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Context of supervised learning

The goal is to learn a prediction function f : X → Y given labeled training data
(xi, yi)i=1,...,n with xi in X , and yi in Y:

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

[Vapnik, 1995, Bottou, Curtis, and Nocedal, 2016]...
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Kernel Methods 1/2

In the context of supervised learning with labels in R,

min
f∈H

1

n

n∑

i=1

L(yi, f(xi)) + λ‖f‖2H.

map data x in X to a Hilbert space and work with linear forms:

Φ : X → H and f(x) = 〈Φ(x), f〉H.

X •
•

•
• HΦ

• •
•

•

x Φ(x)

[Shawe-Taylor and Cristianini, 2004, Schölkopf and Smola, 2002]...

Julien Mairal From kernel methods to deep learning 3/107



Kernel Methods 2/2

In the context of supervised learning with labels in R,

min
f∈H

1

n

n∑

i=1

L(yi, f(xi)) + λ‖f‖2H.

f(x) = 〈Φ(x), f〉H but Φ(x) may be very high- or infinite-dimensional.

then, only manipulate inner-products K(x, x′) = 〈Φ(x),Φ(x′)〉H (kernel trick).

Alternatively, compute a finite-dimensional approximate embedding f(x) ≈ w>Ψ(x);

regularize with ‖.‖H (encourages smoothness);

If you want to know more (24 hours course)
http://members.cbio.mines-paristech.fr/~jvert/svn/kernelcourse/slides/master2017/

master2017.pdf
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Relation with deep learning?

A functional space viewpoint: kernels for deep networks

View deep networks as functions in some functional space;

Non-parametric models, natural measures of complexity (e.g., norms);

Linearization f(x) = 〈f,Φ(x)〉 decouples learning f from data representation Φ(x).

What is an appropriate functional space?

Deep learning for kernels

Scalable learning with finite-dimensional embeddings;

Deep networks with a geometric interpretation and regularization principles;

End-to-end learning with kernels?

How do we proceed?
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Graph Modeling

D. Chen, L. Jacob and J. Mairal. Convolutional Kernel Networks for Graph-Structured
Data. International Conference on Machine Learning (ICML). 2020.
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Graph-structured data is everywhere

(a) molecules (b) protein regulation

(c) social networks (d) chemical pathways
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Learning graph representations

State-of-the-art models for representing graphs:

Deep learning for graphs: graph neural networks (GNNs);

Graph kernels: Weisfeiler-Lehman (WL) graph kernels;

Hybrid models attempt to bridge both worlds: graph neural tangent kernels (GNTK).

Our model:

A new type of multilayer graph kernel: more expressive than WL kernels;

Learning easy-to-regularize and scalable unsupervised graph representations;

Learning supervised graph representations like GNNs.
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Graphs with node attributes

u

G = (V, E , a : V → R3)

a(u) = [0.3, 0.8, 0.5]

A graph is defined as a triplet (V, E , a);

V and E correspond to the set of vertices and edges;

a : V → Rd is a function assigning attributes to each node.
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Graph kernel mappings

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
�(x) 2 Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

410 / 666

Map each graph G in X to a vector Φ(G) in H, which lends itself to learning tasks.

A large class of graph kernel mappings can be written in the form

Φ(G) :=
∑

u∈V
ϕbase(`G(u)) where ϕbase embeds some local patterns `G(u) to H.

[Shervashidze et al., 2011, Lei et al., 2017, Kriege et al., 2019]
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Basic kernels: walk and path kernel mappingsWalks 6= paths

433 / 666

Path kernels are more expressive than walk kernels, but less preferred for
computational reasons.
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Basic kernels: walk and path kernel mappingsWalks 6= paths

433 / 666

Pk(G, u) := paths of length k from node u in G. The k-path mapping is

ϕpath(u) :=
∑

p∈Pk(G,u)

δa(p) =⇒ Φ(G) =
∑

u∈V

∑

p∈Pk(G,u)

δa(p).

a(p): concatenated attributes in p; δ: the Dirac function;

Φ(G) can be interpreted as a histogram of paths occurrences;
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A relaxed path kernel

Walks 6= paths

433 / 666

ϕpath(u) =
∑

p∈Pk(G,u)

δa(p)(·)

Issues of the path kernel mapping:

δ allows hard comparison between paths thus only works for discrete attributes;

δ is not differentiable, which cannot be “optimized” with back-propagation.

Julien Mairal From kernel methods to deep learning 12/107



A relaxed path kernel

Walks 6= paths

433 / 666

ϕpath(u) =
∑

p∈Pk(G,u)

δa(p)(·)

=⇒
∑

p∈Pk(G,u)

e−
α
2
‖a(p)−·‖2 .

Issues of the path kernel mapping:

δ allows hard comparison between paths thus only works for discrete attributes;

δ is not differentiable, which cannot be “optimized” with back-propagation.

Relax it with a “soft” and differentiable mapping

interpreted as the sum of Gaussians centered at each path from u.
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One-layer GCKN: a closer look at the relaxed path kernel

We define the one-layer GCKN as the relaxed path kernel mapping

ϕ1(u) :=
∑

p∈Pk(G,u)

e−
α1
2
‖a(p)−·‖2 =

∑

p∈Pk(G,u)

ϕRBF(a(p)) ∈ H1.

This formula can be divided into 3 steps:

path extraction: enumerating all Pk(G, u);
kernel mapping: evaluating Gaussian embedding ϕRBF of path features;
path aggregation: aggregating the path embeddings.

We obtain a new graph with the same topology but different features

(V, E , a)
ϕpath−−−→ (V, E , ϕ1).
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Construction of one-layer GCKN

u

a(u) ∈ Rd

(V , E , a : V → Rd)

path extraction

kernel mapping
path aggregation

u

u

ϕ1(u) ∈ H1

u u u

p1 p2 p3

ϕRBF(a(p1))
ϕRBF(a(p2))

ϕRBF(a(p3))

kernel mapping

H1

path aggregation

ϕ1(u) := ϕRBF(a(p1)) + ϕRBF(a(p2)) + ϕRBF(a(p3))

(V , E , ϕ1 : V → H1)
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From one-layer to multilayer GCKN

We can repeat applying ϕpath to the new graph

(V, E , a)
ϕpath−−−→ (V, E , ϕ1)

ϕpath−−−→ (V, E , ϕ2)
ϕpath−−−→ . . .

ϕpath−−−→ (V, E , ϕj).

Final graph representation at layer j, Φ(G) =
∑

u∈V ϕj(u).

