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Part I: Optimization is central

to machine learning

Julien Mairal Large-scale optimization for machine learning 2/139



Optimization is central to machine learning

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.
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L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

The labels yi are in

{−1,+1} for binary classification.

{1, . . . ,K} for multi-class classification.

R for regression.

Rk for multivariate regression.

any general set for structured prediction.
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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

The empirical risk minimization (ERM) paradigm

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

Very Popperian point of view, see [Vapnik, 1995, Corfield, Schölkopf, and Vapnik, 2009]...
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In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

The empirical risk minimization (ERM) paradigm, parenthesis on limitations: “(”

it is not always possible to distinguish the generalization error based on available data.

when a complex model A performs slightly better than a simple model B, should we
prefer A or B?

we are also leaving aside the problem of non i.i.d. train/test data, biased data, testing
with counterfactual reasoning... “)”
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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

Example 1: linear models

assume there exists a linear relation between y and features x in Rp.

h(x) = w>x+ b is parametrized by w, b in Rp+1.

L is often a convex loss function.

Ω(h) is often the squared `2-norm ‖w‖2.
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Optimization is central to machine learning

A few examples of linear models with no bias b:

Ridge regression: min
w∈Rp

1

n

n∑
i=1

1

2
(yi − w>xi)2 + λ‖w‖22.

Linear SVM: min
w∈Rp

1

n

n∑
i=1

max(0, 1− yiw>xi) + λ‖w‖22.

Logistic regression: min
w∈Rp

1

n

n∑
i=1

log
(

1 + e−yiw
>xi
)

+ λ‖w‖22.

Loss as a function of w>x
with y = 1.

Julien Mairal Large-scale optimization for machine learning 4/139



Optimization is central to machine learning

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
(w,b)∈Rp+1

1

n

n∑
i=1

L(yi, w
>xi + b)︸ ︷︷ ︸

empirical risk, data fit

+ λ‖w‖22︸ ︷︷ ︸
regularization

.

Example 1: Why the `2-regularization for linear models h(x) = w>x+ b?

Intuition: if x and x′ are similar, so should h(x) and h(x′) be:

|h(x)− h(x′)| ≤ ‖w‖2‖x− x′‖2.

Because we have theory for it (and it works in practice)!
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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
(w,b)∈Rp+1

1

n

n∑
i=1

L(yi, w
>xi + b)︸ ︷︷ ︸

empirical risk, data fit

+ λ‖w‖1︸ ︷︷ ︸
regularization

.

Example 1: Why the `1-regularization for linear models h(x) = w>x+ b?

Intuition: induces sparsity, encourages simple models.

Because we have (too much) theory for it!

`1 and its variants lead to composite optimization problems.

[van de Geer, 2010, Wainwright, 2009, Zhao and Yu, 2006, Candes and Tao, 2005, Chen, Donoho, and

Saunders, 1999, Tibshirani, 1996, Olshausen and Field, 1996, Claerbout and Muir, 1973]...
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Encouraging simple (sparse) models

(a) Dorothy Wrinch
1894–1980

(b) Harold Jeffreys
1891–1989

The existence of simple laws is, then, apparently, to be regarded as a quality of
nature; and accordingly we may infer that it is justifiable to prefer a simple law to
a more complex one that fits our observations slightly better.

[Wrinch and Jeffreys, 1921]. Philosophical Magazine Series.
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Encouraging simple (sparse) models

1921

1950 1960 1970 1980 1990 2000 2010

1921: Wrinch and Jeffrey’s simplicity principle.

1952: Markowitz’s portfolio selection.

1960’s and 70’s: best subset selection in statistics.

1990’s: the wavelet era in signal processing.

1996: Olshausen and Field’s dictionary learning method.

1994–1996: the Lasso (Tibshirani) and Basis pursuit (Chen and Donoho).

2004: compressed sensing (Candes, Romberg and Tao).

2006: Elad and Aharon’s image denoising method.
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Material on sparse estimation (free on arXiv)

long tutorial: http://thoth.inrialpes.fr/people/mairal/resources/pdf/BigOptim.pdf

J. Mairal, F. Bach and J. Ponce. Sparse Modeling for Image and
Vision Processing. Foundations and Trends in Computer Graphics
and Vision. 2014.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization
with sparsity-inducing penalties. Foundations and Trends in
Machine Learning, 4(1). 2012.
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Interlude: Why does the `1-norm induce sparsity?

ℓ1-ball

‖w‖1 ≤ µ

w2

w1

Projection onto convex sets is “biased” towards singularities.
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Interlude: Why does the `1-norm induce sparsity?

w2

w1ℓ2-ball

‖w‖2 ≤ µ

The `2-ball is isotropic.
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Interlude: Why does the `1-norm induce sparsity?

elastic-net

ball

(1− γ)‖w‖1 + γ‖w‖22 ≤ µ

w2

w1

The Elastic-net penalty interpolates between `2 and `1.
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Interlude: Why does the `1-norm induce sparsity?

ℓ1-ball

‖w‖1 ≤ µ

w2

w1

`1 again: the sparsity-inducing effect is more aggressive.
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Interlude: Why does the `1-norm induce sparsity?

w2

w1
ℓq-ball

‖w‖q ≤ µ with q < 1

the sparsity-inducing effect is even more aggressive with non-convex penalties.
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Interlude: Why does the `1-norm induce sparsity?

w2

w1ℓ∞-ball

‖w‖∞ ≤ µ

The `∞-ball encourages solutions such that |w1| = |w2|.
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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λ‖h‖2H︸ ︷︷ ︸
regularization

.

Example 2: kernel methods

H is a Hilbert space (called RKHS) of functions;

H and ϕ are defined implicitly through a positive definite kernel K : X × X → R:

Data points are mapped to the same Hilbert space through ϕ : X → H;

h(x) = 〈h, ϕ(x)〉H is linear after mapping data to H;
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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λ‖h‖2H︸ ︷︷ ︸
regularization

.

Example 2: Why kernel methods?

versatility: X can be anything as soon as a positive definite kernel is defined on it;

natural way to encode a priori knowledge in the model (through K);

ability to learn complex models, since H may be infinite-dimensional;

regularization is natural: |h(x)− h(x′)| ≤ ‖h‖H‖ϕ(x)− ϕ(x′)‖H.
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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λ‖h‖2H︸ ︷︷ ︸
regularization

.

Example 2: How do we optimize in H?

everything can be expressed in terms of inner-products K(xi, x
′
j) = 〈ϕ(xi), ϕ(xj)〉H;

the solution h? lives in the span of the φ(xi)’s: h? =
∑n

j=1 αjϕ(xj).

Then, we obtain an optimization problem (often convex) with respect to α in Rn.

This is a 3-slides summary of a 24-hours course on kernel methods:
http://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/slides/

master2017/master2017.pdf
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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : Rp → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

Example 3

and of course, numerous contri-
butions by other people too!
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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : Rp → Y given labeled training
data (xi, yi)i=1,...,n with xi in Rp, and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

Example 3: Multilayer neural networks
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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : Rp → Y given labeled training
data (xi, yi)i=1,...,n with xi in Rp, and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

Example 3: What is specific to multilayer neural networks?

The “neural network” space H is explicitly parametrized by:

h(x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)).

Linear operations are either unconstrained or they share parameters (e.g., convolutions).

Finding the optimal A1,A2, . . . ,Ak yields a non-convex problem in huge dimension.
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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

Even with simple linear models, it leads to challenging problems in optimization:

scaling both in the problem size n and dimension p;

being able to exploit the problem structure (finite sum);

obtaining convergence and numerical stability guarantees;

obtaining statistical guarantees.
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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

For over-parametrized non-convex models, optimization influences the solution!

fitting perfectly training data is often easy with over-parametrized deep neural networks.

. . . but different optimization methods provide different solutions!

which clearly highlights new challenges for understanding the success of deep models.
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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : X → Y given labeled training
data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

It is not limited to supervised learning

min
h∈H

1

n

n∑
i=1

L(h(xi)) + λΩ(h).

L is not a classification loss any more;

K-means, PCA, EM with mixture of Gaussian, matrix factorization, auto-encoders...
can be explained with such a formulation.
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Optimization is central to machine learning

Examples of unsupervised learning formulations:

min
D∈D

1

n

n∑
i=1

L(D, xi),

clustering:
D = Rp×k and L(D, x) = min

j=1,...,k
‖x− dj‖2.

non-negative matrix factorization [Paatero and Tapper, 1994]:

D = Rp×k+ with L(D, x) = min
α∈Rp+

‖x−Dα‖2.

sparse coding (dictionary learning) [Olshausen and Field, 1996]:

D = {D ∈ Rp×k : ‖dj‖2 ≤ 1} with L(D, x) = min
α∈Rp

1

2
‖x−Dα‖2 + λ‖α‖1.
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Optimization is central to machine learning

Examples of unsupervised learning formulations:

min
D∈D

1

n

n∑
i=1

L(D, xi),

auto-encoders:
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Interlude: matrix factorization

Many of the previous formulations

min
D∈D

1

n

n∑
i=1

L(D, xi) with L(D, x) = min
α∈A

1

2
‖x−Dα‖2 + λψ(α).

can be written as matrix factorization problems:

min
D∈D,A∈A

1

2
‖X−DA‖2F + λψ(A).

which is a key technique for unsupervised data modeling

recommender systems (Netflix prize) and social networks.

document clustering.

genomic pattern discovery.

image processing. . .
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Interlude: matrix factorization

X

m
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D
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A

p

n
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when a factor is sparse.
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or not only one factor is sparse, but it admits a particular structure.
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Interlude: matrix factorization

X

m

n

≈

D

p

×
A

p

n

or one factor admits a particular structure (e.g., piecewise constant), but it is not sparse.
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Interlude: matrix factorization

X

m ≈

D

p

×
A

p

n→ +∞

n→ +∞

or the matrix admits an infinite number of columns, or columns are streamed online.
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Interlude: The sparse coding formulation

was introduced by Olshausen and Field, ’96. It was the first time (together with ICA, see
[Bell and Sejnowski, ’97]) that a simple unsupervised learning principle would lead to

various sorts of “Gabor-like” filters, when
trained on natural image patches.
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Interlude: The sparse coding formulation

or with other structured sparsity-inducing penalties:

[Jenatton et al. 2010], [Kavukcuoglu et al., 2009], [Mairal et al. 2011], [Hyvärinen and Hoyer, 2001].
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Interlude: The archetypal analysis formulation

min
B∈B,A∈A

1

2
‖X−DA‖2F s.t. D = XB,

The columns of A and B are constrained to be in the simplex.

archetypes are convex combinations of data points.

data points are close to convex combinations of arechetypes.

