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Statistical modeling with regularized risk minimization

Given some data points xi , i = 1, . . . , n, learn some model parameters θ
in R

p by minimizing

min
θ∈Rp

1

n

n
∑

i=1

ℓ(xi , θ) + λψ(θ),

where ℓ measures the data fit, and ψ is a regularizer.

The goal of this work is to deal with large n for relatively non-standard
settings (non-convex,non-smooth,stochastic)
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A simple (naive) optimization principle

f (θ)g(θ)
b κ

Objective: min
θ∈Θ

f (θ)

Principle called Majorization-Minimization [Lange et al., 2000];

quite popular in statistics and signal processing.
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In this work

f (θ)g(θ)
b κ

scalable Majorization-Minimization algorithms;

for convex or non-convex and smooth or non-smooth problems;

References

J. Mairal. Optimization with First-Order Surrogate Functions. ICML’13;

J. Mairal. Stochastic Majorization-Minimization Algorithms for
Large-Scale Optimization. NIPS’13.
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In this work

Methodology

extend the MM principle to a large variety of settings;

compute convergence rates for convex problems;

show stationary point conditions for non-convex ones.

First direction: incremental optimization

minimizes (1/n)
∑n

i=1 f
i (θ);

requires some memory about past iterates;

fast convergence rate for several passes over the data.

First direction: stochastic optimization

no memory about past iterates;

minimizes Ex[f (θ, x)].
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Related work

incremental approaches for convex optimization

stochastic average gradient [Schmidt, Roux, and Bach, 2013];

stochastic dual coordinate ascent [Shalev-Schwartz and Zhang,
2012].

stochastic optimization

stochastic proximal methods, e.g., [Duchi and Singer, 2009];

literature about stochastic gradient descent, see, e.g., [Nemirovski
et al., 2009];

non-convex optimization

DC programming, see, e.g., [Gasso et al., 2009];

online EM [Neal and Hinton, 1998, Cappé and Moulines, 2009].
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Setting: First-Order Surrogate Functions

h(θ)
f (θ)g(θ)

b κ

g(θ′) ≥ f (θ′) for all θ′ in argminθ∈Θ g(θ);

the approximation error h
△

= g − f is differentiable, and ∇h is
L-Lipschitz. Moreover, h(κ) = 0 and ∇h(κ) = 0;

we sometimes assume g to be strongly convex.
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The Basic MM Algorithm

Algorithm 1 Basic Majorization-Minimization Scheme

1: Input: θ0 ∈ Θ (initial estimate); T (number of iterations).
2: for t = 1, . . . ,T do

3: Compute a surrogate gt of f near θt−1;
4: Minimize gt and update the solution:

θt ∈ argmin
θ∈Θ

gt(θ).

5: end for

6: Output: θT (final estimate);

Julien Mairal Incremental and Stochastic MM Algorithms 8/30



Examples of First-Order Surrogate Functions

Lipschitz Gradient Surrogates:
f is L-smooth (differentiable + L-Lipschitz gradient).

g : θ 7→ f (κ) +∇f (κ)⊤(θ − κ) + L

2
‖θ − κ‖22.

Minimizing g yields a gradient descent step θ ← κ− 1
L
∇f (κ).
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Examples of First-Order Surrogate Functions

Lipschitz Gradient Surrogates:
f is L-smooth (differentiable + L-Lipschitz gradient).

g : θ 7→ f (κ) +∇f (κ)⊤(θ − κ) + L

2
‖θ − κ‖22.

Minimizing g yields a gradient descent step θ ← κ− 1
L
∇f (κ).

Proximal Gradient Surrogates:
f = f1 + f2 with f1 smooth.

g : θ 7→ f1(κ) +∇f1(κ)⊤(θ − κ) +
L

2
‖θ − κ‖22 + f2(θ).