Why is the multilayer model interesting ?

applying ϕpath once can capture paths: GCKN-path;
applying twice can capture subtrees: GCKN-subtree;
applying more times may capture higher-order structures?
Long paths cannot be enumerated due to computational complexity, yet multilayer model
can capture long-range substructures.
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Scalable approximation of Gaussian kernel mapping

ϕpath(u) =
∑

p∈Pk(G,u)

ϕRBF(a(p)).

ϕRBF(a(p)) = e−
α
2
‖a(p)−·‖2 ∈ H is infinite-dimensional;

Nyström provides a finite-dimensional approximation Ψ(a(p)) by orthogonally
projecting ϕRBF(a(p)) onto some finite-dimensional subspace:

Span(ϕRBF(z1), . . . , ϕRBF(zq)) parametrized by Z = {z1, . . . , zq},

where zj ∈ Rdk can be interpreted as path features.

The parameters Z can be learned by

(unsupervised) K-means on the set of path features;
(supervised) end-to-end learning with back-propagation.

[Chen et al., 2019a,b, Williams and Seeger, 2001]
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Comparison of GCKN and GNN

GCKN vs. GNN

fGCKN(G) =
∑

u∈G
ψk(u) fGNN(G) =

∑

u∈G
fk(u)

ψk(u) =
∑

p∈Pk(G,u)

κ(Z>Z)−
1
2κ(Z>ψk−1(p)) fk(u) =

∑

v∈N (u)

ReLU(Z>fk−1(v))

local path aggregation neighborhood aggregation

projection in a known RKHS ?

supervised and unsupervised supervised
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Experiments on graphs with discrete attributes
MUTAG

PROTEINS

PTC

NCI1IMDB-B

IMDB-M

COLLAB

-10

0

10
12

WL subtree
GNTK
GCN
GIN
GCKN-path-unsup
GCKN-subtree-unsup
GCKN-subtree-sup

Accuracy improvement with
respect to the WL subtree
kernel.

GCKN-path already
outperforms the baselines.

Increasing number of layers
brings larger improvement.

Supervised learning does not
improve performance, but leads
to more compact
representations.

[Shervashidze et al., 2011, Du et al., 2019, Xu et al., 2019, Kipf and Welling, 2017]
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Experiments on graphs with continuous attributes
ENZYMES

PROTEINS

BZR

COX2 -5

0

5

WWL
GNTK
GCKN-path-unsup
GCKN-subtree-unsup
GCKN-subtree-sup

Accuracy improvement with
respect to the WWL kernel.

Results similar to discrete case.

Path features seem presumably
predictive enough.

[Du et al., 2019, Togninalli et al., 2019]
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Model interpretation for Mutagenicity prediction

Idea: find the minimal connected component that preserves the prediction.

GCKN

Original

[Ying et al., 2019]
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Take-home messages

GCKN is a multilayer kernel for graphs based on paths, which allows to control the
trade-off between computation and expressiveness.

Its graph representations can be learned in both supervised and unsupervised
fashions. Unsupervised models are easy-to-regularize and scalable.

A straightforward model interpretation is also provided.

Our code is freely available at https://github.com/claying/GCKN.

Future (on-going) work

working with real people dealing with real data (protein folding prediction).
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Biological Sequence Modeling

D. Chen, L. Jacob and J. Mairal. Recurrent Kernel Networks. Adv. Neural Information
Processing Systems (NeurIPS). 2019.

D. Chen, L. Jacob and J. Mairal. Biological Sequence Modeling with Convolutional
Kernel Networks. Bioinformatics. 2019.
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Sequence modeling as a supervised learning problem

Biological sequences x1, . . . xn ∈ X and their associated labels y1, . . . , yn.

Goal: learning a predictive and interpretable function f : X → R

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ µΩ(f)︸ ︷︷ ︸
regularization

.

How do we define the functional space F?
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String kernels

A classical approach for modeling biological sequences over alphabet A relies on string
kernels.

K(x, x′) =
∑

u∈Ak
δu(x)δu(x′)

= 〈Φ(x),Φ(x′)〉

,

where u is a k-mer over an alphabet A and δu(x) can be:

the number of occurrences of u in x: spectrum kernel [Leslie et al., 2002];

the number of occurrences of u in x up to m mismatches: mismatch kernel [Leslie
and Kuang, 2004];

the number of occurrences of u in x allowing gaps, with a weight decaying
exponentially with the number of gaps : substring kernel [Lodhi et al., 2002].

What is Φ(x)?

It can be interpreted as a histogram of pattern occurences.
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Convolutional kernel networks for sequence modeling

Define a continuous relaxation of the mismatch kernel [Chen et al., 2019a, Morrow et al.,

2017]

KCKN(x, x′) =

|x|−k+1∑

i=1

|x′|−k+1∑

j=1

K0( x[i:i+k]︸ ︷︷ ︸
one k-mer

, x′[j:j+k]).

Use one-hot encoding

x[i:i+5] := TTGAG 7→
A
T
C
G




0 0 0 1 0
1 1 0 0 0
0 0 0 0 0
0 0 1 0 1


 .

K0 is a Gaussian kernel over one-hot representations of k-mers (in Rk×d).
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Scalable Approximation of Kernel Mapping (with more details this time)

K0(u, u′) = 〈ϕ0(u), ϕ0(u′)〉H0 ≈ 〈ψ0(u), ψ0(u′)〉Rq .
Nyström provides a finite-dimensional approximation ψ0(u) in Rq by orthogonally
projecting ϕ0(u) onto some finite-dimensional subspace:

E0 = Span(ϕ0(z1), . . . , ϕ0(zq)) parametrized by Z = {z1, . . . , zq}.

Hilbert space H0

E0

ϕ0(u)

ϕ0(u
′)

Case of dot-product kernels K0(u, u′) = κ(〈u, u′〉):

ψ0(u) = κ(Z>Z)−1/2κ(Z>u).

linear operation - pointwise nonlinearity - linear operation (subject to interpretation)

Ex: κ(β) = eβ−1, polynomial, inverse polynomial, arc-cosine kernels....
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Nyström provides a finite-dimensional approximation ψ0(u) in Rq by orthogonally
projecting ϕ0(u) onto some finite-dimensional subspace:

E0 = Span(ϕ0(z1), . . . , ϕ0(zq)) parametrized by Z = {z1, . . . , zq}.
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ψ0(u) = [K0(zi, zj)]
−1/2
ij [K0(z1, u), . . . ,K0(zq, u)]T = K0(Z,Z)−1/2K0(Z, u).