[Cutler and Breiman, 1994].
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Interlude: archetypal analysis for style representation [Dwynen et al., 2018].

Decomposition Manipulation

a) b) c) d)
. . .

46%

32%

6%

0%

e)

Archetype Visualization
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Large-scale optimization for machine learning

What would be a great outline for this tutorial

1 Statistical learning and empirical risk minimization.
2 General principles of gradient-based optimization.

convex optimization
non-convex optimization
non-smooth and composite optimization

3 Quasi-Newton methods.

4 Stochastic Optimization.

5 Distributed Optimization.

6 . . .
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Large-scale optimization for machine learning

What we will do

Introduction to statistical learning and gradient-based optimization.

Introduction to stochastic optimization.

Two or three advanced topics:

Variance-reduced stochastic gradient descent.

Nesterov’s acceleration (momentum).

What does “large-scale” mean?

In this tutorial, it means a problem that fits into a big computer’s main memory ( ≤ 1TB).
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Part II: Statistical learning

and gradient-based optimization
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Statistical learning

Setting

We draw i.i.d. pairs (xi, yi) from some unknown distribution P .

The objective is to minimize over all functions the expected risk:

min
h

{
R(h) = E(x,y)∼P [L(y, h(x))]

}
.

But
1 we do minimize over a class of functions H only.

2 datasets are often finite and we minimize instead the empirical risk:

min
h∈H

{
Rn(h) =

1

n

n∑
i=1

[L(yi, h(xi))]

}
.

3 we minimize approximately.
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Statistical learning

ĥn ∈ arg min
h∈H

Rn(h).

Approximation/Estimation:

R(ĥn)−min
h
R(h) = R(ĥn)−min

h∈H
R(h)︸ ︷︷ ︸

estimation error

+ min
h∈H

R(h)−min
h
R(h)︸ ︷︷ ︸

approximation error

Controlled with regularization (bias/variance, over/under-fitting)

ĥn is obtained approximately by optimization:

R(h̃n)−min
h
R(h) = R(h̃n)−R(ĥn)︸ ︷︷ ︸

optimization error

+R(ĥn)−min
h
R(h)

Insight of Bottou and Bousquet (2008): no need to optimize below statistical error!
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Statistical learning

Approx. errorEstim. error

Size of H
Illustration of the Approximation/Estimation trade-off without considering optimization
cost, inspired from L. Bottou’s tutorial.

. . . but when optimization comes into play, things become more complicated, especially
when the optimization algorithm influences the approximation error!

Julien Mairal Large-scale optimization for machine learning 36/139



Statistical learning

Approx. errorEstim. error

Size of H
Illustration of the Approximation/Estimation trade-off without considering optimization
cost, inspired from L. Bottou’s tutorial.

. . . but when optimization comes into play, things become more complicated, especially
when the optimization algorithm influences the approximation error!

Julien Mairal Large-scale optimization for machine learning 36/139



Statistical learning

Classical rates of estimation

O(D(H)/
√
n) with D(H) growing with the class of function H.

under specific conditions, faster rates may be achieved O(1/n).

more details in http://www.di.ens.fr/~fbach/fbach_frejus_2017.pdf

What conclusions can we draw from an optimization perspective?

convergence rate of stochastic gradient descent (at least for convex problems) may be
asymptotically optimal.

faster algorithms than SGD are not always useful, except if

they are easier to use than SGD (no parameter tuning).

if forgetting the initial condition with SGD takes time
(hard to know in advance).

mathematics, engineering, and experiments are needed.
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Basics of gradient-based optimization

Smooth vs non-smooth

(a) smooth (b) non-smooth

An important quantity to quantify smoothness is the Lipschitz constant of the gradient:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

If f is twice differentiable, L may be chosen as the largest eigenvalue of the Hessian ∇2f .
This is an upper-bound on the function curvature.
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Basics of gradient-based optimization

Convex vs non-convex

(a) non-convex (b) convex (c) strongly-convex

An important quantity to quantify convexity is the strong-convexity constant

f(x) ≥ f(y) +∇f(y)>(x− y) +
µ

2
‖x− y‖2,

If f is twice differentiable, µ may be chosen as the smallest eigenvalue of the Hessian
∇2f . This is a lower-bound on the function curvature.
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Basics of gradient-based optimization
Picture from F. Bach

Why is the condition number L/µ important?
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Basics of gradient-based optimization
Picture from F. Bach

Trajectory of gradient descent with optimal step size.
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Basics of gradient-based optimization
Convex Functions

Why do we care about convexity?

x

f(x)

x⋆

b

b

b
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Basics of gradient-based optimization
Convex Functions

Local observations give information about the global optimum

x

f(x)

x⋆

b

b

b

∇f(x) = 0 is a necessary and sufficient optimality condition for differentiable convex
functions;
it is often easy to upper-bound f(x)− f?.
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Basics of gradient-based optimization

If f is convex and smooth

x⋆

x

f(x)

b

b

b

b
x0

f(x) ≥ f(x0) +∇f(x0)>(x− x0)︸ ︷︷ ︸
linear approximation

;

if f is non-smooth, a similar inequality holds for subgradients.
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Basics of gradient-based optimization

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)>(x− x0)︸ ︷︷ ︸
linear approximation

+L
2 ‖x− x0‖22;
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If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)>(x− x0)︸ ︷︷ ︸
linear approximation

+L
2 ‖x− x0‖22;

g(x) = Cx0 + L
2 ‖x0 − (1/L)∇f(x0)− x‖22.
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Basics of gradient-based optimization

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)>(x− x0)︸ ︷︷ ︸
linear approximation

+L
2 ‖x− x0‖22;

x1 = x0 − 1
L∇f(x0) (gradient descent step).
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Basics of gradient-based optimization
Gradient descent algorithm

Assume that f is convex and L-smooth (∇f is L-Lipschitz).

Theorem

Consider the algorithm

xt ← xt−1 − 1
L∇f(xt−1).

Then,

f(xt)− f? ≤
L‖x0 − x?‖22

2t
.
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Basics of gradient-based optimization
Gradient descent algorithm

Assume that f is convex and L-smooth (∇f is L-Lipschitz).

Theorem

Consider the algorithm

xt ← xt−1 − 1
L∇f(xt−1).

Then,

f(xt)− f? ≤
L‖x0 − x?‖22

2t
.

Complexity point of view

To guarantee f(xt)− f? ≤ ε, we need O(L/ε) iterations.
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Basics of gradient-based optimization
Gradient descent algorithm

Assume that f is convex and L-smooth (∇f is L-Lipschitz).

Theorem

Consider the algorithm

xt ← xt−1 − 1
L∇f(xt−1).

Then,

f(xt)− f? ≤
L‖x0 − x?‖22

2t
.

How to prove this?

Read Nesterov’s book! [Nesterov, 2004].
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Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all x and z,

f(x) ≤ f(z) +∇f(z)>(x− z) + L

2
‖x− z‖22.

By using Taylor’s theorem with integral form,

f(x)− f(z) =
∫ 1

0

∇f(tx+ (1− t)z)>(x− z)dt.

Then,

f(x)−f(z)−∇f(z)>(x−z) =
∫ 1

0

(∇f(tx+(1−t)z)−∇f(z))>(x−z)dt

≤
∫ 1

0

|(∇f(tx+(1−t)z)−∇f(z))>(x−z)|dt

≤
∫ 1

0

‖∇f(tx+(1−t)z)−∇f(z)‖2‖x−z‖2dt (C.-S.)

≤
∫ 1

0

Lt‖x−z‖22dt =
L

2
‖x−z‖22.
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Proof (2/2)
Proof of the theorem

We have shown that for all x,

f(x) ≤ gt(x) = f(xt−1) +∇f(xt−1)
>(x− xt−1) +

L

2
‖x− xt−1‖22.

gt is minimized by xt; it can be rewritten gt(x) = gt(xt) +
L
2
‖x− xt‖22. Then,
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L

2
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L
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‖x− xt−1‖22.

gt is minimized by xt; it can be rewritten gt(x) = gt(xt) +
L
2
‖x− xt‖22. Then,

f(xt) ≤ gt(xt) = gt(x
?)− L

2
‖x? − xt‖22

= f(xt−1) +∇f(xt−1)
>(x? − xt−1) +

L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22

≤ f? +
L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22.

By summing from t = 1 to T , we have a telescopic sum

T (f(xT )− f?) ≤
T∑
t=1

f(xt)− f? ≤
L

2
‖x? − x0‖22 −

L

2
‖x? − xT ‖22 ≤

L

2
‖x? − x0‖22.
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By summing from t = 1 to T , we have a telescopic sum

T (f(xT )− f?) ≤
T∑
t=1

f(xt)− f? ≤
L

2
‖x? − x0‖22 −

L

2
‖x? − xT ‖22 ≤

L

2
‖x? − x0‖22.

