For a graph G = (V ,E ):

An arc (u, v) in E might have capacity constraints: luv ≤ fuv ≤ δuv .

An arc (u, v) in E might have a cost: cuv .

Sending the maximum amount of flow in a network is called
maximum flow problem.

Finding a flow minimizing
∑

(u,v)∈E fuvcuv is called minimum cost
flow problem.

These are linear programs with efficient dedicated
algorithms [Goldberg, 1992] (|V | = 100 000 is “fine”).
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Quick introduction to network flows
Properties

A flow on a DAG can be decomposed into “path-flows”.

s t
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Quick introduction to network flows

An optimization problem on paths might be transformed into an
equivalent flow problem.

Proposition 1

ϕ(w) = min
f ∈F

∑

(u,v)∈E ′

fuvcuv s.t. sj(f ) ≥ 1, ∀j ∈ Supp(w),

Proposition 2

ψ(w) = min
f ∈F

∑

(u,v)∈E ′

fuvcuv s.t. sj(f ) ≥ |wj |, ∀j ∈ {1, . . . , p},

ϕ(w), ψ(w) and similarly the proximal operators, the dual norm of ψ
can be computed in polynomial time using network flow optimization.
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Application 1: Breast Cancer Data

The dataset is compiled from van’t Veer et al. [2002] and the
experiment follows Jacob et al. [2009].

Data description

gene expression data of p = 7910 genes.

n = 295 tumors, 78 metastatic, 217 non-metastatic.

a graph between the genes was compiled by Chuang et al. [2007].
We arbitrary choose arc directions and heuristically remove cycles.

For each run, we keep 20% of the data as a test set, select parameters
by 10-fold cross validation on the remaining 80% and retrain on 80%.
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Application 1: Breast Cancer Data
Results

Results after 20 runs.

Ridge Lasso Elastic-Net Groups-pairs ψ (convex)

error in % 31.0 36.0 31.5 35.9 30.2

error std. 6.1 6.5 6.7 6.8 6.8

nnz 7910 32.6 929 68.4 69.9

connex 58 30.9 355 13.1 1.3

stab 100 7.9 30.9 6.1 32

stab represents the percentage of genes selected in more than 10 runs.

≈ six proximal operators per second on our laptop cpu.
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Application 2: Image denoising

Recipe, similarly to Elad and Aharon [2006]

Extract all 10× 10 overlapping patches from a noisy image.

Obtain a sparse approximation of every patch.

Average the estimates to obtain a clean image.

We use an orthogonal DCT dictionary:
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Application 2: Image denoising

Classical old-fashioned image processing dataset of 12 images.

7 levels of noise.

Parameters optimized on the first 3 images.

σ 5 10 15 20 25 50 100

ℓ0 37.04 33.15 31.03 29.59 28.48 25.26 22.44

ℓ1 36.42 32.28 30.06 28.59 27.51 24.48 21.96

ϕ 37.01 33.22 31.21 29.82 28.77 25.73 22.97

ψ 36.32 32.17 29.99 28.54 27.49 24.54 22.12

PSNR: higher is better.

≈ 4000 proximal operators per second on our laptop cpu.
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Advertisement

Review monograph on sparse optimization:
F. Bach, R. Jenatton, J. Mairal and G. Obozinski. Optimization with
Sparsity-Inducing Penalties. to appear in Foundation and Trends in
Machine Learning.

SPAMS toolbox (C++)

proximal gradient methods for ℓ0, ℓ1, elastic-net, fused-Lasso,
group-Lasso, tree group-Lasso, tree-ℓ0, sparse group Lasso,
overlapping group Lasso...
...for square, logistic, multi-class logistic loss functions.
handles sparse matrices, intercepts, provides duality gaps.
(block) coordinate descent, OMP, LARS-homotopy algorithms.
dictionary learning and matrix factorization (NMF).
fast projections onto some convex sets.
soon: this work!

Try it! http://www.di.ens.fr/willow/SPAMS/
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