Case of dot-product kernels K0(u, u′) = κ(〈u, u′〉):

ψ0(u) = κ(Z>Z)−1/2κ(Z>u).

linear operation - pointwise nonlinearity - linear operation (subject to interpretation)
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Single-Layer CKN for sequence modeling

x ∈ X
x(u) ∈ APi(x) k-mer

ψ0(Pi(x)) ∈ Rq

kernel mapping approximation

ψ0(Pi(x)) = K
− 1

2

ZZKZ(Pi(x))

global pooling

Ψ(x) ∈ Rq y
prediction layer

〈w,Ψ(x)〉
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Multilayer CKN for sequence modeling

x ∈ X
x(u) ∈ APi(x) k-mer

ψ0(Pi(x)) ∈ Rq

kernel mapping approximation

ψ0(Pi(x)) = K
− 1

2

ZZKZ(Pi(x))

global pooling

Ψ(x) ∈ Rq y
prediction layer

〈w,Ψ(x)〉

Pi(x) k-mer

ψ0(Pi(x)) ∈ Rq0

x1

pooling

x1(w) ∈ Rq0Pi(x
1)

ψ1(Pi(x
1)) ∈ Rq

Ψ(x) ∈ Rq

prediction layer
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How to learn the anchor points Z?

with no supervision?

we learn one layer at a time, starting from the bottom one.

we extract a large number—say 100 000 k-mers from the previous layer computed on
a sequence database;

perform a K-means algorithm to learn the anchor points;

compute the projection matrix κ(Z>Z)−1/2 (case of a dot-product kernel).

with supervision?

by using back-propagation on a supervised loss function;

all it requires is differentiating κ(Z>Z)−1/2 which requires an eigenvalue decomposition;

use the unsupervised learning procedure as initialization.
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From k-mers to gapped k-mers

k-mers with gaps

For a sequence x = x1 . . . xn ∈ X of length n and a sequence of ordered indices
i = (i1, . . . , ik) in I(k, n), we define a k-substring as:

x[i] = xi1xi2 . . . xik .

We introduce the quantity

gaps(i) = number of gaps in index sequence.

Example: x = ABRACADABRA

i = (4, 5, 8, 9, 11) x[i] = RADAR gaps(i) = 3.
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Recurrent kernel networks

Comparing all the k-mers between a pair of sequences (single layer models)

KCKN(x, x′) =

|x|−k+1∑

i=1

|x′|−k+1∑

j=1

K0

(
x[i:i+k], x

′
[j:j+k]

)
.

The kernel mapping is Φ(x) =
∑|x|−k+1

i=1 ϕ0(x[i:i+k]).

This is a differentiable relaxation of the substring kernel.
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Recurrent kernel networks

Comparing all the gapped k-mers between a pair of sequences (single layer models)

KRKN(x, x′) =
∑

i∈I(k,|x|)

∑

j∈I(k,|x′|)
λgaps(i)λgaps(j)K0

(
x[i], x

′
[j]

)
.

The kernel mapping is Φ(x) =
∑

i∈I(k,|x|) λ
gaps(i)ϕ0(x[i]).

This is a differentiable relaxation of the substring kernel.

But enumerating all possible substrings is costly...
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Approximation and recursive computation of RKN

Approximate feature map of RKN kernel

The approximate feature map of KRKN via Nyström approximation is

Ψ(x) =
∑

i∈I(k,t)
λgaps(i)ψ0(x[i]) ∈ Rq,

where, as usual with a dot-product kernel, ψ0(x[i]) = κ(Z>Z)−1/2κ(Z>x[i]).

The sum can be computed by using dynamic programming [Lodhi et al., 2002],

which leads to a particular recurrent neural network [see Lei et al., 2017].
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A feature map for the single-layer RKN

When K0 is a Gaussian kernel, the feature map of RKN is a mixture of Gaussians centered
at x[i], weighted by the corresponding penalization λgaps(i).

k-mer kernel embedding

one 4-mer of x

i1 i2 λ i3 λ i4

xi

i1 i2 i3 i4

λ2ϕ0(x[i])

one-layer RKN

x

i1 i2 λ i3 λ ik

all embedded
k-mers

λgap(i)ϕ0(x[i])

pooling

∑
i λ

gap(i)ϕ0(x[i])

Figure: Example of KRKN for k = 4
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Results

Protein fold classification on SCOP 2.06 [Hou et al., 2017] (using more informative
sequence features including PSSM, secondary structure and solvent accessibility)

Method ]Params Accuracy Level-stratified accuracy (top1/top5)
top 1 top 5 family superfamily fold

PSI-BLAST - 84.53 86.48 82.20/84.50 86.90/88.40 18.90/35.100
DeepSF 920k 73.00 90.25 75.87/91.77 72.23/90.08 51.35/67.57
CKN (128 filters) 211k 76.30 92.17 83.30/94.22 74.03/91.83 43.78/67.03
CKN (512 filters) 843k 84.11 94.29 90.24/95.77 82.33/94.20 45.41/69.19

RKN (128 filters) 211k 77.82 92.89 76.91/93.13 78.56/92.98 60.54/83.78
RKN (512 filters) 843k 85.29 94.95 84.31/94.80 85.99/95.22 71.35/84.86

Note: More experiments with statistical tests have been conducted in our paper.

[Hou et al., 2017, Chen et al., 2019a]
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Logos, by finding pre-image of each filter
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Results

Protein fold recognition on SCOP 1.67 (widely used in the past)

Method pooling one-hot BLOSUM62
auROC auROC50 auROC auROC50

SVM-pairwise 0.724 0.359
Mismatch 0.814 0.467
LA-kernel – – 0.834 0.504
LSTM 0.830 0.566 – –
CKN 0.837 0.572 0.866 0.621

RKN mean 0.829 0.541 0.840 0.571
RKN max 0.844 0.587 0.871 0.629
RKN (unsup) mean 0.805 0.504 0.833 0.570

[Liao and Noble, 2003, Leslie et al., 2003, Vert et al., 2004, Hochreiter et al., 2007, Chen et al., 2019a]
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Take-home messages

CKN and RKNs are multilayer kernels for sequences, achieving state-of-the-art results
for biological sequence modeling (see other tasks in papers).

RKN is able to model gaps with a recurrent neural network structure.

These models can be used without supervision, providing effective, but
high-dimensional embeddings.

With supervision, models trained with backpropagation are much more compact.