(green) - (red) - (blue) - telescopic sum
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Basics of gradient-based optimization

If ∇f is L-Lipschitz continuous and f µ-strongly convex

x⋆

x

f(x)

b

b

b

b
x0

f(x) ≤ f(x0) +∇f(x0)>(x− x0) + L
2 ‖x− x0‖22;

f(x) ≥ f(x0) +∇f(x0)>(x− x0) + µ
2‖x− x0‖22;
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Basics of gradient-based optimization

Proposition

When f is µ-strongly convex and L-smooth, the gradient descent algorithm with step-size
1/L produces iterates such that

f(xt)− f? ≤
(

1− µ

L

)t L‖x0 − x?‖22
2

.

We call that a linear convergence rate.

Remarks

if f is twice differentiable, L and µ represent the larget and smallest eigenvalues of the
Hessian, respectively.

L/µ is called the condition number.
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Basics of gradient-based optimization

Proposition

When f is µ-strongly convex and L-smooth, the gradient descent algorithm with step-size
1/L produces iterates such that

f(xt)− f? ≤
(

1− µ

L

)t L‖x0 − x?‖22
2

.

We call that a linear convergence rate.

Complexity point of view

The number of iterations to guarantee f(xt)− f? ≤ ε is upper bounded by

O

(
L

µ
log

(
L‖x0 − x?‖2

ε

))
.
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Proof

We start from a (blue) inequality from the previous proof

f(xt) ≤ f(xt−1) +∇f(xt−1)
>(x? − xt−1) +

L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22

≤ f? +
L− µ

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22.

In addition, blue! f(xt) ≥ f? + µ
2
‖xt − x?‖22, and thus

‖x? − xt‖22 ≤
L− µ
L+ µ

‖x? − xt−1‖22

≤
(
1− µ

L

)
‖x? − xt−1‖22 ≤

(
1− µ

L

)t
‖x? − x0‖2.

Finally, green! f(xt) ≤ f? +∇f(x?)>(xt − x?) + L
2
‖xt − x?‖2 with ∇f(x?) = 0:

f(xt)− f?≤ L

2
‖xt − x?‖22 ≤

(
1− µ

L

)t L‖x? − x0‖22
2

It is all about green and blue.
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Basics of gradient-based optimization: composite problems

A composite optimization problem consists of minimizing the sum of a smooth and
non-smooth function

min
x∈Rp

{f(x) = f0(x) + ψ(x)} ,

where f0 is L-smooth and ψ is convex but not necessarily smooth.

Examples

`1-norm: ψ(x) = ‖x‖1, which induces sparsity;

Group Lasso: ψ(x) =
∑

g∈G ‖x[g]‖2;

Total variation ψ(x) =
∑p

i=2 |x[i]− x[i− 1]| (here in 1D);

Indicator function of a convex set

ψ(x) =

{
0 if x ∈ C
+∞ otherwise.
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Basics of gradient-based optimization: composite problems

Remark: with stepsize 1/L, gradient descent may be interpreted as iteratively minimizing a
tight upper-bound:

f(x)
gt(x)

b

b

xt−1

xt f(x) ≤ gt(x)

Figure: At each step, we update xt ∈ arg minx∈Rp gt(x)
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Basics of gradient-based optimization: composite problems
An important inequality for composite functions

If ∇f0 is L-Lipschitz continuous

x⋆

x

f(x) = f0(x) + ψ(x)g(x)

b

b

bb

b

x0x1

f0(x)+ψ(x) ≤ f0(x0) +∇f0(x0)>(x− x0) + L
2 ‖x− x0‖22+ψ(x);
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Basics of gradient-based optimization: composite problems
An important inequality for composite functions

If ∇f0 is L-Lipschitz continuous

x⋆

x

f(x) = f0(x) + ψ(x)g(x)

b

b

bb

b

x0x1

f0(x) + ψ(x) ≤ f0(x0) +∇f0(x0)>(x− x0) + L
2 ‖x− x0‖22 + ψ(x);

x1 minimizes g.
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Basics of gradient-based optimization: composite problems

Gradient descent for minimizing f consists of

xt ← arg min
x∈Rp

gt(x) ⇐⇒ xt ← xt−1 −
1

L
∇f(xt−1).

The proximal gradient method for minimizing f = f0 + ψ consists of

xt ← arg min
x∈Rp

gt(x),

which is equivalent to

xt ← arg min
x∈Rp

1

2

∥∥∥∥xt−1 −
1

L
∇f0(xt−1)− x

∥∥∥∥2

2

+
1

L
ψ(x).

It requires computing efficiently the proximal operator [Moreau, 1962] of ψ.

y 7→ arg min
x∈Rp

1

2
‖y − x‖22 + ψ(x).
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Basics of gradient-based optimization: composite problems

Remarks

also known as forward-backward algorithm;

same convergence rates as GD - same proofs;

there exists line search schemes to automatically tune L;

proximal operator can be computed for many interesting functions.

The case of `1

The proximal operator of λ‖.‖1 is the soft-thresholding operator

x[j] = sign(y[j])(|y[j]| − λ)+.

The resulting algorithm is called iterative soft-thresholding.

[Nowak and Figueiredo, 2001, Daubechies et al., 2004, Combettes and Wajs, 2006, Yin et al., 2008,
Beck and Teboulle, 2009a, Wright et al., 2009, Nesterov, 2013]...
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Basics of gradient-based optimization: composite problems

β

αst

λ

−λ

(a) Soft-thresholding operator,
αst = sign(β)max(|β| − λ, 0).

β

αht

µ

−µ

(b) Hard-thresholding operator
αht = δ|β|≥µβ.

Figure: Soft- and hard-thresholding operators, which are commonly used for signal estimation with
orthogonal wavelet basis.
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Basics of gradient-based optimization: composite problems

Proximal operator of `1:

min
x∈R

1

2
(y − x)2 + λ|x|

Piecewise quadratic function with a kink at zero.

Derivative at 0+: g+ = −y + λ and 0−: g− = −y − λ.

Optimality conditions. x is optimal iff:

|x| > 0 and (y − x) + λ sign(x) = 0

x = 0 and g+ ≥ 0 and g− ≤ 0

The solution is a soft-thresholding:

x? = sign(y)(|y| − λ)+.
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Basics of gradient-based optimization: composite problems

Proximal operator of indicator function

Assume that

ψ(x) =

{
0 if x ∈ C
+∞ otherwise.

Then, we obtain the Euclidean projection

Proxψ[y] = arg min
x∈C

‖y − x‖2.

The proximal gradient descent method becomes the projected gradient method:

xt ← ProjC

[
xt−1 −

1

L
∇f0(xt−1)

]
.

Julien Mairal Large-scale optimization for machine learning 58/139



Basics of gradient-based optimization: composite problems

Trick 1 to turn a proof for smooth optimization into a proof for composite optimization

The blue inequality for a smooth function tells us

f(x) ≥ f? +∇f(x?)>(x− x?)︸ ︷︷ ︸
=0

+
µ

2
‖x− x?‖2.

also known as the second-order growth property. It turns out the property is also true for
non-smooth µ-strongly convex functions:

Lemma

If f is a µ-strongly convex function and x? is one of its minimizers, then

f(x) ≥ f? +
µ

2
‖x− x?‖2.
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Basics of gradient-based optimization: composite problems

Trick 1 to turn a proof for smooth optimization into a proof for composite optimization

The blue inequality for a smooth function tells us

f(x) ≥ f? +∇f(x?)>(x− x?)︸ ︷︷ ︸
=0

+
µ

2
‖x− x?‖2.

also known as the second-order growth property. It turns out the property is also true for
non-smooth µ-strongly convex functions:

Consequence

The blue inequality for smooth functions at x? still holds for composite functions.
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Basics of gradient-based optimization: composite problems

Trick 2 to turn a proof for smooth optimization into a proof for composite optimization

For convex functions ψ, the proximal operator p(x) = arg minu
1
2‖x− u‖2 + ψ(u) is

non-expansive
‖p(x)− p(y)‖ ≤ ‖x− y‖ for all x, y.
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Basics of gradient-based optimization: composite problems

Trick 2 to turn a proof for smooth optimization into a proof for composite optimization

For convex functions ψ, the proximal operator p(x) = arg minu
1
2‖x− u‖2 + ψ(u) is

non-expansive
‖p(x)− p(y)‖ ≤ ‖x− y‖ for all x, y.

Proof. 1

2
‖p(x)− y‖2 + ψ(p(x)) ≥ 1

2
‖p(y)− y‖2 + ψ(p(y)) +

1

2
‖p(x)− p(y)‖2

1

2
‖p(y)− x‖2 + ψ(p(y)) ≥ 1

2
‖p(x)− x‖2 + ψ(p(x)) +

1

2
‖p(x)− p(y)‖2

Add both inequalities, expand the quadratic terms and simplify

〈p(y)− p(x), y − x〉 ≥ ‖p(x)− p(y)‖2.

Use Cauchy-Schwarz and conclude (note that you need p(x) to be finite).
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Basics of gradient-based optimization: composite problems

Trick 2 to turn a proof for smooth optimization into a proof for composite optimization

For convex functions ψ, the proximal operator p(x) = arg minu
1
2‖x− u‖2 + ψ(u) is

non-expansive
‖p(x)− p(y)‖ ≤ ‖x− y‖ for all x, y.

Consequence

If you know how to control ‖x− y‖ in the smooth case, you know how to control
‖p(x)− p(y)‖. It turns out that most iterates and even x? can be written as p(x).
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Part III: Nesterov’s Acceleration
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Accelerated gradient descent methods

Nesterov introduced in the 80’s an acceleration scheme for the gradient descent algorithm.