Minimizing g amounts to one step of the forward-backward, ISTA,
or proximal gradient descent algorithm.
[Beck and Teboulle, 2009, Combettes and Pesquet, 2010, Wright et al.,

2008, Nesterov, 2007].
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Examples of First-Order Surrogate Functions

Linearizing Concave Functions and DC-Programming:
f = f1 + f2 with f2 smooth and concave.

g : θ 7→ f1(θ) + f2(κ) +∇f2(κ)⊤(θ − κ).

When f1 is convex, the algorithm is called DC-programming.
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Examples of First-Order Surrogate Functions

Linearizing Concave Functions and DC-Programming:
f = f1 + f2 with f2 smooth and concave.

g : θ 7→ f1(θ) + f2(κ) +∇f2(κ)⊤(θ − κ).

When f1 is convex, the algorithm is called DC-programming.

Quadratic Surrogates:
f is twice differentiable, and H is a uniform upper bound of ∇2f :

g : θ 7→ f (κ) +∇f (κ)⊤(θ − κ) + 1

2
(θ − κ)⊤H(θ − κ).

Actually a big deal in statistics and machine learning [Böhning and

Lindsay, 1988, Khan et al., 2010, Jebara and Choromanska, 2012].

. . .
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Theoretical Guarantees for Non-convex Problems

When using first-order surrogates,

for convex problems: f (θt)− f ⋆ = O(1/t).

for µ-strongly convex ones: O((1− µ/L)t).
for non-convex problems: f (θt) monotonically decreases and

lim inf
t→+∞

inf
θ∈Θ

∇f (θt , θ − θt)
‖θ − θt‖2

≥ 0, (1)

which we call asymptotic stationary point condition.

Directional derivative

∇f (θ, κ) = lim
ε→0+

f (θ + εκ)− f (θ)

ε
.

when in addition Θ = R
p, (1) is equivalent to ∇f (θt)→ 0.
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Incremental Optimization: MISO

Suppose that f splits into many components:

f (θ) =
1

n

n
∑

i=1

f i (θ).

Recipe

Incrementally update an approximate surrogate 1
n

∑n
i=1 g

i ;

add some heuristics for practical implementations.

Related work for convex problems

related to SAG [Schmidt et al., 2013] and SDCA [Shalev-Schwartz
and Zhang, 2012], but offers different update rules.

Julien Mairal Incremental and Stochastic MM Algorithms 12/30



Incremental Optimization: MISO

Algorithm 2 Incremental Scheme MISO

1: Input: θ0 ∈ Θ; T (number of iterations).
2: Choose surrogates g i

0 of f i near θ0 for all i ;
3: for t = 1, . . . ,T do

4: Randomly pick up one index ı̂t and choose a surrogate g ı̂t
t of f ı̂t

near θt−1. Set g
i
t

△

= g i
t−1 for i 6= ı̂t ;

5: Update the solution:

θt ∈ argmin
θ∈Θ

1

n

n
∑

i=1

g i
t (θ).

6: end for

7: Output: θT (final estimate);
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Incremental Optimization: MISO

Update rule with Lipschitz gradient surrogates

We want to minimize 1
n

∑n
i=1 f

i (θ).

θt = argmin
θ∈Θ

1

n

n
∑

i=1

f i (κi ) +∇f i (κi )⊤(θ − κi ) + L

2
‖θ − κi‖22

=
1

n

n
∑

i=1

κi − 1

Ln

n
∑

i=1

∇f i (κi ).

At iteration n, randomly draw one index ı̂t , and update κı̂t ← θt .

Remarks

replace (1/n)
∑n

i=1 κ
i by θt−1 yields SAG [Schmidt et al., 2013].

replace (1/L) by (1/µ) is almost identical to
SDCA [Shalev-Schwartz and Zhang, 2012].
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Incremental Optimization: MISO

Update rule for proximal gradient surrogates

We want to minimize 1
n

∑n
i=1 f

i (θ) + ψ(θ).