For biological sequences, best results were obtained with a single layer.

Our code in Pytorch is freely available at
https://gitlab.inria.fr/dchen/CKN-seq

https://github.com/claying/RKN
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Image Modeling

J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks.
Adv. Neural Information Processing Systems (NIPS), 2016.

J. Mairal, P. Koniusz, Z. Harchaoui and C. Schmid. Convolutional Kernel Networks.
Adv. Neural Information Processing Systems (NIPS). 2014.
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Construction of the RKHS for continuous signals

Initial map x0 in L2(Ω,H0)

x0 : Ω→ H0: continuous input signal, with Ω = Rd: location (d = 2 for images).

x0(u) ∈ H0: input value at location u (H0 = R3 for RGB images).

Building map xk in L2(Ω,Hk) from xk−1 in L2(Ω,Hk−1)

xk : Ω→ Hk: feature map at layer k

xk = AkMkPkxk−1.

Pk: patch extraction operator, extract small patch of feature map xk−1 around each
point u (Pkxk−1(u) is a patch centered at u).

Mk: non-linear mapping operator, maps each patch to a new Hilbert space Hk with a
pointwise non-linear function ϕk(·).

Ak: (linear) pooling operator at scale σk.
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Construction of the RKHS for continuous signals

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

xk–0.5(v) = ϕk(Pkxk–1(v)) ∈ Hk
xk–0.5 : Ω → Hk

xk : Ω → Hk

linear pooling
xk(w) ∈ Hk
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Construction of the RKHS for continuous signals

Kernel mapping for patches

We use a homogeneous dot-product kernel for image patches

K(z, z′) = ‖z‖‖z′‖κ
( 〈z, z′〉
‖z‖‖z′‖

)
.

Multilayer representation

Φn(x) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

σk grows exponentially in practice (i.e., fixed with subsampling).

Prediction layer

e.g., linear f(x) = 〈w,Φn(x)〉.
“linear kernel” K(x, x′) = 〈Φn(x),Φn(x′)〉 =

∫
Ω〈xn(u), x′n(u)〉du.
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Convolutional Kernel Networks in practice

I0

z

z′

kernel trick

projection on F1

M1

ψ1(z)

ψ1(z
′)

I1
linear pooling

Hilbert space H1

F1

ϕ1(z)

ϕ1(z
′)

Learning mechanism of CKNs between layers 0 and 1.
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Convolutional Kernel Networks in Practice

What is the difference with a CNN?

Given a patch x, a CNN computes ψCNN (x) = σ(Z>x) (+batch norm?)

Given a patch x, a CKN computes ψCKN (x) = ‖x‖κ(Z>Z)−1/2κ(Z>x/‖x‖).

Consequences

we have a geometric interpretation in terms of subspace learning.

it provides unsupervised learning mechanisms (kernel approximation with Nyström).

supervised learning is still feasible (backpropagating through κ(Z>Z)−1/2 is fun).

the kernel interpretation provides regularization mechanisms.

kernel representations can possibly be used in other contexts (statistical testing? kernel
PCA? CCA? K-means?).
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Experiments

Briefly state-of-the-art for image retrieval [Paulin et al., 2015];

Briefly state-of-the-art for image super-resolution [Mairal, 2016a];

Interesting findings from CIFAR-10

about 92% with supervision, mild data augmentation, 14 layers, 256 anchor points per
layers (no need for batch norm, vanilla SGD+momentum).

about 86% with no supervision for a two-layer model with a huge number of anchor
points (1024-16384) and no data augmentation.

with no supervision, the performance monotonically increases with the dimension
(better kernel approximation).

computing the exact kernel does not make sense in practice for computational reasons,
but it is feasible with lots of CPUs; it yields about 90% with three layers (unpublished,
by A. Bietti), which is consistent with [Shankar et al., 2020].
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Take-home messages

unsupervised representations are shallow and high-dimensional;

supervised representations may be deep and compact;

Our code is freely available at
https://gitlab.inria.fr/mairal/ckn-cudnn-matlab.

and https://github.com/claying/CKN-Pytorch-image.

Open

how to close the gap between the approximate embedding and the exact kernel?
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Theory for Deep Learning Models

A. Bietti and J. Mairal. On the Inductive Bias of Neural Tangent Kernels. Adv. Neural
Information Processing Systems (NeurIPS). 2019.

A. Bietti and J. Mairal. Group Invariance, Stability to Deformations, and Complexity of
Deep Convolutional Representations. Journal of Machine Learning Research (JMLR).
2019.
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Kernels for deep models: deep kernel machines

Hierarchical kernels [Cho and Saul, 2009]

Kernels can be constructed hierarchically

K(x, x′) = 〈Φ(x),Φ(x′)〉 with Φ(x) = ϕ2(ϕ1(x))

e.g., dot-product kernels on the sphere

K(x, x′) = κ2(〈ϕ1(x), ϕ1(x′)〉) = κ2(κ1(x>x′))
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Kernels for deep models: deep kernel machines

Convolutional kernels networks (CKNs) for images [Mairal et al., 2014, Mairal, 2016b]

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Good empirical performance with tractable approximations (Nyström)
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Kernels for deep models: infinite-width networks

fθ(x) =
1√
m

m∑

i=1

viσ(w>i x), m→∞

Random feature kernels [RF, Neal, 1996, Rahimi and Recht, 2007]

θ = (vi)i, fixed random weights wi ∼ N(0, I)

KRF (x, x′) = Ew∼N(0,I)[σ(w>x)σ(w>x′)]

Neural tangent kernels [NTK, Jacot et al., 2018]

θ = (vi, wi)i, initialization θ0 ∼ N(0, I)
Lazy training [Chizat et al., 2019]: θ stays close to θ0 when training with large m

fθ(x) ≈ fθ0(x) + 〈θ − θ0,∇θfθ(x)|θ=θ0〉.
Gradient descent for m→∞ ≈ kernel ridge regression with neural tangent kernel

KNTK(x, x′) = lim
m→∞

〈∇θfθ0(x),∇θfθ0(x′)〉
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Other relations between kernels and deep learning

hierarchical kernel descriptors [Bo et al., 2011];

other multilayer models [Bouvrie et al., 2009, Montavon et al., 2011, Anselmi et al.,
2015];

deep Gaussian processes [Damianou and Lawrence, 2013].

multilayer PCA [Schölkopf et al., 1998].

old kernels for images [Scholkopf, 1997], related to one-layer CKN.

RBF networks [Broomhead and Lowe, 1988].