Generalization to the composite setting: FISTA

xt ← arg min
x∈Rp

1

2

∥∥∥∥x− (yt−1 −
1

L
∇f0(yt−1)

)∥∥∥∥2

2

+
1

L
ψ(x);

Find αt > 0 s.t. α2
t = (1− αt)α2

t−1 +
µ

L
αt;

yt ← xt + βt(xt − xt−1) with βt =
αt−1(1− αt−1)

α2
t−1 + αt

.

f(xt)− f? = O(1/t2) for convex problems;

f(xt)− f? = O((1−
√
µ/L)t) for µ-strongly convex problems;

Acceleration works in many practical cases.

see [Beck and Teboulle, 2009a, Nesterov, 1983, 2004, 2013]
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What do we mean by “acceleration”?

Complexity analysis

The complexity to guarantee f(xt)− f? ≤ ε, is given below

µ > 0 µ = 0

ISTA O
(
L
µ log

(
1
ε

))
O
(
L
ε

)
FISTA O

(√
L
µ log

(
1
ε

))
O

(√
L
ε

)

Remarks

the rate of FISTA is optimal for a “first-order local black box” [Nesterov, 2004].

for non-convex problems, acceleration often works in practice, but is poorly understood
from a theoretical perspective (local convexity? convexity along trajectories?
saddle-point escape?).
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How does “acceleration” work?

Unfortunately, the literature does not provide any simple geometric explanation...

but there
are a few obvious facts and a mechanism introduced by Nesterov, called “estimate
sequence”.

Obvious facts

Simple gradient descent steps are “blind” to the past iterates, and are based on a
purely local model of the objective.

Accelerated methods usually involve an extrapolation step yt = xt + βt(xt − xt−1)
with βt in (0, 1).

Nesterov interprets acceleration as relying on a better model of the objective called
estimate sequence.
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How does “acceleration” work?

Definition of estimate sequence [Nesterov].

A pair of sequences (ϕt)t≥0 and (λt)t≥0, with λt ≥ 0 and ϕt : Rp → R, is called an
estimate sequence of function f if λt → 0 and

for any x ∈ Rp and all t ≥ 0, ϕt(x)− f(x) ≤ λt(ϕ0(x)− f(x)).

In addition, if for some sequence (xt)t≥0 we have

f(xt) ≤ ϕ?t
M
= min

x∈Rp
ϕt(x),

then
f(xt)− f? ≤ λt(ϕ0(x?)− f?),

where x? is a minimizer of f .
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How does “acceleration” work?

In summary, we need two properties

1 ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x);

2 f(xt) ≤ ϕ?t
M
= minx∈Rp ϕt(x).

Remarks

ϕt is neither an upper-bound, nor a lower-bound;

Finding the right estimate sequence is often nontrivial.
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How does “acceleration” work?

In summary, we need two properties

1 ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x);

2 f(xt) ≤ ϕ?t
M
= minx∈Rp ϕt(x).

How to build an estimate sequence?

Define ϕt recursively

ϕt(x)
M
= (1− αt)ϕt−1(x) + αtdt(x),

where dt is a lower-bound, e.g., if f is smooth,

dt(x)
M
= f(yt) +∇f(yt)

>(x− yt) +
µ

2
‖x− yt‖22,

Then, work hard to choose αt as large as possible, and yt and xt such that property 2 holds.
Subsequently, λt =

∏t
t=1(1− αt).
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How does “acceleration” work?

In summary, we need two properties

1 ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x);

2 f(xt) ≤ ϕ?t
M
= minx∈Rp ϕt(x).

Example: if αt = 2
k+2 , then λt =

∏t
t=1(1− αt) = 2

(t+1)(t+2) = O(1/t2).

Proofs based on estimates sequences are typically constructive and build the algorithm
at the same time as they prove convergence, while describing the underlying model ϕt.

But they lead to tedious calculations (about 2 pages).
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The ODE point of view?

Gradient descent can be interpreted as Euler’s method to integrate the gradient flow

ẋ(t) = −∇f(x(t)), x(0) = x0.

Nesterov’s accelerated gradient method admits the following interpretations

a faster multistep integration scheme [Scieur et al., 2017].

or by using a second-order ODE [Su et al., 2014]:

ẍ(t) +
3

t
ẋ(t) +∇f(x(t)) = 0, x(0) = x0.

Unfortunately, this is another point of view (which is already good), but not an explanation.

[Su, Boyd, and Candes, 2014, Wibisono, Wilson, and Jordan, 2016, Scieur, Roulet, Bach, and d’Aspremont,

2017]...
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Part IV: Stochastic optimization

without variance reduction
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Stochastic optimization

Figure: Adaline, [Widrow and Hoff, 1960]: A physical device that performs least square regression
using stochastic gradient descent.
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Problems considered in this part

Minimization of expectations with infinite data

min
x∈Rp

{f(x) = Ez[`(x, z)] + ψ(x)} .

In the next part, we will consider

Minimization of (large) finite sums

min
x∈Rp

{
f(x) =

1

n

n∑
i=1

fi(x) + ψ(x)

}
.

The finite-sum problem corresponds to the empirical risk minimization problem, whereas the
second one corresponds to the expected cost.
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The stochastic gradient descent algorithm

Consider now the minimization of an expectation

min
x∈Rp

f(x) = Ez[`(x, z)],

To simplify, we assume that for all z, x 7→ `(x, z) is differentiable.

Algorithm

At iteration t,

Randomly draw one example zt from the training set;

Update the current iterate

xt ← xt−1 − ηt∇ft(xt−1) with ft(x) = `(x, zt).

Perform online averaging of the iterates (optional)

x̃t ← (1− γt)x̃t−1 + γtxt.
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The stochastic gradient descent algorithm

There are various learning rates strategies (constant, varying step-sizes), and averaging
strategies. Depending on the problem assumptions and choice of ηt, γt, classical
convergence rates may be obtained:

f(x̃t)− f? = O(1/
√
t) for convex problems;

f(x̃t)− f? = O(1/t) for strongly-convex ones;

Remarks

The convergence rates are not great, but the complexity per-iteration is small (1
gradient evaluation for minimizing an empirical risk versus n for the batch algorithm).

When the amount of data is infinite, the method minimizes the expected risk (which
is what we want).

Due to Robbins and Monro [1951].

[Nemirovski, Juditsky, Lan, and Shapiro, 2009, Moulines and Bach, 2011]...
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The stochastic gradient descent algorithm

Comparison of complexity between accelerated gradient descent and stochastic gradient
descent for µ-strongly convex objectives, when minimizing a sum of n functions:

FISTA SGD

O
(
n
√

L
µ log

(
1
ε

))
O
(
σ2

µε

)
σ2 is the variance of the gradient estimators used by SGD, assumed to be bounded here.

O(σ2/µε) is the optimal complexity for minimizing an expectation [Nemirovsky and
Yudin, 1983], e.g., with infinite data. FISTA minimizes only the finite sum.

(Realistic) case study

Assuming the (statistical) problem is solved in 100 epochs by SGD with µ ≈ 1/n and L = 1;
⇒ ε = σ2/µ(100n). Then, the complexity of SGD is 100n, whereas the complexity of
FISTA is Õ(n3/2)!
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The stochastic gradient descent algorithm

Example from Mairal et al. [2010] about batch vs stochastic optimization:

The plots display the test objective. See also Léon Bottou’s tutorial from 2007.

Julien Mairal Large-scale optimization for machine learning 74/139



The stochastic gradient descent algorithm

What theory tells us

first use a constant step-size: the objective function value decreases quickly (as full
GD) until it oscillates.

then, use a decreasing step size and start averaging [Polyak and Juditsky, 1992].

What practice “seems” to tell us

for deep networks, reducing twice the learning rate by 10 every x epochs seems ok.

use a mini batch (cheap parallelization), but not too large?

use Nesterov/Heavy-ball’s extrapolation?

use an adaptive learning rate strategy? (see next slides)

averaging? or not?

solutions tend to have small norm: implicit regularization?

Practice changes every year. Beware of big inductive claims.
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The stochastic gradient descent algorithm

Example of averaging effect

0 100 200 300 400 500 600 700 800
epochs

10-5

10-4

10-3

10-2

10-1

100

f 
- 

f*

gene dropout, δ = 0.30
S-MISO η= 1. 0

S-MISO-AVG η= 1. 0

SGD η= 1. 0

SGD-AVG η= 1. 0

but if you start averaging too early, convergence may slow down...

and averaging may break the sparsity for composite problems!
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Theoretical reasons for averaging

Obtaining O(σ2/µ2ε) is easy to obtain without averaging. Averaging helps getting rid of the
sub-optimal 1/µ factor. How come?

Lemma

see Kulunchakov and Mairal [2019], inspired by Ghadimi and Lan [2012].
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Obtaining O(σ2/µ2ε) is easy to obtain without averaging. Averaging helps getting rid of the
sub-optimal 1/µ factor. How come?

Lemma

Assume that an algorithm generates a sequence (xt)t≥0 for minimizing a convex function f ,
and that there exist sequences (Tt)t≥0, (δt)t≥1 in (0, 1), (βt)t≥1 such that.

δtE[f(xt)− f?] + Tt ≤ (1− δt)Tt−1 + βt, ∀ t ≥ 1.

Then, with no averaging: Tt ≤ ΓtT0 +
∑t

k=1 βkΓt−k with Γt
M
=
∏t
k=1(1− δk), and

E[f(xt)− f?] +
Tt
δt
≤ ΓtT0

δt
+

t∑
k=1

βkΓt−k
δt

.
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and that there exist sequences (Tt)t≥0, (δt)t≥1 in (0, 1), (βt)t≥1 such that.

δtE[f(xt)− f?] + Tt ≤ (1− δt)Tt−1 + βt, ∀ t ≥ 1.

