Lucas-Kanade Reloaded: End-to-End Super-Resolution from Raw Image Bursts

Julien Mairal

Inria Grenoble

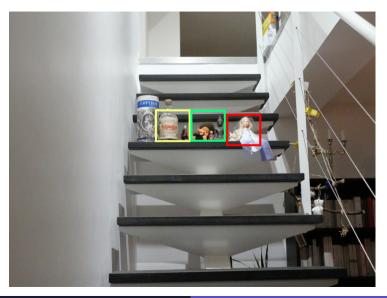
Multidisciplinary Institute In Artificial Intelligence

Collaborators

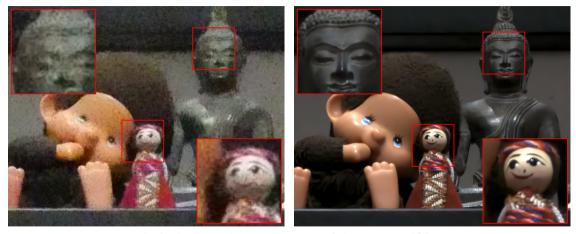
with a picture of me because my webcam is broken

• B. Lecouat, J. Ponce, and J. Mairal. Aliasing is your Ally: End-to-End Super-resolution from Raw Image Bursts. *arXiv:2104.06191*. 2021.

A 20-megapixel innocent scene



Left: high-quality jpg output of the camera ISP.



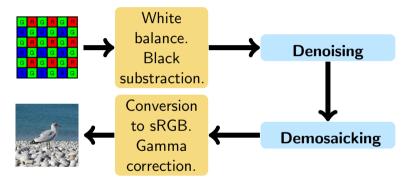
Left: high-quality jpg output of the camera ISP. Right: $\times 4$ super-resolution, after processing a burst of 30 raw images (handheld camera).

Left: high-quality jpg output of the camera ISP. Right: $\times 4$ super-resolution, after processing a burst of 30 raw images (handheld camera).

Left: high-quality jpg output of the camera ISP. Right: $\times 4$ super-resolution, after processing a burst of 30 raw images (handheld camera).

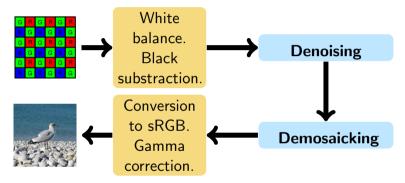
The Camera raw processing pipeline (simplified view)

How does your camera process sensor data?



The Camera raw processing pipeline (simplified view)

How does your camera process sensor data?



Idea: working with raw data is important, before the camera ISP produces irremediable damage!

With raw data, we may leverage aliasing!

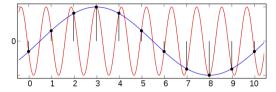


Figure: Example of aliasing: undersampled sinusoid causes confusion with a sinusoid with lower frequency. Picture from Wikipedia.

- Aliasing is usually mitigated with some optical / digital filters.
- If we analyze the aliasing patterns from multiple frames we can recover high frequencies.

Super-resolution from raw image bursts (with natural hand motion)

This is hard because it requires, simultaneously,

- accurately aligning images with subpixel accuracy.
- dealing with noisy data (blind denoising).
- reconstructing color images from the Bayer pattern (demosaicking).

Multiframe super resolution: prior work

and, among many others:

- interpolation-based methods: [Hardie, 2007], [Takeda et al., 2007];
- iterative approaches: [Irani and Peleg, 1991], [Elad and Feuer, 1997], [Farsiu et al., 2004];
- (deep) learning-based approaches: [Bhat et al., 2021], [Molini et al., 2019], [Deudon et al., 2019];
- and also the literature on video super-resolution (typically not dealing with raw data).

Interesting for us: synthetic raw datasets from Bhat et al. [2021].

The "old" world of classical inverse problems.