. . .
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Objectives

Deep convolutional signal representations

Are they stable to deformations?

How can we achieve invariance to transformation groups?

Do they preserve signal information?

Learning aspects

Building a functional space for CNNs (or similar objects).

Deriving a measure of model complexity.
Paradigm 3: Deep Kernel Machines

A quick zoom on convolutional neural networks

still involves the ERM problem

min
f2F

1

n

nX

i=1

L(yi, f(xi))

| {z }
empirical risk, data fit

+ �⌦(f)| {z }
regularization

.

[LeCun et al., 1989, 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]...

Julien Mairal Soutenance HdR 8/33
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Focus on convolutional kernel networks (CKNs)

What is the relation?

it is possible to design functional spaces H for deep neural networks [Mairal, 2016b].

f(x) = σk(Wkσk–1(Wk–1 . . . σ2(W2σ1(W1x)) . . .)) = 〈f,Φ(x)〉H.

we call the construction “convolutional kernel networks” (in short, replace
u 7→ σ(〈a, u〉) by a kernel mapping u 7→ ϕk(u).

Why do we care?

Φ(x) is related to the network architecture and is independent of training data. Is
it stable? Does it lose signal information?

f is a predictive model. Can we control its stability?

|f(x)− f(x′)| ≤ ‖f‖H‖Φ(x)− Φ(x′)‖H.
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Summary of the results from Bietti and Mairal [2019a]

Multi-layer construction of the RKHS H
Contains CNNs with smooth homogeneous activations functions.

Signal representation: Conditions for

Signal preservation of the multi-layer kernel mapping Φ.

Stability to deformations and non-expansiveness for Φ.

Constructions to achieve group invariance.

On learning

Bounds on the RKHS norm ‖.‖H to control stability and generalization of a
predictive model f .

|f(x)− f(x′)| ≤ ‖f‖H‖Φ(x)− Φ(x′)‖H.
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Smooth homogeneous activations functions

z 7→ ReLU(w>z) =⇒ z 7→ ‖z‖σ(w>z/‖z‖).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0

f(x
)

f : x (x)
ReLU
sReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

f(x
)

f : x |x| (wx/|x|)
ReLU, w=1
sReLU, w = 0
sReLU, w = 0.5
sReLU, w = 1
sReLU, w = 2
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Recap: Construction of the RKHS for continuous signals

Initial map x0 in L2(Ω,H0)

x0 : Ω→ H0: continuous input signal, with Ω = Rd: location (d = 2 for images).

x0(u) ∈ H0: input value at location u (H0 = R3 for RGB images).

Building map xk in L2(Ω,Hk) from xk−1 in L2(Ω,Hk−1)

xk : Ω→ Hk: feature map at layer k

xk = AkMkPkxk−1.

Pk: patch extraction operator, extract small patch of feature map xk−1 around each
point u (Pkxk−1(u) is a patch centered at u).

Mk: non-linear mapping operator, maps each patch to a new Hilbert space Hk with a
pointwise non-linear function ϕk(·).

Ak: (linear) pooling operator at scale σk.
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Construction of the RKHS for continuous signals

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

xk–0.5(v) = ϕk(Pkxk–1(v)) ∈ Hk
xk–0.5 : Ω → Hk

xk : Ω → Hk

linear pooling
xk(w) ∈ Hk
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Construction of the RKHS for continuous signals

Multilayer representation

Φn(x) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

σk grows exponentially in practice (i.e., fixed with subsampling).

Prediction layer

e.g., linear f(x) = 〈w,Φn(x)〉.
“linear kernel” K(x, x′) = 〈Φn(x),Φn(x′)〉 =

∫
Ω〈xn(u), x′n(u)〉du.
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Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u+ v))v∈Sk ∈ Pk = HSkk–1

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)
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Patch extraction operator Pk

Pkxk–1(u) := (xk–1(u+ v))v∈Sk ∈ Pk = HSkk–1

Sk: patch shape, e.g. box
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk

xk–1 : Ω → Hk–1

Pkxk–1(v) ∈ Pk

non-linear mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk
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Non-linear mapping operator Mk

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk
Kernel mapping of homogeneous dot-product kernels:

Kk(z, z
′) = ‖z‖‖z′‖κk

( 〈z, z′〉
‖z‖‖z′‖

)
= 〈ϕk(z), ϕk(z′)〉.

κk(u) =
∑∞

j=0 bju
j with bj ≥ 0, κk(1) = 1

Examples

κexp(〈z, z′〉) = e〈z,z
′〉−1 (Gaussian kernel on the sphere)

κinv-poly(〈z, z′〉) = 1
2−〈z,z′〉
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =

∫

Rd
hσk(u− v)MkPkxk–1(v)dv ∈ Hk

xk–1 : Ω → Hk–1

MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk
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Pooling operator Ak

xk(u) = AkMkPkxk–1(u) =

∫

Rd
hσk(u− v)MkPkxk–1(v)dv ∈ Hk

hσk : pooling filter at scale σk

hσk(u) := σ−dk h(u/σk) with h(u) Gaussian

linear, non-expansive operator: ‖Ak‖ ≤ 1

In practice: discretization, sampling at resolution σk after pooling

“Preserves information” when subsampling ≤ patch size
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Recap: Pk, Mk, Ak

xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

xk–0.5(v) = ϕk(Pkxk–1(v)) ∈ Hk
xk–0.5 : Ω → Hk

xk : Ω → Hk

linear pooling
xk(w) ∈ Hk
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Stability to deformations
Deformations

τ : Ω→ Ω: C1-diffeomorphism

Lτx(u) = x(u− τ(u)): action operator

Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Studied for wavelet-based scattering transform [Mallat, 2012, Bruna and Mallat, 2013]
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Stability to deformations
Deformations

τ : Ω→ Ω: C1-diffeomorphism

Lτx(u) = x(u− τ(u)): action operator

Much richer group of transformations than translations

Definition of stability

Representation Φ(·) is stable [Mallat, 2012] if:

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation

‖τ‖∞ = supu |τ(u)| controls translation

C2 → 0: translation invariance
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Smoothness and stability with kernels

Geometry of the kernel mapping: f(x) = 〈f,Φ(x)〉

|f(x)− f(x′)| ≤ ‖f‖H · ‖Φ(x)− Φ(x′)‖H

‖f‖H controls complexity of the model

Φ(x) encodes CNN architecture independently of the model (smoothness, invariance,
stability to deformations)

Useful kernels in practice:

Convolutional kernel networks [CKNs, Mairal, 2016b] with efficient approximations

Extends to neural tangent kernels [NTKs, Jacot et al., 2018] of infinitely wide
CNNs [Bietti and Mairal, 2019b]
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Recap: multilayer construction

Multilayer representation

Φ(x0) = AnMnPnAn−1Mn−1Pn−1 · · · A1M1P1x0 ∈ L2(Ω,Hn).