Then, with averaging: introduce x̂t = (1− δt)x̂t−1 + δtxt, and

E[f(x̂t)− f?] + Tt ≤ Γt(T0 + f(x0)− f?) +

k∑
t=1

βtΓt−k.

see Kulunchakov and Mairal [2019], inspired by Ghadimi and Lan [2012].
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Proof of the averaging lemma

Divide by Γt =
∏t
k=1(1− δk),

δt
Γt

E[f(xt)− f?] +
Tt
Γt
≤ Tt−1

Γt−1
+
βt
Γt
.

Sum from t = 1 to k and notice that we have a telescopic sum:

t∑
k=1

δk
Γk

E[f(xk)− f?] +
Tt
Γt
≤ T0 +

t∑
k=1

βk
Γk
.

Then, add f(x0)− f? on both sides and multiply by Γt:

t∑
k=1

δkΓt−kE[f(xk)− f?] + Γt(f(x0)− f?) + Tt ≤ Γt (T0 + f(x0)− f?) +

t∑
k=1

βkΓt−k.

Note that
∑t

k=1 δkΓt−k + Γt = 1 and use Jensen’s inequality:

E[f(x̂t)− f?] + Tt ≤ Γt (T0 + f(x0)− f?) +
t∑

k=1

βkΓt−k.
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Theoretical reasons for averaging: back to SGD

It is possible to show that for SGD (and its proximal variant to come in a few slides), we have

µηtE[f(xt)− f?] + Tt ≤ (1− µηt)Tt−1 + µη2
t σ

2, ∀ t ≥ 1.

for Tk = µ
2‖xk − x?‖2, ηt ≤ 1/L is the step-size, and σ2 is the noise variance.

With constant step-size ηt = 1/L (hence, δt = µ/L)

With no averaging:
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E[f(xt)− f?] +
L

2
E[‖xt − x?‖2] ≤

(
1− µ

L

)t L‖x0 − x?‖2
2

+
L

µ

µσ2

L2

t∑
k=1

(
1− µ

L

)t−k
.
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L
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Theoretical reasons for averaging: back to SGD

It is possible to show that for SGD (and its proximal variant to come in a few slides), we have

µηtE[f(xt)− f?] + Tt ≤ (1− µηt)Tt−1 + µη2
t σ

2, ∀ t ≥ 1.

for Tk = µ
2‖xk − x?‖2, ηt is the step-size, and σ2 is the noise variance. (proof is a few lines).

With finite horizon T ≥ O(L/µ): η = 2
µ(2+T )

Note that δt = 2
(2+T ) and that ΓT = 2

(T+1)(T+2) = δT
(T+1) ≤ 2

(T+1)2
.

With no averaging:

E[f(xT )− f?] +
µ

2δT
E[‖xT − x?‖2] ≤ µ‖x0 − x?‖2

2(T + 1)
+

1

δT

σ2

µ(T + 1)2

T∑
k=1

(1− η)T−k .
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Theoretical reasons for averaging: back to SGD

It is possible to show that for SGD (and its proximal variant to come in a few slides), we have

µηtE[f(xt)− f?] + Tt ≤ (1− µηt)Tt−1 + µη2
t σ

2, ∀ t ≥ 1.

for Tk = µ
2‖xk − x?‖2, ηt is the step-size, and σ2 is the noise variance. (proof is a few lines).

It is possible to obtain converging algorithms with decreasing step sizes, as will be
shown next, leading to the complexity

O

(
L

µ
log

(
f(x0)− f?

ε

))
+O

(
σ2

µε

)
.
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The stochastic gradient descent algorithm for composite problems

There are many variants for composite problems [Duchi and Singer, 2009, Ghadimi and
Lan, 2012, e.g.], for minimizing

min
x∈Rp

f(x) = f0(x) + ψ(x),

where f is L-smooth and µ-strongly convex, and ψ is convex. Consider then the algorithm

xt ← Proxηtψ [xt−1 − ηtgt] with E[gt|Ft−1] = ∇f0(xt−1),

With ηt = 1/L and the averaging strategy x̃t = (1− µ/L)x̃t−1 + (µ/L)xt,

E
[
f(x̃t)− f? +

µ

2
‖xt − x?‖2

]
≤ 2

(
1− µ

L

)t
(f(x0)− f?) +

σ2

L
,

assuming σ to be bounded, see for instance [Kulunchakov and Mairal, 2019].
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The stochastic gradient descent algorithm for composite problems

With constant step size, the algorithm converges to a noise-dominated region, as
fast as if the problem was deterministic.

Then, it oscillates, which requires to reduce the variance of the updates. This can be done
by reducing the step sizes:

Lemma

Use a constant step-size strategy until E[f(x̃t)− f?] ≤ 2σ2/L; then restart and use the

decreasing step-sizes ηt = min
(

1
L ,

2
µ(t+2)

)
. The total number of iterations to find a point x̂

such that E[f(x̂)− f?] ≤ ε is upper-bounded by

O

(
L

µ
log

(
f(x0)− f?

ε

))
+O

(
σ2

µε

)
.

see for instance [Kulunchakov and Mairal, 2019].
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Other variants of the stochastic gradient descent algorithm
Inspired by Jamie Soel’s presentation at NIPS’2018

SGD:
xt = xt−1 − ηt∇ft(xt−1).

Heavy-Ball momentum:

xt = xt−1 − ηt∇ft(xt−1) + βt(xt−1 − xt−2).

xt = xt−1 − ηt∇ft(xt−1 + βt(xt−1 − xt−2)) + βt(xt−1 − xt−2).

AdaGrad [Duchi et al., 2011]

xt = xt−1 − ηtH−1
t ∇ft(xt−1).

Adam [Kingma and Ba, 2014]:

xt = xt−1 − ηtH−1
t ∇ft(xt−1) + βtH

−1
t Ht−1(xt−1 − xt−2).
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The proximal accelerated stochastic gradient descent algorithm

O(σ2/µε) is already optimal...

Can we forget faster the initial condition?

Going from

O

(
L

µ
log

(
f(x0)− f?

ε

))
+O

(
σ2

µε

)
.

to

O

(√
L

µ
log

(
f(x0)− f?

ε

))
+O

(
σ2

µε

)
.

The first algorithm achieving this complexity was proposed by Ghadimi and Lan [2012].

Julien Mairal Large-scale optimization for machine learning 85/139



The proximal accelerated stochastic gradient descent algorithm

O(σ2/µε) is already optimal...

Can we forget faster the initial condition?

Going from

O

(
L

µ
log

(
f(x0)− f?

ε

))
+O

(
σ2

µε

)
.

to

O

(√
L

µ
log

(
f(x0)− f?

ε

))
+O

(
σ2

µε

)
.

The first algorithm achieving this complexity was proposed by Ghadimi and Lan [2012].

Julien Mairal Large-scale optimization for machine learning 85/139



The proximal accelerated stochastic gradient descent algorithm

Here is another one [Kulunchakov and Mairal, 2019]:

xt = Proxηtψ [yt−1 − ηtgt] with E[gt|Ft−1] = ∇f0(yt−1)

yt = xt + βt(xt − xt−1) with βt =
(1−√µηt)√ηt+1

(1 +
√
µηt+1)

√
ηt
.

It achieves the previous optimal complexity with (i) one restart, (ii) decreasing step-sizes

ηt = min
(

1
L ,

2
µ(t+2)2

)
, and (iii) without averaging.
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yt = xt + βt(xt − xt−1) with βt =
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It achieves the previous optimal complexity with (i) one restart, (ii) decreasing step-sizes

ηt = min
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1
L ,

2
µ(t+2)2

)
, and (iii) without averaging.

Does it work?

not always.
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The proximal accelerated stochastic gradient descent algorithm

Here is another one [Kulunchakov and Mairal, 2019]:

xt = Proxηtψ [yt−1 − ηtgt] with E[gt|Ft−1] = ∇f0(yt−1)

yt = xt + βt(xt − xt−1) with βt =
(1−√µηt)√ηt+1

(1 +
√
µηt+1)

√
ηt
.

It achieves the previous optimal complexity with (i) one restart, (ii) decreasing step-sizes

ηt = min
(

1
L ,

2
µ(t+2)2

)
, and (iii) without averaging.

why?

we lied to you about the safety of the bounded noise variance assumption.

the accelerated algorithm with constant step size (which is used to forget the initial
condition) has much worth dependency in σ2 (see next slide).

Julien Mairal Large-scale optimization for machine learning 86/139



The proximal accelerated stochastic gradient descent algorithm

Here is another one [Kulunchakov and Mairal, 2019]:

xt = Proxηtψ [yt−1 − ηtgt] with E[gt|Ft−1] = ∇f0(yt−1)

yt = xt + βt(xt − xt−1) with βt =
(1−√µηt)√ηt+1

(1 +
√
µηt+1)

√
ηt
.

It achieves the previous optimal complexity with (i) one restart, (ii) decreasing step-sizes

ηt = min
(

1
L ,

2
µ(t+2)2

)
, and (iii) without averaging.

Is it worthless?

removing the need for averaging is great for sparse problems.

with a mini-batch of size
√
L/µ, we obtain the same complexity as the unaccelerated

algorithm and the same stability w.r.t. σ2, and we can parallelize for free!
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The bounded noise assumption

Consider a quadratic function

min
x∈Rp

{
f(x)

M
=

1

n

n∑
i=1

1

2
(a>i x)2

}
.

Exact and stochastic gradients (drawn by randomply selecting one index i) are respectively

∇f(x) =
1

n
A>Ax g = aia

>
i x.

The amplitude of the gradient error g −∇f(x) is proportional to x, and thus unbounded.