Image formation model

$$y_k = DBW_{p_k}x + \varepsilon_k.$$

Inverse problem given y_1, \ldots, y_K

$$\min_{x,p_k} \frac{1}{K} \sum_{k=1}^K \|y_k - \underbrace{DBW_{p_k}}_{U_{p_k}} x\|^2 + \lambda \phi_\theta(x).$$

A natural strategy

• define an appropriate prior $\phi_{\theta}(x)$ for natural images and optimize!

The "old" world of classical inverse problems.

Simple relaxation with "half quadratic splitting" + block coordinate descent

$$\min_{x,z,p_k} \frac{1}{K} \sum_{k=1}^{K} \|y_k - U_{p_k} z\|^2 + \frac{\mu_t}{2} \|z - x\|^2 + \lambda \phi_{\theta}(x).$$

- minimizing with respect to p_k (parameters of an affine transformation) is performed by Gauss-Newton steps. This is the algorithm of Lucas and Kanade [1981].
- minimizing with respect to x requires computing the proximal operator of ϕ_{θ} .
- minimizing w.r.t. z can be done by gradient descent steps.
- μ_t increases over the iterations.

The "old" world of classical inverse problems.

Simple relaxation with "half quadratic splitting" + block coordinate descent

$$\min_{x,z,p_k} \frac{1}{K} \sum_{k=1}^{K} \|y_k - U_{p_k} z\|^2 + \frac{\mu_t}{2} \|z - x\|^2 + \lambda \phi_\theta(x).$$

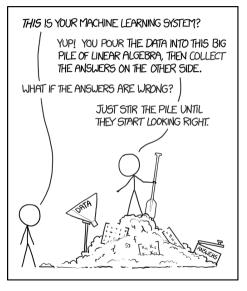
- minimizing with respect to p_k (parameters of an affine transformation) is performed by Gauss-Newton steps. This is the algorithm of Lucas and Kanade [1981].
- minimizing with respect to x requires computing the proximal operator of ϕ_{θ} .
- minimizing w.r.t. z can be done by gradient descent steps.
- μ_t increases over the iterations.

Advantage: robustness and interpretability (solves what it is supposed to solve). Drawback: designing a good image prior by hand is hard

The "new" world of deep learning models (Pic. https://xkcd.com/)

- a form of prior knowledge is encoded in the model architecture (*e.g.*, a convolutional neural network for images).
- ability to train model parameters θ end to end.
- state-of-the-art for many tasks (once the right model/setup is found).
- requires training data.

Advantage: task-adaptive. Drawback: tuned to specific data distribution.



Bridging the two worlds with trainable algorithms.

Idea 1: plug-and-play priors [Venkatakrishnan et al., 2013] Replace proximal operator

$$\underset{x}{\arg\min} \frac{1}{2} \|z - x\|^2 + \lambda \phi_{\theta}(x),$$

by a convolutional neural network $f_{\theta}(z)$.

Bridging the two worlds with trainable algorithms.

Idea 1: plug-and-play priors [Venkatakrishnan et al., 2013] Replace proximal operator

$$\underset{x}{\arg\min} \frac{1}{2} \|z - x\|^2 + \lambda \phi_{\theta}(x),$$

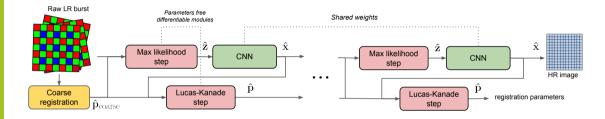
by a convolutional neural network $f_{\theta}(z)$.

Idea 2: unrolled optimization [Gregor and LeCun, 2010]

- Consider the previous optimization procedure with T steps, producing an estimate $\hat{x}_T(Y)$, given a burst $Y = y_1, \ldots, y_K$.
- \bullet Given a dataset of training pairs $(x_i,Y_i)_{i=1,\ldots,n}$, minimize

$$\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \|\hat{x}_T(Y_i) - x_i\|_1.$$

Schematic view of our method.



• we keep the interpretability of the classical inverse problem formulation.

• we benefit from a data-driven image prior.