Sk, σk grow exponentially in practice (i.e., fixed with subsampling).

Assumption on x0

x0 is typically a discrete signal aquired with physical device.

Natural assumption: x0 = A0x, with x the original continuous signal, A0 local
integrator with scale σ0 (anti-aliasing).

Final kernel

KCKN (x, x′) = 〈Φ(x),Φ(x′)〉L2(Ω) =

∫

Ω
〈xn(u), x′n(u)〉du
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Warmup: translation invariance

Representation

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

How to achieve translation invariance?

Translation: Lcx(u) = x(u− c).

Equivariance - all operators commute with Lc: �Lc = Lc�.

‖Φn(Lcx)− Φn(x)‖ = ‖LcΦn(x)− Φn(x)‖
≤ ‖LcAn −An‖ · ‖MnPnΦn–1(x)‖
≤ ‖LcAn −An‖‖x‖.

Mallat [2012]: ‖LτAn −An‖ ≤ C2
σn
‖τ‖∞ (operator norm).

Scale σn of the last layer controls translation invariance.
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Stability to deformations

Representation

Φn(x)
M
= AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1A0x.

How to achieve stability to deformations?

Patch extraction Pk and pooling Ak do not commute with Lτ !

‖‖ ≤ C1‖∇τ‖∞ [from Mallat, 2012].

But: [Pk, Lτ ] is unstable at high frequencies!

Adapt to current layer resolution, patch size controlled by σk–1:

‖[PkAk–1, Lτ ]‖ ≤ C1,κ‖∇τ‖∞ sup
u∈Sk

|u| ≤ κσk–1

C1,κ grows as κd+1 =⇒ more stable with small patches
(e.g., 3x3, VGG et al.).
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Patch extraction Pk and pooling Ak do not commute with Lτ !

‖[Ak, Lτ ]‖ ≤ C1‖∇τ‖∞ [from Mallat, 2012].

But: [Pk, Lτ ] is unstable at high frequencies!

Adapt to current layer resolution, patch size controlled by σk–1:

‖[PkAk–1, Lτ ]‖ ≤ C1,κ‖∇τ‖∞ sup
u∈Sk

|u| ≤ κσk–1

C1,κ grows as κd+1 =⇒ more stable with small patches
(e.g., 3x3, VGG et al.).
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Stability to deformations

Theorem (Stability of CKN [Bietti and Mairal, 2019a])

Let Φn(x) = Φ(A0x) and assume ‖∇τ‖∞ ≤ 1/2,

‖Φn(Lτx)− Φn(x)‖ ≤
(
Cβ (n+ 1) ‖∇τ‖∞ +

C

σn
‖τ‖∞

)
‖x‖

Translation invariance: large σn

Stability: small patch sizes (β ≈ patch size, Cβ = O(β3) for images)

Signal preservation: subsampling factor ≈ patch size

=⇒ need several layers with small patches n = O(log(σn/σ0)/ log β)

Achieved by controlling norm of commutator [Lτ , PkAk–1]

Extend result by Mallat [2012] for controlling ‖[Lτ , A]‖
Need patches Sk adapted to resolution σk–1: diam Sk ≤ βσk–1
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Beyond the translation group

Can we achieve invariance to other groups?

Group action: Lgx(u) = x(g−1u) (e.g., rotations, reflections).

Feature maps x(u) defined on u ∈ G (G: locally compact group).

Recipe: Equivariant inner layers + global pooling in last layer

Patch extraction:
Px(u) = (x(uv))v∈S .

Non-linear mapping: equivariant because pointwise!

Pooling (µ: left-invariant Haar measure):

Ax(u) =

∫

G
x(uv)h(v)dµ(v) =

∫

G
x(v)h(u−1v)dµ(v).

related work [Sifre and Mallat, 2013, Cohen and Welling, 2016, Raj et al., 2016]...
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Stability to deformations for convolutional NTK

Theorem (Stability of NTK [Bietti and Mairal, 2019b])

Let Φn(x) = ΦNTK(A0x), and assume ‖∇τ‖∞ ≤ 1/2

‖Φn(Lτx)− Φn(x)‖

≤
(
Cβn

7/4‖∇τ‖1/2∞ + C ′βn
2‖∇τ‖∞ +

√
n+ 1

C

σn
‖τ‖∞

)
‖x‖,

Comparison with random feature CKN on deformed MNIST digits:
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Discretization and signal preservation: example in 1D

Discrete signal x̄k in `2(Z, H̄k) vs continuous ones xk in L2(R,Hk).

x̄k: subsampling factor sk after pooling with scale σk ≈ sk:

x̄k[n] = ĀkM̄kP̄kx̄k–1[nsk].

Claim: We can recover x̄k−1 from x̄k if factor sk ≤ patch size.

How? Recover patches with linear functions (contained in H̄k)

〈fw, M̄kP̄kx̄k−1(u)〉 = fw(P̄kx̄k−1(u)) = 〈w, P̄kx̄k−1(u)〉,

and
P̄kx̄k−1(u) =

∑

w∈B
〈fw, M̄kP̄kx̄k−1(u)〉w.

Warning: no claim that recovery is practical and/or stable.
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Discretization and signal preservation: example in 1D

x̄k−1

P̄kx̄k−1(u) ∈ Pk

M̄kP̄kx̄k−1

dot-product kernel

ĀkM̄kP̄kx̄k−1

linear pooling

downsampling

x̄k

recovery with linear measurements

Ākx̄k−1

deconvolution

x̄k−1
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RKHS of patch kernels Kk

Kk(z, z
′) = ‖z‖‖z′‖κ

( 〈z, z′〉
‖z‖‖z′‖

)
, κ(u) =

∞∑

j=0

bju
j .

What does the RKHS contain?

RKHS contains homogeneous functions:

f : z 7→ ‖z‖σ(〈g, z〉/‖z‖).

Smooth activations: σ(u) =
∑∞

j=0 aju
j with aj ≥ 0.

Norm: ‖f‖2Hk ≤ C
2
σ(‖g‖2) =

∑∞
j=0

a2j
bj
‖g‖2 <∞.

