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Main motivation

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

min
x∈Rd

{

f (x)
△
=

1

n

n
∑

i=1

fi (x) + ψ(x)

}

,

where each fi is L-smooth and convex and ψ is a convex regularization
penalty but not necessarily differentiable.

Motivation

Our goal is to accelerate existing algorithms

with Nesterov’s principles;

with Quasi-Newton heuristics;
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Why do large finite sums matter?

Empirical risk minimization

min
x∈Rp

{

F (x)
△
=

1

n

n
∑

i=1

fi (x) + ψ(x)

}

,

Typically, x represents model parameters.

Each function fi measures the fidelity of x to a data point.

ψ is a regularization function to prevent overfitting.

For instance, given training data (yi , zi )i=1,...,n with features zi in R
p

and labels yi in {−1,+1}, we may want to predict yi by sign(〈zi , x〉).
The functions fi measure how far the prediction is from the true label.

This would be a classification problem with a linear model.
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Why large finite sums matter?

A few examples

Ridge regression: min
x∈Rp

1

n

n
∑

i=1

1

2
(yi − 〈x , zi 〉)2 +

λ

2
‖x‖22.

Linear SVM: min
x∈Rp

1

n

n
∑

i=1

max(0, 1− yi 〈x , zi 〉) +
λ

2
‖x‖22.

Logistic regression: min
x∈Rp

1

n

n
∑

i=1

log
(

1 + e−yi 〈x ,zi 〉
)

+
λ

2
‖x‖22.
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Why does the composite problem matter?

A few examples

Ridge regression: min
x∈Rp

1

n

n
∑

i=1

1

2
(yi − 〈x , zi 〉)2 +

λ

2
‖x‖22.

Linear SVM: min
x∈Rp

1

n

n
∑

i=1

max(0, 1− yi 〈x , zi 〉) +
λ

2
‖x‖22.

Logistic regression: min
x∈Rp

1

n

n
∑

i=1

log
(

1 + e−yi 〈x ,zi 〉
)

+
λ

2
‖x‖22.

The squared ℓ2-norm penalizes large entries in x .
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Why does the composite problem matter?

A few examples

Ridge regression: min
x∈Rp

1

n

n
∑

i=1

1

2
(yi − 〈x , zi 〉)2 + λ‖x‖1.

Linear SVM: min
x∈Rp

1

n

n
∑

i=1

max(0, 1− yi 〈x , zi 〉)2 + λ‖x‖1.

Logistic regression: min
x∈Rp

1

n

n
∑

i=1

log
(

1 + e−yi 〈x ,zi 〉
)

+ λ‖x‖1.

When one knows in advance that x should be sparse, one should use a
sparsity-inducing regularization such as the ℓ1-norm.

[Chen et al., 1999, Tibshirani, 1996].
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Part I: How to address finite-sum problems?
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How to minimize a large finite sum of functions?

min
x∈Rp

{

f (x)
△
=

1

n

n
∑

i=1

fi (x) + ψ(x)

}

,

assuming here that the problem is µ-strongly convex.

We consider several alternatives

Batch first-order methods (ISTA, FISTA).

Stochastic first-order methods (SGD, mirror descent).

Incremental first-order methods (SAG, SAGA, SDCA, MISO, ...).

Quasi-Newton approaches (L-BFGS).
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(Batch) gradient descent methods

Let us consider the composite problem

min
x∈Rp

{f (x) = f0(x) + ψ(x)} ,

where f0 is convex, differentiable with L-Lipschitz continuous gradient
and ψ is convex, but not necessarily differentiable.

The classical forward-backward/ISTA algorithm

xk ← argmin
x∈Rp

1

2

∥

∥

∥

∥

x −
(

xk−1 −
1

L
∇f0(xk−1)

)
∥

∥

∥

∥

2

2

+
1

L
ψ(x).

f (xk)− f ⋆ = O(1/k) for convex problems;

f (xk)− f ⋆ = O((1− µ/L)k) for µ-strongly convex problems;

[Nowak and Figueiredo, 2001, Daubechies et al., 2004, Combettes and Wajs,
2006, Beck and Teboulle, 2009a, Wright et al., 2009, Nesterov, 2013]...
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Accelerated gradient descent methods

Nesterov introduced in the 80’s an acceleration scheme for the gradient
descent algorithm. It was generalized later to the composite setting.

FISTA

xk ← argmin
x∈Rp

1

2

∥

∥

∥

∥

x −
(

yk−1 −
1

L
∇f0(yk−1)

)∥

∥

∥

∥

2

2

+
1

L
ψ(x);

Find αk > 0 s.t. α2
k = (1− αk)α

2
k−1 +

µ

L
αk ;

yk ← xk + βk(xk − xk−1) with βk =
αk−1(1− αk−1)

α2
k−1 + αk

.

f (xk)− f ⋆ = O(1/k2) for convex problems;

f (xk)− f ⋆ = O((1−
√

µ/L)k) for µ-strongly convex problems;

Acceleration works in many practical cases.

see also [Nesterov, 1983, 2004, 2013]
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Stochastic gradient descent methods

... or the recent return of Robins and Monroe, 1951. Consider

min
x∈Rp

{

f (x) =
1

n

n
∑

i=1

fi (x)

}

.

At iteration k , select at random an index ik , and perform the update

xk ← xk−1 − ηk∇fik (xk−1)
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Stochastic gradient descent methods

... or the recent return of Robins and Monroe, 1951. Consider

min
x∈Rp

{

f (x) =
1

n

n
∑

i=1

fi (x)

}

.