What can we do?

study precisely quadratic problems [Dieuleveut et al., 2017].

make weaker assumptions [Nguyen et al., 2018].

hope that during optimization, the trajectory remains with bounded σ2.
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The problem with accelerated stochastic algorithms

Convergence of proximal SGD with ηt = 1/L

E[f(x̂t)− f?] ≤ 2
(

1− µ

L

)t
(f(x0)− f?) +

σ2

L
.

Convergence of accelerated proximal SGD with ηt = 1/L

E[f(x̂t)− f?] ≤ 2

(
1−

√
µ

L

)t
(f(x0)− f?) +

σ2

√
µL

.

Effect of mini-batches of size
√
L/µ for accelerated proximal SGD

same stability as unaccelerated SGD with respect to σ2;

cost per iteration ×
√
L/µ leads to same complexity as unaccelerated SGD;

easy to parallelize.

in practice seems better than both approaches.

Julien Mairal Large-scale optimization for machine learning 88/139



The problem with accelerated stochastic algorithms

Convergence of proximal SGD with ηt = 1/L

E[f(x̂t)− f?] ≤ 2
(

1− µ

L

)t
(f(x0)− f?) +

σ2

L
.

Convergence of accelerated proximal SGD with ηt = 1/L

E[f(x̂t)− f?] ≤ 2

(
1−

√
µ

L

)t
(f(x0)− f?) +

σ2

√
µL

.

Effect of mini-batches of size
√
L/µ for accelerated proximal SGD

same stability as unaccelerated SGD with respect to σ2;

cost per iteration ×
√
L/µ leads to same complexity as unaccelerated SGD;

easy to parallelize.

in practice seems better than both approaches.

Julien Mairal Large-scale optimization for machine learning 88/139



Part V: Stochastic optimization

with variance reduction
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Back to finite sums

Consider now that the training set is finite:

min
x∈Rp

1

n

n∑
i=1

fi(x),

Question

Can we do as well as SGD in terms of cost per iteration, while enjoying a fast (linear)
convergence rate like (accelerated or not) gradient descent?

For n = 1

The rates are optimal for a “first-order local black box” [Nesterov, 2004].

For n ≥ 1, yes! We need to design algorithms

whose per-iteration computational complexity is smaller than n;

whose convergence rate may be worse than FISTA....

...but with a better expected computational complexity.
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Incremental gradient descent methods

min
x∈Rp

{
f(x) =

1

n

n∑
i=1

fi(x)

}
.

Several randomized algorithms are designed with one ∇fi computed per iteration, with fast
convergence rates, e.g., SAG [Schmidt et al., 2013]:

xt ← xt−1 −
γ

Ln

n∑
i=1

yti with yti =

{
∇fi(xt−1) if i = it
yt−1
i otherwise

.

See also SVRG, SAGA, SDCA, MISO, Finito...
Some of these algorithms perform updates of the form

xt ← xt−1 − ηtgt with E[gt] = ∇f(xt−1),

but gt has lower variance than in SGD.

[Schmidt et al., 2013, Xiao and Zhang, 2014, Defazio et al., 2014a,b, Shalev-Shwartz and Zhang,
2012, Mairal, 2015, Zhang and Xiao, 2015]
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Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation. The number of
gradients evaluations to ensure E[f(xt)− f?] ≤ ε is

µ > 0

FISTA O
(
n
√

L
µ log

(
1
ε

))
SVRG, SAG, SAGA, SDCA, MISO, Finito O

(
max

(
n, L̄µ

)
log
(

1
ε

))
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Main features vs. stochastic gradient descent

Same complexity per-iteration (but higher memory footprint).

Faster convergence (exploit the finite-sum structure).

Less parameter tuning than SGD.

Some variants are compatible with a composite term ψ.

SVRG is better than FISTA if n ≥
√
L/µ.
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Important remarks

When fi(x) = `(z>i x), the memory footprint is O(n) otherwise O(dn), except for
SVRG O(d).

Most algorithms can become adaptive to unknown µ [Kulunchakov and Mairal, 2019].

L̄ is the average (or max) of the Lipschitz constants of the ∇fi’s.

The L for FISTA is the Lipschitz constant of ∇f : L ≤ L̄.
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Incremental gradient descent methods
inspired from F. Bach’s slides.

Variance reduction

Consider two random variables X,Y and define

Z = X − Y + E[Y ].

Then,

E[Z] = E[X]

Var(Z) = Var(X) + Var(Y )− 2cov(X,Y ).

The variance of Z may be smaller if X and Y are positively correlated.

Why is it useful for stochastic optimization?

step-sizes for SGD have to decrease to ensure convergence.

with variance reduction, one may use larger constant step-sizes.
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Incremental gradient descent methods

SVRG

xt = xt−1 − γ (∇fit(xt−1)−∇fit(y) +∇f(y)) ,

where y is updated every epoch and E[∇fit(y)|Ft−1] = ∇f(y).

SAGA

xt = xt−1 − γ
(
∇fit(xt−1)− yt−1

it
+ 1

n

∑n
i=1 y

t−1
i

)
,

where E[yt−1
it
|Ft−1] = 1

n

∑n
i=1 y

t−1
i and yti =

{
∇fi(xt−1) if i = it
yt−1
i otherwise.

MISO/Finito: for n ≥ L/µ, same form as SAGA but

1
n

∑n
i=1 y

t−1
i = −µxt−1 and yti =

{
∇fi(xt−1)− µxt−1 if i = it
yt−1
i otherwise.
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Can we do even better for large finite sums?

Without vs with acceleration

µ > 0

FISTA O
(
n
√

L
µ log

(
1
ε

))
SVRG, SAG, SAGA, SDCA, MISO, Finito O

(
max

(
n, L̄µ

)
log
(

1
ε

))
Accelerated versions O

(
max

(
n,
√
n L̄µ

)
log
(

1
ε

))
Acceleration for specific algorithms [Shalev-Shwartz and Zhang, 2014, Lan, 2015,
Allen-Zhu, 2016, Kulunchakov and Mairal, 2019].

Generic acceleration: Catalyst [Lin, Mairal, and Harchaoui, 2015a] with Õ.

see [Agarwal and Bottou, 2015] for discussions about optimality.

SVRG is better than FISTA if n ≥
√
L/µ.

AccSVRG is better than SVRG if n ≤ L/µ.
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Can we do even better for large finite sums?

Without vs with acceleration

µ > 0

FISTA O
(
n
√

L
µ log

(
1
ε

))
SVRG, SAG, SAGA, SDCA, MISO, Finito O

(
max

(
n, L̄µ

)
log
(

1
ε

))
Accelerated versions O

(
max

(
n,
√
n L̄µ

)
log
(

1
ε

))
if n is huge (one-pass learning): use SGD!
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Questions about incremental methods

Do they work in practice?

for convex objectives

on training error: huge improvements over well-tuned SGD.
on test error: less clear (not worse than SGD).
much easier to use than SGD since constant step size.

for non-convex objectives: nothing clear yet.

When is acceleration useful?

when the problem is badly conditioned (L/µ large).

when the amount of data is large, but not too large (such that one-pass un-regularized
SGD does not work).
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The stochastic finite-sum problem

Assume we want to tackle

min
x∈Rp

1

n

n∑
i=1

fi(x) + ψ(x) with fi(x) = Eρ[f̃i(x, ρ)],

such that the previous algorithms do not apply anymore. Each fi corresponds ot a data
point but each sample is corrupted by a random perturbation ρ.

Assume that we can access unbiased estimates of the gradients fi(x) with variance σ̃2 much
smaller than the noise due to data sampling.
Then, it is possible to adapt the previous algorithms to this setting; the optimal complexity
becomes:

O

((
n+

√
n
L

µ

)
log

(
F (x0)− F ?

ε

))
+O

(
σ̃2

µε

)
,
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A few experiments

0 50 100 150 200 250 300
Effective passes over data, Dataset alpha

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

lo
g(

F
/F

* -1
)

rand-SVRG 1/12L
rand-SVRG 1/3L
acc-SVRG 1/3L
SGD 1/L
SGD-d
acc-SGD-d
acc-mb-SGD-d 0 50 100 150 200 250 300

Effective passes over data, Dataset ckn-cifar

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

lo
g(

F
/F

* -1
)

`2-logistic regression on two datasets, with µ = 1/10n.

no big difference between the variants of SGD with decreasing step sizes;

variance reduction makes a huge difference.

acceleration helps on ckn-cifar.
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`2-logistic regression on two datasets, with µ = 1/100n.

as conditioning worsens, the benefits of acceleration are larger.

accelerated SGD with mini-batches take the lead among SGD methods.
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A few experiments
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*
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rand-SVRG 1/3L

acc-SVRG 1/3L

SGD 1/L

SGD-d

acc-SGD-d

acc-mb-SGD-d
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Effective passes over data

10
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10
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10
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10
-1

10
0

lo
g
(F

/F
*
-1

)

SVM with squared hinge loss on two datasets, with µ = 1/10n.

here, gradients are potentially unbounded and accelerated SGD diverges!

accelerated SGD with mini-batches is stable and faster than SGD.
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Part VI: Catalyst and QNing

H. Lin, J. Mairal, and Z. Harchaoui. Catalyst Acceleration for First-order Convex
Optimization: from Theory to Practice. JMLR. 2018.

H. Lin, J. Mairal, and Z. Harchaoui. An Inexact Variable Metric Proximal Point
Algorithm for Generic Quasi-Newton Acceleration. SIAM Journal on Optimization.
2019.

(we will talk about smoothing techniques and Quasi-Newton)
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An old idea

Old idea: Smooth the function and then optimize.

The strategy appears in early work about variable metric bundle methods. [Chen and

Fukushima, 1999, Fukushima and Qi, 1996, Mifflin, 1996, Fuentes, Malick, and Lemaréchal,

2012, Burke and Qian, 2000] ...