Homogeneous version of [Zhang et al., 2016, 2017]
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RKHS of patch kernels Kk

Examples:

σ(u) = u (linear): C2
σ(λ2) = O(λ2).

σ(u) = up (polynomial): C2
σ(λ2) = O(λ2p).

σ ≈ sin, sigmoid, smooth ReLU: C2
σ(λ2) = O(ecλ

2
).

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0.0

0.5

1.0

1.5

2.0
f(x

)
f : x (x)

ReLU
sReLU

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

f(x
)

f : x |x| (wx/|x|)
ReLU, w=1
sReLU, w = 0
sReLU, w = 0.5
sReLU, w = 1
sReLU, w = 2
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Constructing a CNN in the RKHS HK
Some CNNs live in the RKHS: “linearization” principle

f(x) = σk(Wkσk–1(Wk–1 . . . σ2(W2σ1(W1x)) . . .)) = 〈f,Φ(x)〉H.

Consider a CNN with filters W ij
k (u), u ∈ Sk.

k: layer;
i: index of filter;
j: index of input channel.

“Smooth homogeneous” activations σ.

The CNN can be constructed hierarchically in HK.

Norm:
‖fσ‖2 ≤ ‖Wn+1‖22 C2

σ(‖Wn‖22 C2
σ(‖Wn–1‖22 C2

σ(. . .))).

Linear layers: product of spectral norms.
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f(x) = σk(Wkσk–1(Wk–1 . . . σ2(W2σ1(W1x)) . . .)) = 〈f,Φ(x)〉H.

Consider a CNN with filters W ij
k (u), u ∈ Sk.

k: layer;
i: index of filter;
j: index of input channel.

“Smooth homogeneous” activations σ.

The CNN can be constructed hierarchically in HK.

Norm (linear layers):

‖fσ‖2 ≤ ‖Wn+1‖22 · ‖Wn‖22 · ‖Wn–1‖22 . . . ‖W1‖22.

Linear layers: product of spectral norms.
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Link with generalization

Direct application of classical generalization bounds

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ HK, ‖f‖ ≤ B} =⇒ RadN (FB) ≤ O
(
BR√
N

)
.

Leads to margin bound O(‖f̂N‖R/γ
√
N) for a learned CNN f̂N with margin

(confidence) γ > 0.

Related to recent generalization bounds for neural networks based on product of
spectral norms [e.g., Bartlett et al., 2017, Neyshabur et al., 2018].

[see, e.g., Boucheron et al., 2005, Shalev-Shwartz and Ben-David, 2014]...

Julien Mairal From kernel methods to deep learning 74/107



Link with generalization

Direct application of classical generalization bounds

Simple bound on Rademacher complexity for linear/kernel methods:

FB = {f ∈ HK, ‖f‖ ≤ B} =⇒ RadN (FB) ≤ O
(
BR√
N

)
.

Leads to margin bound O(‖f̂N‖R/γ
√
N) for a learned CNN f̂N with margin

(confidence) γ > 0.

Related to recent generalization bounds for neural networks based on product of
spectral norms [e.g., Bartlett et al., 2017, Neyshabur et al., 2018].

[see, e.g., Boucheron et al., 2005, Shalev-Shwartz and Ben-David, 2014]...

Julien Mairal From kernel methods to deep learning 74/107



Deep convolutional representations: conclusions

Study of generic properties of signal representation

Deformation stability with small patches, adapted to resolution.

Signal preservation when subsampling ≤ patch size.

Group invariance by changing patch extraction and pooling.

Applies to learned models

Same quantity ‖f‖ controls stability and generalization.

“higher capacity” is needed to discriminate small deformations.

Questions:

Better regularization?

How does SGD control capacity in CNNs?

What about networks with no pooling layers? ResNet?
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Robust Deep Learning Models with Kernels

A. Bietti, G. Mialon, D. Chen, and J. Mairal. A Kernel Perspective for Regularizing
Deep Neural Networks. International Conference on Machine Learning (ICML). 2019.
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Convolutional Neural Networks

Picture from LeCun et al. [1998]

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model the local stationarity of images at several scales;
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Convolutional Neural Networks

[Simonyan and Zisserman, 2014]

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model the local stationarity of images at several scales;
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Convolutional neural networks for biological sequences

Figure: two-layer CNN architecture from Alipanahi et al. [2015]

Sequences are represented by one-hot encoding (A=(1,0,0,0),C=(0,1,0,0),. . . ).

Single convolution layer followed by linear classifier.
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Adversarial examples, Picture from Kurakin et al. [2016]

Figure: Adversarial examples are generated by computer; then printed on paper; a new picture taken
on a smartphone fools the classifier.
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Adversarial Examples

clean + noise → “ostrich” [Szegedy et al., 2013].
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Adversarial Examples

(a real ostrich)
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Adversarial Examples

https://github.com/anishathalye/obfuscated-gradients
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Convolutional Neural Networks

min
f∈F

1

n

n∑

i=1

L(yi, f(xi))

︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

The issue of regularization

today, heuristics are used (DropOut, weight decay, early stopping)...

...but they are not sufficient.

how to control variations of prediction functions?

|f(x)− f(x′)| should be close if x and x′ are “similar”.

what does it mean for x and x′ to be “similar”?

what should be a good regularization function Ω?
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A kernel perspective: regularization

Assume we have an RKHS H for deep networks:

min
f∈H

1

n

n∑

i=1

L(yi, f(xi)) +
λ

2
‖f‖2H.

‖.‖H encourages smoothness and stability w.r.t. the geometry induced by the kernel (which
depends itself on the choice of architecture).

Problem

Multilayer kernels developed for deep networks are typically intractable.

One solution [Mairal, 2016a]

do kernel approximations at each layer, which leads to non-standard CNNs called
convolutional kernel networks (CKNs).
not the subject of this part.
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A kernel perspective: regularization

Consider a classical CNN parametrized by θ, which live in the RKHS:

min
θ∈Rp

1

n

n∑

i=1

L(yi, fθ(xi)) +
λ

2
‖fθ‖2H.

This is different than CKNs since fθ admits a classical parametrization.

Problem

‖fθ‖H is intractable...

One solution [Bietti et al., 2019]

use approximations (lower- and upper-bounds), based on mathematical properties of ‖.‖H.

This is the subject of this part.
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A kernel perspective: regularization

Another point of view: consider a classical CNN parametrized by θ, which live in the RKHS:

min
θ∈Rp

1

n

n∑

i=1

L(yi, fθ(xi)) +
λ

2
‖fθ‖2H.

