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A 20-megapixel innocent scene

Julien Mairal Lucas-Kanade Reloaded 3/20



...taken at high ISO with low exposure time

Left: high-quality jpg output of the camera ISP.

Right: ×4 super-resolution, after processing a burst of 30 raw images (handheld camera).
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The Camera raw processing pipeline (simplified view)

How does your camera process sensor data?

White
balance.

Black
substraction.

Denoising

Demosaicking

Conversion
to sRGB.
Gamma

correction.

Idea: working with raw data is important, before the camera ISP produces
irremediable damage!
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With raw data, we may leverage aliasing!

Figure: Example of aliasing: undersampled
sinusoid causes confusion with a sinusoid with
lower frequency. Picture from Wikipedia.

Aliasing is usually mitigated with some
optical / digital filters.

If we analyze the aliasing patterns from
multiple frames we can recover high
frequencies.
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Super-resolution from raw image bursts (with natural hand motion)

This is hard because it requires, simultaneously,

accurately aligning images with subpixel accuracy.

dealing with noisy data (blind denoising).

reconstructing color images from the Bayer pattern (demosaicking).
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Multiframe super resolution: prior work

and, among many others:

interpolation-based methods: [Hardie, 2007], [Takeda et al., 2007];

iterative approaches: [Irani and Peleg, 1991], [Elad and Feuer, 1997],[Farsiu et al.,
2004];

(deep) learning-based approaches: [Bhat et al., 2021], [Molini et al., 2019],
[Deudon et al., 2019];

and also the literature on video super-resolution (typically not dealing with raw data).

Interesting for us: synthetic raw datasets from Bhat et al. [2021].
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The “old” world of classical inverse problems.

Image formation model

yk = DBWpkx+ εk.

Inverse problem given y1, . . . , yK

min
x,pk

1

K

K∑
k=1

‖yk −DBWpk︸ ︷︷ ︸
Upk

x‖2 + λφθ(x).

A natural strategy

define an appropriate prior φθ(x) for natural images and optimize!
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The “old” world of classical inverse problems.

Simple relaxation with “half quadratic splitting” + block coordinate descent

min
x,z,pk

1

K

K∑
k=1

‖yk − Upkz‖
2 +

µt
2
‖z − x‖2 + λφθ(x).

minimizing with respect to pk (parameters of an affine transformation) is performed by
Gauss-Newton steps. This is the algorithm of Lucas and Kanade [1981].

minimizing with respect to x requires computing the proximal operator of φθ.

minimizing w.r.t. z can be done by gradient descent steps.

µt increases over the iterations.

Advantage: robustness and interpretability (solves what it is supposed to solve).
Drawback: designing a good image prior by hand is hard
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The “new” world of deep learning models (Pic. https://xkcd.com/)

a form of prior knowledge is encoded in the
model architecture (e.g., a convolutional neural
network for images).

ability to train model parameters θ end to end.

state-of-the-art for many tasks (once the right
model/setup is found).

requires training data.

Advantage: task-adaptive.
Drawback: tuned to specific data distribution.
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Bridging the two worlds with trainable algorithms.

Idea 1: plug-and-play priors [Venkatakrishnan et al., 2013]

Replace proximal operator

argmin
x

1

2
‖z − x‖2 + λφθ(x),

by a convolutional neural network fθ(z).

Idea 2: unrolled optimization [Gregor and LeCun, 2010]

Consider the previous optimization procedure with T steps, producing an estimate
x̂T (Y ), given a burst Y = y1, . . . , yK .

Given a dataset of training pairs (xi, Yi)i=1,...,n, minimize

min
θ

1

n

n∑
i=1

‖x̂T (Yi)− xi‖1.
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Schematic view of our method.

Lucas-Kanade
step

Coarse 
registration

Max likelihood
step CNN

Lucas-Kanade
step

Max likelihood
step CNN

HR image

Raw LR burst

registration parameters

Shared weights
Parameters free 

differentiable modules

we keep the interpretability of the classical inverse problem formulation.

we benefit from a data-driven image prior.
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Extreme ×16 super-resolution.

Figure: Experiment with a synthetic RGB burst of 20 images with random affine motions.
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Experiments on real raw data - Pixel 4a.

Figure: Full scene - camera ISP - Our ×4 results.
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Experiments on real raw data - Pixel 4a.

Figure: Full scene - camera ISP - Our ×4 results.
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Current issues with moving objects

full frame ISP camera Ours full frame ISP camera Ours

Figure: Misalignements artefacts due to moving objects in the scene. Our current implementation
does not handle fast moving objects and then generates visual artefacts.
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Conclusion

Take-home messages

40-years old computer vision algorithms are useful.

aliasing is good.

“classical” approaches are robust and intepretable and greatly benefit from deep
learning principles (differentiable programming).

Future work

microscopy and astronomical imaging where we want to recover “true” signals.

high-quality and high-dynamic range panoramas.

going beyond static scenes.
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