Extreme $\times 16$ super-resolution.

Figure: Experiment with a synthetic RGB burst of 20 images with random affine motions.

Experiments on real raw data - Pixel 4a.

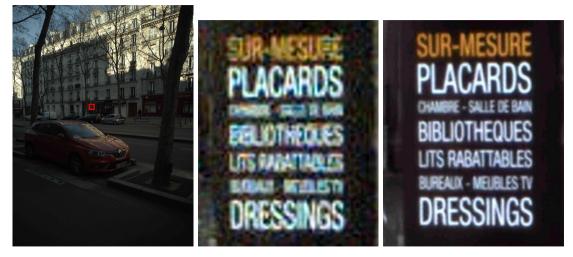
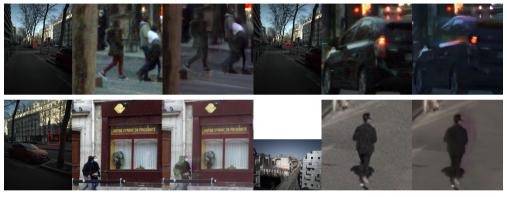


Figure: Full scene - camera ISP - Our $\times 4$ results.

Experiments on real raw data - Pixel 4a.

Figure: Full scene - camera ISP - Our $\times 4$ results.

Current issues with moving objects



full frame ISP camera Ours full frame ISP camera Ours

Figure: Misalignements artefacts due to moving objects in the scene. Our current implementation does not handle fast moving objects and then generates visual artefacts.

Conclusion

Take-home messages

- $\bullet~40\mbox{-years}$ old computer vision algorithms are useful.
- aliasing is good.
- "classical" approaches are robust and intepretable and greatly benefit from deep learning principles (differentiable programming).

Future work

- microscopy and astronomical imaging where we want to recover "true" signals.
- high-quality and high-dynamic range panoramas.
- going beyond static scenes.

References I

- Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu Timofte. Deep burst super-resolution. arXiv preprint arXiv:2101.10997, 2021.
- Michel Deudon, Alfredo Kalaitzis, Md Rifat Arefin, Israel Goytom, Zhichao Lin, Kris Sankaran, Vincent Michalski, Samira E Kahou, Julien Cornebise, and Yoshua Bengio. Highres-net: Multi-frame super-resolution by recursive fusion. 2019.
- Michael Elad and Arie Feuer. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. *IEEE transactions on image processing*, 6(12): 1646–1658, 1997.
- Sina Farsiu, M Dirk Robinson, Michael Elad, and Peyman Milanfar. Fast and robust multiframe super resolution. *IEEE transactions on image processing*, 13(10):1327–1344, 2004.
- Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In *Proc. International Conference on Machine Learning (ICML)*, 2010.
- Russell Hardie. A fast image super-resolution algorithm using an adaptive wiener filter. *IEEE Transactions on Image Processing*, 16(12):2953–2964, 2007.

References II

- Michal Irani and Shmuel Peleg. Improving resolution by image registration. CVGIP: Graphical models and image processing, 53(3):231–239, 1991.
- Bruce D Lucas and Takeo Kanade. An iterative image registration technique with an application to stereo vision. In *Proceedings of Imaging Understanding Workshop*, 1981.
- Andrea Bordone Molini, Diego Valsesia, Giulia Fracastoro, and Enrico Magli. Deepsum: Deep neural network for super-resolution of unregistered multitemporal images. *IEEE Transactions on Geoscience and Remote Sensing*, 58(5):3644–3656, 2019.
- Hiroyuki Takeda, Sina Farsiu, and Peyman Milanfar. Kernel regression for image processing and reconstruction. *IEEE Transactions on image processing*, 16(2):349–366, 2007.
- Singanallur V Venkatakrishnan, Charles A Bouman, and Brendt Wohlberg. Plug-and-play priors for model based reconstruction. In IEEE Global Conference on Signal and Information Processing, pages 945–948. IEEE, 2013.