Upper-bounds

‖fθ‖H ≤ ω(‖Wk‖, ‖Wk–1‖, . . . , ‖W1‖) (spectral norms) ,

where the Wj ’s are the convolution filters. The bound suggests controlling the spectral norm
of the filters.

[Cisse et al., 2017, Miyato et al., 2018, Bartlett et al., 2017]...

Julien Mairal From kernel methods to deep learning 86/107



A kernel perspective: regularization

Another point of view: consider a classical CNN parametrized by θ, which live in the RKHS:

min
θ∈Rp

1

n

n∑

i=1

L(yi, fθ(xi)) +
λ

2
‖fθ‖2H.

Lower-bounds

‖f‖H = sup
‖u‖H≤1

〈f, u〉H ≥ sup
u∈U
〈f, u〉H for U ⊆ BH(1).

We design a set U that leads to a tractable approximation, but it requires some knowledge
about the properties of H,Φ.
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A kernel perspective: regularization

Adversarial penalty

We know that Φ is non-expansive and f(x) = 〈f,Φ(x)〉. Then,

U = {Φ(x+ δ)− Φ(x) : x ∈ X , ‖δ‖2 ≤ 1}

leads to
λ‖f‖2δ = sup

x∈X ,‖δ‖2≤λ
f(x+ δ)− f(x).

The resulting strategy is related to adversarial regularization (but it is decoupled from the
loss term and does not use labels).

min
θ∈Rp

1

n

n∑

i=1

L(yi, fθ(xi)) + sup
x∈X ,‖δ‖2≤λ

fθ(x+ δ)− fθ(x).

[Madry et al., 2018]
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U = {Φ(x+ δ)− Φ(x) : x ∈ X , ‖δ‖2 ≤ 1}

leads to
λ‖f‖2δ = sup

x∈X ,‖δ‖2≤λ
f(x+ δ)− f(x).

The resulting strategy is related to adversarial regularization (but it is decoupled from the
loss term and does not use labels).
vs, for adversarial regularization,

min
θ∈Rp

1

n

n∑

i=1

sup
‖δ‖2≤λ

L(yi, fθ(xi + δ)).

[Madry et al., 2018]
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A kernel perspective: regularization

Gradient penalties

We know that Φ is non-expansive and f(x) = 〈f,Φ(x)〉. Then,

U = {Φ(x+ δ)− Φ(x) : x ∈ X , ‖δ‖2 ≤ 1}

leads to
‖∇f‖ = sup

x∈X
‖∇f(x)‖2.

Related penalties have been used to stabilize the training of GANs and gradients of the loss
function have been used to improve robustness.

[Gulrajani et al., 2017, Roth et al., 2017, 2018, Drucker and Le Cun, 1991, Lyu et al., 2015, Simon-Gabriel

et al., 2018]
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A kernel perspective: regularization

Adversarial deformation penalties

We know that Φ is stable to deformations and f(x) = 〈f,Φ(x)〉. Then,

U = {Φ(Lτx)− Φ(x) : x ∈ X , τ}

leads to
‖f‖2τ = sup

x∈X
τ small deformation

f(Lτx)− f(x).

This is related to data augmentation and tangent propagation.

[Engstrom et al., 2017, Simard et al., 1998]
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Experiments with Few labeled Samples

Table: Accuracies on CIFAR10 with 1 000 examples for standard architectures VGG-11 and
ResNet-18. With / without data augmentation.

Method 1k VGG-11 1k ResNet-18

No weight decay 50.70 / 43.75 45.23 / 37.12
Weight decay 51.32 / 43.95 44.85 / 37.09
SN projection 54.14 / 46.70 47.12 / 37.28
PGD-`2 51.25 / 44.40 45.80 / 41.87
grad-`2 55.19 / 43.88 49.30 / 44.65
‖f‖2δ penalty 51.41 / 45.07 48.73 / 43.72
‖∇f‖2 penalty 54.80 / 46.37 48.99 / 44.97
PGD-`2 + SN proj 54.19 / 46.66 47.47 / 41.25
grad-`2 + SN proj 55.32 / 46.88 48.73 / 42.78
‖f‖2δ + SN proj 54.02 / 46.72 48.12 / 43.56
‖∇f‖2 + SN proj 55.24 / 46.80 49.06 / 44.92
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Experiments with Few labeled Samples
Table: Accuracies with 300 or 1 000 examples from MNIST, using deformations. (∗) indicates that
random deformations were included as training examples,

Method 300 VGG 1k VGG

Weight decay 89.32 94.08
SN projection 90.69 95.01
grad-`2 93.63 96.67
‖f‖2δ penalty 94.17 96.99
‖∇f‖2 penalty 94.08 96.82
Weight decay (∗) 92.41 95.64
grad-`2 (∗) 95.05 97.48
‖Dτf‖2 penalty 94.18 96.98
‖f‖2τ penalty 94.42 97.13
‖f‖2τ + ‖∇f‖2 94.75 97.40
‖f‖2τ + ‖f‖2δ 95.23 97.66
‖f‖2τ + ‖f‖2δ (∗) 95.53 97.56
‖f‖2τ + ‖f‖2δ + SN proj 95.20 97.60
‖f‖2τ + ‖f‖2δ + SN proj (∗) 95.40 97.77
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Experiments with Few labeled Samples
Table: AUROC50 for protein homology detection tasks using CNN, with or without data
augmentation (DA).

Method No DA DA

No weight decay 0.446 0.500
Weight decay 0.501 0.546
SN proj 0.591 0.632
PGD-`2 0.575 0.595
grad-`2 0.540 0.552
‖f‖2δ 0.600 0.608
‖∇f‖2 0.585 0.611
PGD-`2 + SN proj 0.596 0.627
grad-`2 + SN proj 0.592 0.624
‖f‖2δ + SN proj 0.630 0.644
‖∇f‖2 + SN proj 0.603 0.625

Note: statistical tests have been conducted for all of these experiments (see paper).
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Adversarial Robustness: Trade-offs
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Figure: Robustness trade-off curves of different regularization methods for VGG11 on CIFAR10. Each
plot shows test accuracy vs adversarial test accuracy Different points on a curve correspond to
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Conclusions from this work on regularization

What the kernel perspective brings us

gives a unified perspective on many regularization principles.

useful both for generalization and robustness.

related to robust optimization.

Future work

regularization based on kernel approximations.

semi-supervised learning to exploit unlabeled data.

relation with implicit regularization.
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