θt = argmin
θ∈Θ

1

n

n
∑

i=1

f i (κit) +∇f i (κit)⊤(θ − κit) +
L

2
‖θ − κit‖22 + ψ(θ)

= argmin
θ∈Θ

1

2

∥

∥

∥

∥

∥

θ −
(

1

n

n
∑

i=1

κit −
1

Ln

n
∑

i=1

∇f i (κit)
)
∥

∥

∥

∥

∥

2

2

+
1

L
ψ(θ).
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Incremental Optimization: MISO

Theoretical Guarantees

for non-convex problems, the guarantees are the same as the
generic MM algorithm with probability one.

for convex problems and proximal gradient surrogates, the expected
convergence rate with averaging becomes O(n/t).

for µ-strongly convex problems and proximal gradient surrogates,
the expected convergence rate is linear O((1− µ/(nL))t).

Remarks for µ-strongly convex problems

the rates of SDCA and SAG in this setting are better: µ/(Ln) is
replaced by O(min(µ/L, 1/n));

the MM principle is too conservative. For smooth problems, we can
match these rates by using “minorizing” surrogates [Mairal, 2014].
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Incremental Optimization: MISO

Example for ℓ2-logistic regression:

min
θ∈Rp

1

n

n
∑

i=1

log(1 + e−yiθ
⊤xi ) +

λ

2
‖θ‖22.

The problem is λ-strongly convex.

Table : Description of datasets used in our experiments.

name n p storage density size (GB)

alpha 500 000 500 dense 1 1.86

ocr 2 500 000 1 155 dense 1 21.5

rcv1 781 265 47 152 sparse 0.0016 0.89

webspam 250 000 16 091 143 sparse 0.0002 13.90
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Incremental Optimization: MISO
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Incremental DC programming

Consider a binary classification problem with n training samples (yi , xi ),
with yi in {−1,+1} and xi in R

p. Assume that there exists a sparse
linear model y ≈ sign(θ⊤x), learned by minimizing

min
θ∈Rp

1

n

n
∑

i=1

log(1 + e−yiθ
⊤xi ) + λψ(θ).

Traditional choices for ψ: ψ(θ) = ‖θ‖22 or ‖θ‖1.
Non-convex sparsity inducing penalty:

ψ(θ) =
∑p

j=1 log(|θ[j ]|+ ε).

θ

ψ(θ)
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Incremental DC programming

upper-bound fi : θ 7→ log(1 + e−yiθ
⊤xi ) by

θ 7→ fi (κ
i ) +∇fi (θt−1)

⊤(θ − θt−1) +
L

2
‖θ − θt−1‖22;

upper-bound λ
∑p

j=1 log(|θ[j ]|+ ε) by

θ 7→ λ

p
∑

j=1

|θ[j ]|
|θt−1[j ]|+ ε

.

this is an incremental reweighted-ℓ1 algorithm [Candès et al., 2008].

The overall surrogate can be minimized in closed-form by using
soft-thresholding.
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Incremental Optimization: MISO
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Stochastic Majorization Minimization: SMM

Suppose that f is an expectation:

f (θ) = Ex[ℓ(θ, x)].

Recipe

Draw a function ft : θ 7→ ℓ(θ, xt) at iteration t;

Iteratively update an approximate surrogate
ḡt = (1−wt)ḡt−1 + wtgt ;

Choose appropriate wt .

Related Work

online-EM [Neal and Hinton, 1998, Cappé and Moulines, 2009];

online dictionary learning [Mairal et al., 2010a].
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Stochastic Majorization Minimization: SMM

Algorithm 3 Stochastic Majorization-Minimization Scheme

1: Input: θ0 ∈ Θ (initial estimate); T (number of iterations); (wt)t≥1,
weights in (0, 1];

2: initialize the approximate surrogate: ḡ0 : θ 7→ ρ
2‖θ − θ0‖22;