The Moreau-Yosida envelope

Given f : Rd → R a convex function, the Moreau-Yosida envelope of f is the function
F : Rd → R defined as

F (x) = min
w∈Rd

{
f(w) +

κ

2
‖w − x‖2

}
.
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The Moreau-Yosida regularization

F (x) = min
w∈Rd

{
f(w) +

κ

2
‖w − x‖2

}
.

Basic properties [see Lemaréchal and Sagastizábal, 1997]

Minimizing f and F is equivalent in the sense that

min
x∈Rd

F (x) = min
x∈Rd

f(x),

and the solution set of the two problems coincide with each other.

F is continuously differentiable even when f is not and

∇F (x) = κ(x− p(x)).

In addition, ∇F is Lipschitz continuous with parameter LF = κ.

If f is µ-strongly convex then F is also strongly convex with parameter µF = µκ
µ+κ .
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F enjoys nice properties: smoothness, (strong) convexity and we can control its
condition number 1/q = 1 + κ/µ.



The proximal point algorithm

A naive approach consists of minimizing the smoothed objective F instead of f with a
method designed for smooth optimization.

Consider indeed

xk+1 = xk −
1

κ
∇F (xk).

By rewriting the gradient ∇F (xk) as κ(xk − p(xk)), we obtain

xk+1 = p(xk) = arg min
w∈Rp

{
f(w) +

κ

2
‖w − xk‖2

}
.

This is exactly the proximal point algorithm [Martinet, 1970, Rockafellar, 1976].
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The accelerated proximal point algorithm

Consider now

xk+1 = yk −
1

κ
∇F (yk) and yk+1 = xk+1 + βk+1(xk+1 − xk),

where βk+1 is a Nesterov-like extrapolation parameter. We may now rewrite the update
using the value of ∇F , which gives:

xk+1 = p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk)

This is the accelerated proximal point algorithm of Güler [1992].

Remarks

F may be better conditioned than f when 1 + κ/µ ≤ L/µ;

Computing p(yk) has a cost!
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A fresh look at Catalyst [Lin, Mairal, and Harchaoui, 2015b]

Catalyst is a particular accelerated proximal point algorithm with inexact
gradients [Güler, 1992].

xk+1 ≈ p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk)
The quantity xk+1 is obtained by using an optimization method M for approximately
solving:

xk+1 ≈ arg min
w∈Rp

{
f(w) +

κ

2
‖w − yk‖2

}
,

Catalyst provides Nesterov’s acceleration to M with...

restart strategies for solving the sub-problems;

global complexity analysis resulting in theoretical acceleration;

optimal balancing between outer and inner computations.

see also [Frostig et al., 2015, Schmidt et al., 2011, Salzo and Villa, 2012, Devolder et al., 2014,
Shalev-Shwartz and Zhang, 2014]
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This work

Contributions

Generic acceleration scheme, which applies to algorithms M that have linear
convergence rates for strongly convex problems..

Provides explicit support to non-strongly convex objectives.

Complexity analysis for µ-strongly convex objectives.

Complexity analysis for non-strongly convex objectives.
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Requirements on M
Objective function f

f is convex or µ-strongly convex.

Linear convergence

Say a sub-problem consists of minimizing h; we want M to produce a sequence of
iterates (zt)t≥0 with linear convergence rate

h(zt)− h? ≤ CM(1− τM)t(h(z0)− h?),

which may possibly hold only in expectation if M is randomized.

No assumption is made on the behavior of M for non-strongly convex problems.

Variants may be allowed when linear convergence is stated in terms of dual certificate.
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When do we stop the method M?

Three strategies to balance outer and inner computations

(a) use a pre-defined sequence (εk)k≥0 and stop the optimization method M when the
sub-problems minhk satisfies

hk(zt)− h?k ≤ εk.
(b) use a pre-defined sequence (δk)k≥0 and stop the optimization method M when the

sub-problems minhk satisfies

hk(zt)− h?k ≤
δk
2
‖zt − yk‖2.

(c) use a pre-defined budget TM of iterations of the method M.

Remark

(c) implies (a) and requires TM to be larger than necessary in practice; it leads to the
simplest and most effective strategies.
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When do we stop the method M?

Three strategies for µ-strongly convex objectives f

(a) use

εk =
1

2
C(1− ρ)k+1 with C ≥ f(x0)− f∗ and ρ <

√
q.

where q is the inverse of the condition number of F : q = µ
(µ+κ)

(b) use

δk =

√
q

2−√q .

(c) use a pre-defined budget TM of iterations of the method M for solving each
sub-problem with

TM =
1

τM
log

(
19CM

L+ κ

κ

)
. (be more aggressive in practice)
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When do we stop the method M?

Three strategies for µ = 0

(a) use

εk =
f(x0)− f?
2(k + 1)4+γ

with γ > 0.

(b) use

δk =
1

(k + 1)2
.

(c) use a pre-defined budget Tk of iterations of the method M for solving each
sub-problem hk with

Tk = O(log(k)) (use a constant in practice)
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Other implementation details

See the paper for

Nesterov’s extrapolation parameters (fairly standard).

restart strategies for solving the sub-problems.

Spoiler: optimal balance for inner/outer computations

To choose κ, maximize
τM√
µ+ κ

.

Remember that τM drives the convergence rate for the sub-problems

h(wt)− h? ≤ CM(1− τM)t(h(w0)− h?).

For the standard gradient descent method, use κ = L− 2µ.
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Outer-loop convergence analysis

With strong convexity

Using strategy (a),

f(xk)− f∗ 6 C(1− ρ)k+1(f(x0)− f∗) with ρ <
√
q,

and a similar result holds for (b).

Without strong convexity

Using strategy (b),

f(xk)− f∗ 6
4κ‖x0 − x∗‖2

(k + 1)2
.

and a similar result holds for (a).
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Inner-loop convergence analysis

Using appropriate restart strategies, the inner-loop stopping criterions are satisfied after Tk
iterations, where

Tk = Õ

(
1

τM

)
when µ > 0,

and

Tk = Õ

(
log(k)

τM

)
when µ = 0.

The Õ hides logarithmic quantities in µ, κ and universal constants.
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Global complexity analysis

By combining the two previous strategies, we obtain that the guarantee f(xk)− f? ≤ ε is
achieved after N iterations of the method M, where

N = Õ

(
1

τM
√
q

log

(
1

ε

))
when µ > 0,

and

N = Õ

(
1

τM

√
κ

ε
log

(
1

ε

))
when µ = 0.

Similar results hold also for randomized algorithms.

Theoretical choice of κ

maximize
τM√
µ+ κ

.

For gradient descent, τM = µ+κ
L+κ ⇒ κ = L− 2µ⇒ 1

τM
√
q ≤ 2

√
L
µ
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Applications

Expected computational complexity in the regime n ≤ L/µ when µ > 0,

µ > 0 µ = 0 Catalyst µ > 0 Cat. µ = 0

FG O
(
n
(
L
µ

)
log
(
1
ε

))
O
(
nL
ε

) Õ
(
n
√

L
µ
log
(
1
ε

))
Õ

(
n
√

L
ε

)
SAG

O
(
L
µ
log
(
1
ε

))
Õ
(√

nL
µ

log
(
1
ε

))
Õ

(√
nL
ε

)SAGA

Finito/MISO

NASDCA

SVRG

Acc-FG O
(
n
√

L
µ
log
(
1
ε

))
O

(
n
√

L
ε

)
no acceleration

Acc-SDCA Õ
(√

nL
µ

log
(
1
ε

))
NA
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QNing
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Quasi-Newton and L-BFGS
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

Quasi-Newton methods work with the parameter and gradient differences between
successive iterations:

sk , xk+1 − xk, yk , ∇f(xk+1)−∇f(xk).

They start with an initial approximation B0 , σI, and choose Bk+1 to interpolate the
gradient difference:

Bk+1sk = yk.

Since Bk+1 is not unique, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
chooses the symmetric matrix whose difference with Bk is minimal:

Bk+1 = Bk −
BkskskBk
skBksk

+
yky
>
k

y>k sk
.
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Quasi-Newton and L-BFGS
Presentation borrowed from Mark Schmidt, NIPS OPT 2010

Update skipping/damping or a sophisticated line search (Wolfe conditions) can keep
Bk+1 positive-definite.

They perform updates of the form

xk+1 ← xk − ηkB−1
k ∇f(xk).

The BFGS method has a superlinear convergence rate.

But, it still uses a dense p× p matrix Bk.

Instead of storing Bk, the limited-memory BFGS (L-BFGS) method stores the
previous l differences sk and yk.

We can solve a linear system involving these updates when B0 is diagonal in O(dl)
[Nocedal, 1980].
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Limited-Memory BFGS (L-BFGS)

Remarks

using the right initialization B0 is crucial.

the calibration of the line-search is also an art.

Pros

one of the largest practical success of smooth optimization.

Cons

worst-case convergence rates for strongly-convex functions are linear, but no better
than the gradient descent method.

proximal variants typically requires solving many times

min
x∈Rd

1

2
(x− z)Bk(z − z) + ψ(x).

no guarantee of approximating the Hessian.
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QNing

Main recipe

L-BFGS applied to the smoothed objective F with inexact gradients [see Friedlander

and Schmidt, 2012].

inexact gradients are obtained by solving sub-problems using a first-order optimization
method M;

ideally, M is able to adapt to the problem structure (finite sum, composite
regularization).

replace L-BFGS steps by proximal point steps if no sufficient decrease is estimated ⇒
no line search on F ;
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An old idea (again)

Old idea: Smooth the function and then optimize.

The strategy appears in early work about variable metric bundle methods. [Chen and

Fukushima, 1999, Fukushima and Qi, 1996, Mifflin, 1996, Fuentes, Malick, and Lemaréchal,

2012, Burke and Qian, 2000] ...