3: for t = 1, . . . ,T do

4: draw a training point xt ;
5: choose a surrogate function gt of ft : θ 7→ ℓ(xt , θ) near θt−1;
6: update the approximate surrogate: ḡt = (1− wt)ḡt−1 + wtgt ;
7: update the current estimate:

θt ∈ argmin
θ∈Θ

ḡt(θ);

8: end for

9: Output: θT (current estimate);
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Stochastic Majorization Minimization: SMM

Update Rule for Proximal Gradient Surrogate

θt ← argmin
θ∈Θ

t
∑

i=1

w i
t

[

∇fi (θi−1)
⊤θ + L

2‖θ − θi−1‖22 + ψ(θ)
]

. (SMM)

Other schemes in the literature [Duchi and Singer, 2009]:

θt ← argmin
θ∈Θ

∇ft(θt−1)
⊤θ + 1

2ηt
‖θ − θt−1‖22 + ψ(θ), (FOBOS)

or regularized dual averaging (RDA) of Xiao [2010]:

θt ← argmin
θ∈Θ

1

t

t
∑

i=1

∇fi (θi−1)
⊤θ + 1

2ηt
‖θ‖22 + ψ(θ). (RDA)

or others...
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Stochastic Majorization Minimization: SMM

Theoretical Guarantees - Non-Convex Problems

under a set of reasonable assumptions,

f (θt) almost surely converges;

the function ḡt asymptotically behaves as a first-order surrogate;

we almost surely have asymptotic stationary point conditions.

Theoretical Guarantees - Convex Problems

for proximal gradient surrogates, we obtain similar expected rates as
SGD with averaging [see Nemirovski et al., 2009]: O(1/t) for strongly
convex problems, O(log(t)/

√
t) for convex ones.

(under bounded subgradients assumptions and specific wt).
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Experimental Conclusions for ℓ2-logistic Regression

Incremental and stochastic schemes were significantly faster than
batch ones;

MISO with heuristics was competitive with the state of the art
(SAG, SGD, Liblinear);

after one pass over the data, SMM quickly achieves a
low-precision solution. For higher precision, MISO is prefered.

problems tested were large but relatively well conditioned.
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Online Sparse Matrix Factorization

Consider some signals x in R
m. We want to find a dictionary D

in R
m×K . The quality of D is measured through the loss

ℓ(x,D)
△

= min
α∈RK

1

2
‖x−Dα‖22 + λ1‖α‖1 +

λ2
2
‖α‖22.

Then, learning the dictionary amounts to solving

min
D∈C

Ex [ℓ(x,D)] + ϕ(D),

Why is it a matrix factorization problem?

min
D∈C,A∈RK×n

1

n

[

1

2
‖X−DA‖2F +

n
∑

i=1

λ1‖αi‖1 +
λ2
2
‖αi‖22

]

+ ϕ(D).
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Online Structured Matrix Factorization

when C = {D ∈ R
m×K s.t. ‖dj‖2 ≤ 1} and ϕ = 0, the problem is

called sparse coding or dictionary learning [Olshausen and Field,
1997, Elad and Aharon, 2006, Mairal et al., 2010a].

non-negativity constraints can be easily added. It yields an online
nonnegative matrix factorization algorithm.

ϕ can be a function encouraging a particular structure
in D [Jenatton et al., 2009].
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Online Structured Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

0s on an old laptop 1.2GHz dual-core CPU. (initialization)
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Online Structured Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

1.15s on an old laptop 1.2GHz dual-core CPU (0.1 pass)
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Online Structured Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

5.97s on an old laptop 1.2GHz dual-core CPU (0.5 pass)
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Online Structured Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

12.44s on an old laptop 1.2GHz dual-core CPU (1 pass)
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Online Structured Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

23.22s on an old laptop 1.2GHz dual-core CPU (2 passes)
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Online Structured Matrix Factorization

Dictionary Learning on Natural Image Patches

Consider n = 250 000 whitened natural image patches of size
m = 12× 12. We learn a dictionary with K = 256 elements.

60.60s on an old laptop 1.2GHz dual-core CPU (5 passes)
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Conclusion

What we have done

we have given a unified view of a large number of algorithms;

... and introduced new ones for large-scale optimization.

A take-home message

our algorithms are likely to be useful for large-scale non-convex

and possibly non-smooth problems, which is a relatively
non-standard, but useful, setting.

Source Code

code is now available in the toolbox SPAMS (C++ interfaced with
Matlab, Python, R). http://spams-devel.gforge.inria.fr/;
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Examples of First-Order Surrogate Functions

More Exotic Surrogates:
Consider a smooth approximation of the trace (nuclear) norm see
François Caron’s talk)

fµ : θ 7→ Tr
(

(θ⊤θ + µI)1/2
)

=

p
∑

i=1

√

λi (θ⊤θ) + µ,

f ′ : H 7→ Tr
(

H1/2
)

is concave on the set of p.d. matrices and

∇f ′(H) = (1/2)H−1/2.

gµ : θ 7→ fµ(κ) +
1

2
Tr
(

(κ⊤κ+ µI)−1/2(θ⊤θ − κ⊤κ)
)

,

which yields the algorithm of Mohan and Fazel [2012].
a

and also variational, saddle-point, Jensen surrogates...
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Examples of First-Order Surrogate Functions

Variational Surrogates: f (θ1)
△

= minθ2∈Θ2 f̃ (θ1, θ2),
where f̃ is “smooth” w.r.t θ1 and strongly convex w.r.t θ2:

g : θ1 7→ f̃ (θ1, κ
⋆
2) with κ⋆2

△

= argmin
θ2∈Θ2

f̃ (κ1, θ2).

Saddle-Point Surrogates: f (θ1)
△

= maxθ2∈Θ2 f̃ (θ1, θ2),
where f̃ is “smooth” w.r.t θ1 and strongly concave w.r.t θ2:

g : θ1 7→ f̃ (θ1, κ
⋆
2) +

L′′

2
‖θ1 − κ1‖22.

Jensen Surrogates: f (θ)
△

= f̃ (x⊤θ),
where f̃ is L-smooth. Choose a weight vector w in R

p
+ such that

‖w‖1 = 1 and wi 6= 0 whenever xi 6=0.

g : θ 7→
p
∑

i=1

wi f

(

xi

wi

(θi − κi ) + x⊤κ

)

,
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Stochastic DC programming

For logistic-regression with non-convex sparsity-inducing penalty.
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Other variants of MM

We also study in [Mairal, 2013a] a block coordinate scheme for
non-convex and convex optimization.

Also several variants for convex optimization:

an accelerated one (Nesterov’s like);

a “Frank-Wolfe” majorization-minimization algorithm.
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Online Dictionary Learning
Experimental results, batch vs online

m = 8× 8,
k = 256
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Online Dictionary Learning
Experimental results, batch vs online

m = 12× 12× 3, k = 512
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Online Dictionary Learning
Experimental results, batch vs online

m = 16× 16,

k = 1024
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Online Structured Matrix Factorization

With a structured regularization function ϕ [Jenatton et al., 2009]

ϕ(D)
△

= γ1
∑K

j=1

∑

g∈G maxk∈g |dj [k]|+ γ2‖D‖2F.
The proximal operator of ϕ can be computed by using network flow
optimization [Mairal et al., 2010b].

Figure : Left: subset of a larger dictionary obtained with ℓ1; Right: subset
obtained with ϕ after initialization with the dictionary on the left.

About 20 minutes per pass on the data on the 1.2GHz laptop CPU.
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D. Böhning and B. G. Lindsay. Monotonicity of quadratic-approximation
algorithms. Annals of the Institute of Statistical Mathematics, 40(4):
641–663, 1988.

E. J. Candès, M. Wakin, and S. Boyd. Enhancing sparsity by reweighted
l1 minimization. Journal of Fourier Analysis and Applications, 14:
877–905, 2008.
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