The Moreau-Yosida envelope

Given f : Rd → R a convex function, the Moreau-Yosida envelope of f is the function
F : Rd → R defined as

F (x) = min
w∈Rd

{
f(w) +

κ

2
‖w − x‖2

}
.

The proximal operator p(x) is the unique minimizer of the problem.
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Obtaining inexact gradients

Algorithm Procedure ApproxGradient

input Current point x in Rd; smoothing parameter κ > 0.
1: Compute the approximate mapping using an optimization method M:

z ≈ arg min
w∈Rd

{
h(w)

M
= f(w) +

κ

2
‖w − x‖2

}
,

2: Estimate the gradient ∇F (x)
g = κ(x− z).

output approximate gradient estimate g, objective value Fa
M
= h(z), proximal mapping z.
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Algorithm QNing

input x0 in Rp; number of iterations K; κ > 0; minimization algorithm M.
1: Initialization: (g0, F0, z0) = ApproxGradient (x0,M); B0 = κI.
2: for k = 0, . . . ,K − 1 do
3: Perform the Quasi-Newton step

xtest = xk −B−1k gk

(gtest, Ftest, ztest) = ApproxGradient (xtest,M) .

4: if Ftest ≤ Fk − 1
2κ‖gk‖2, then

5: (xk+1, gk+1, Fk+1, zk+1) = (xtest, gtest, Ftest, ztest).
6: else
7: Update the current iterate with the last proximal mapping:

xk+1 = zk = xk − (1/κ)gk

(gk+1, Fk+1, zk+1) = ApproxGradient (xk+1,M) .

8: end if
9: update Bk+1 = L-BFGS(Bk, xk+1 − xk, gk+1 − gk).

10: end for
output last proximal mapping zK (solution).
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The main characters:

the sequence (xk)k≥0 that minimizes F ;

the sequence (zk)k≥0 produced by M that minimizes f ;

the gradient approximations gk ≈ ∇F (xk);

the function value approximations Fk ≈ F (xk);

an L-BFGS update with inexact gradients;

an approximate sufficient descent condition.



Requirements on M and restarts

Method M
Say a sub-problem consists of minimizing h; we want M to produce a sequence of
iterates (wt)t≥0 with linear convergence rate

h(wt)− h? ≤ CM(1− τM)t(h(w0)− h?).

Restarts

When f is smooth, we initialize w0 = x when solving

min
w∈Rd

{
f(w) +

κ

2
‖w − x‖2

}
.

When f = f0 + ψ is composite, we use the initialization

w0 = arg min
w∈Rd

{
f0(x) + 〈∇f0(x), w − x〉+

L+ κ

2
‖w − x‖2 + ψ(w)

}
.
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When do we stop the method M?

Three strategies to balance outer and inner computations

(a) use a pre-defined sequence (εk)k≥0 and stop the optimization method M when the
approximate proximal mapping is εk-accurate.

(b) define an adaptive stopping criterion that depends on quantities that are available at
iteration k.

(c) use a pre-defined budget TM of iterations of the method M for solving each
sub-problem.

Remarks

We have already seen all of this for Catalyst.
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(b) define an adaptive stopping criterion that depends on quantities that are available at
iteration k.

(c) use a pre-defined budget TM of iterations of the method M for solving each
sub-problem.

Remarks

We have already seen all of this for Catalyst.
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When do we stop the method M?

Three strategies for µ-strongly convex objectives f

(a) use a pre-defined sequence (εk)k≥0 and stop the optimization method M when the
approximate proximal mapping is εk-accurate.

εk =
1

2
C(1− ρ)k+1 with C ≥ f(x0)− f∗ and ρ =

µ

4(µ+ κ)
.

(b) For minimizing h(w) = f(w) + (κ/2)‖w − x‖2, stop when

h(wt)− h? ≤
κ

36
‖wt − x‖2.

(c) use a pre-defined budget TM of iterations of the method M for solving each
sub-problem with

TM =
1

τM
log

(
19CM

L+ κ

κ

)
. (be more aggressive in practice)
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Remarks and worst-case global complexity

Composite objectives and sparsity

Consider a composite problem with a sparse solution (e.g., ψ = `1). The method produces
two sequences (xk)k≥0 and (zk)k≥0;

F (xk)→ F ?, minimizes the smoothed objective ⇒ no sparsity;

f(zk)→ f?, minimizes the true objective ⇒ the iterates may be sparse if M handles
composite optimization problems;

Global complexity

The number of iterations of M to guarantee f(zk)− f? ≤ ε is at most

Õ( µ+κ
τMµ log(1/ε)) for µ-strongly convex problems.

Õ( κR
2

τMε) for convex problems.
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Global Complexity and choice of κ

Example for gradient descent

With the right step-size, we have τM = (µ+ κ)/(L+ κ) and the complexity for µ > 0
becomes

Õ

(
L+ κ

µ
log(1/ε)

)
.

Example for SVRG for minimizing the sum of n functions

τM = min(1/n, (µ+ κ)/(L+ κ)) and the complexity for µ > 0 is

Õ

(
max

(
µ+ κ

µ
n,
L+ κ

µ

)
log(1/ε)

)
.
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Global Complexity and choice of κ

Example for gradient descent

With the right step-size, we have τM = (µ+ κ)/(L+ κ) and the complexity for µ > 0
becomes

Õ

(
L+ κ

µ
log(1/ε)

)
.

Example for SVRG for minimizing the sum of n functions

τM = min(1/n, (µ+ κ)/(L+ κ)) and the complexity for µ > 0 is

Õ

(
max

(
µ+ κ

µ
n,
L+ κ

µ

)
log(1/ε)

)
.

QNing does not provide any theoretical acceleration, but it does not degrade
significantly the worst-case performance of M (unlike L-BFGS vs gradient descent).

Julien Mairal Large-scale optimization for machine learning 130/139



Global Complexity and choice of κ

Example for gradient descent

With the right step-size, we have τM = (µ+ κ)/(L+ κ) and the complexity for µ > 0
becomes

Õ

(
L+ κ

µ
log(1/ε)

)
.

Example for SVRG for minimizing the sum of n functions

τM = min(1/n, (µ+ κ)/(L+ κ)) and the complexity for µ > 0 is

Õ

(
max

(
µ+ κ

µ
n,
L+ κ

µ

)
log(1/ε)

)
.
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Then, how to choose κ?
(i) assume that L-BFGS steps do as well as Nesterov.
(ii) choose κ as in Catalyst.



Experiments: formulations

`2-regularized Logistic Regression:

min
x∈Rd

1

n

n∑
i=1

log
(
1 + exp(−bi aTi x)

)
+
µ

2
‖x‖2,

`1-regularized Linear Regression (LASSO):

min
x∈Rd

1

2n

n∑
i=1

(bi − aTi x)2 + λ‖x‖1,

`1 − `22-regularized Linear Regression (Elastic-Net):

min
x∈Rd

1

2n

n∑
i=1

(bi − aTi x)2 + λ‖x‖1 +
µ

2
‖x‖2,
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Experiments: Datasets

We consider four standard machine learning datasets with different characteristics in terms
of size and dimension

name covtype alpha real-sim rcv1

n 581 012 250 000 72 309 781 265

d 54 500 20 958 47 152

we simulate the ill-conditioned regime µ = 1/(100n);

λ for the Lasso leads to about 10% non-zero coefficients.
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Experiments: QNing-SVRG

We consider the methods

SVRG: the Prox-SVRG algorithm of Xiao and Zhang [2014].

Catalyst-SVRG: Catalyst applied to SVRG;

L-BFGS (for smooth objectives): Mark Schmidt’s implementation.

QNing-SVRG1: QNing with aggressive strategy (c): one pass over the data in the
inner loop.

QNing-SVRG2: strategy (b), compatible with theory.

We produce 12 figures (3 formulations, 4 datasets).
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Experiments: QNing-SVRG (log scale)
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QNing-SVRG1 ≥ SVRG, QNing-SVRG2;
QNing-SVRG2 ≥ SVRG;
QNing-SVRG1 ≥ Catalyst-SVRG in 10/12 cases.

Julien Mairal Large-scale optimization for machine learning 134/139



Experiments: QNing-ISTA

We consider the methods

ISTA: the proximal gradient descent method with line search.

FISTA: the accelerated ISTA of Beck and Teboulle [2009b].

L-BFGS (for smooth objectives): Mark Schmidt’s implementation.

QNing-ISTA1: QNing with aggressive strategy (c): one pass over the data in the inner
loop.

QNing-ISTA2: strategy (b), compatible with theory.
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Experiments: QNing-ISTA (log scale)
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L-BFGS (for smooth f) is slightly better than QNing-ISTA1;
QNing-ISTA ≥ or � FISTA in 11/12 cases.
QNing-ISTA1 ≥ QNing-ISTA2.
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Experiments: Influence of κ
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QuickeNing-SVRG κ = κ0
QuickeNing-SVRG κ = 10 κ0
QuickeNing-SVRG κ = 100 κ0
QuickeNing-SVRG κ = 1000 κ0

κ0 is the parameter (same as in Catalyst) used in all experiments;
QNing slows down when using κ > κ0;
here, for SVRG, QNing is robust to small values of κ!
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Experiments: Influence of l
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l = 100 in all previous experiments;
l = 5 seems to be a reasonable choice in many cases, especially for sparse problems.
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Conclusions and perspectives

A simple generic Quasi-Newton method for composite functions, with simple
sub-problems, and complexity guarantees.

We also have a variant for dual approaches.

Does not solve the gap between theory and practice for L-BFGS.

Perspectives

QNing-BCD, QNing-SAG,SAGA,SDCA...

Other types of smoothing? ⇒ Links with recent Quasi-Newton methods applied to
other envelopes [Stella et al., 2016].

Simple line search improves slightly the performance.
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