At iteration k , select at random an index ik , and perform the update

xk ← xk−1 − ηk∇fik (xk−1)
(

note that E[∇fik (xk−1)] = ∇f (xk−1)
)

.
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Main features vs. batch

Complexity per-iteration is n times smaller;
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Stochastic gradient descent methods

... or the recent return of Robins and Monroe, 1951. Consider

min
x∈Rp

{

f (x) =
1

n

n
∑

i=1

fi (x)

}

.

At iteration k , select at random an index ik , and perform the update

xk ← xk−1 − ηk∇fik (xk−1)
(

note that E[∇fik (xk−1)] = ∇f (xk−1)
)

.

Main features vs. batch

Complexity per-iteration is n times smaller;

Convergence rate is slower: at most O(1/k) for strongly-convex
problems and O(1/

√
k) for convex ones, see [Nemirovski et al., 2009];
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Stochastic gradient descent methods

... or the recent return of Robins and Monroe, 1951. Consider

min
x∈Rp

{

f (x) =
1

n

n
∑

i=1

fi (x)

}

.

At iteration k , select at random an index ik , and perform the update

xk ← xk−1 − ηk∇fik (xk−1)
(

note that E[∇fik (xk−1)] = ∇f (xk−1)
)

.

Main features vs. batch

Complexity per-iteration is n times smaller;

Convergence rate is slower: at most O(1/k) for strongly-convex
problems and O(1/

√
k) for convex ones, see [Nemirovski et al., 2009];

variants are compatible with prox ψ, e.g., [Duchi et al., 2011].
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Stochastic gradient descent methods

... or the recent return of Robins and Monroe, 1951. Consider

min
x∈Rp

{

f (x) =
1

n

n
∑

i=1

fi (x)

}

.

At iteration k , select at random an index ik , and perform the update

xk ← xk−1 − ηk∇fik (xk−1)
(

note that E[∇fik (xk−1)] = ∇f (xk−1)
)

.

Main features vs. batch

Complexity per-iteration is n times smaller;

Convergence rate is slower: at most O(1/k) for strongly-convex
problems and O(1/

√
k) for convex ones, see [Nemirovski et al., 2009];

variants are compatible with prox ψ, e.g., [Duchi et al., 2011].

Sometimes a bit difficult to tune. When well tuned, the speed-up to
obtain a solution with moderate accuracy may be huge.
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Incremental gradient descent methods

min
x∈Rp

{

f (x) =
1

n

n
∑

i=1

fi (x)

}

.

Several randomized algorithms are designed with one ∇fi computed per
iteration, with fast convergence rates, e.g., SAG [Schmidt et al., 2017]:

xk ← xk−1 −
γ

Ln

n
∑

i=1

yki with yki =

{

∇fi (xk−1) if i = ik
yk−1
i otherwise

.
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Incremental gradient descent methods

min
x∈Rp

{

f (x) =
1

n

n
∑

i=1

fi (x)

}

.

Several randomized algorithms are designed with one ∇fi computed per
iteration, with fast convergence rates, e.g., SAG [Schmidt et al., 2017]:

xk ← xk−1 −
γ

Ln

n
∑

i=1

yki with yki =

{

∇fi (xk−1) if i = ik
yk−1
i otherwise

.

See also SVRG, SAGA, SDCA, MISO, Finito...
Some of these algorithms perform updates of the form

xk ← xk−1 − ηkgk with E[gk ] = ∇f (xk−1),

but gk has lower variance than in SGD.

[Schmidt et al., 2017, Xiao and Zhang, 2014, Defazio et al., 2014a,b,
Shalev-Shwartz and Zhang, 2012, Mairal, 2015, Zhang and Xiao, 2015]
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Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation.
The number of gradients evaluations to ensure f (xk)− f ⋆ ≤ ε is

µ > 0

FISTA O
(

n
√

L
µ
log

(

1
ε

)

)

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L
µ

)

log
(

1
ε

)

)
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n
√

L
µ
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1
ε

)

)
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µ

)

log
(

1
ε

)

)

Main features vs. stochastic gradient descent

Same complexity per-iteration (but higher memory footprint).
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Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation.
The number of gradients evaluations to ensure f (xk)− f ⋆ ≤ ε is

µ > 0

FISTA O
(

n
√

L
µ
log

(

1
ε

)

)

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L
µ

)

log
(

1
ε

)

)

Main features vs. stochastic gradient descent

Same complexity per-iteration (but higher memory footprint).

Faster convergence (exploit the finite-sum structure).

Less parameter tuning than SGD.

Some variants are compatible with composite term ψ.
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Part II: Catalyst
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An old idea

Old idea: Smooth the function and then optimize.

The Moreau-Yosida envelope

Given f : Rd → R a convex function, the Moreau-Yosida envelope of f is
the function F : Rd → R defined as

F (x) = min
w∈Rd

{

f (w) +
κ

2
‖w − x‖2

}

.

The proximal operator p(x) is the unique minimizer of the problem.
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The Moreau-Yosida regularization

F (x) = min
w∈Rd

{

f (w) +
κ

2
‖w − x‖2

}

.

Basic properties [see Lemaréchal and Sagastizábal, 1997]

Minimizing f and F is equivalent in the sense that

min
x∈Rd

F (x) = min
x∈Rd

f (x),

and the solution set of the two problems coincide with each other.

F is continuously differentiable even when f is not and

∇F (x) = κ(x − p(x)).

In addition, ∇F is Lipschitz continuous with parameter LF = κ.

If f is µ-strongly convex then F is also strongly convex with
parameter µF = µκ

µ+κ
.
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Minimizing f and F is equivalent in the sense that

min
x∈Rd

F (x) = min
x∈Rd

f (x),

and the solution set of the two problems coincide with each other.

F is continuously differentiable even when f is not and

∇F (x) = κ(x − p(x)).
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F enjoys nice properties: smoothness, (strong) convexity and
we can control its condition number 1/q = 1 + κ/µ.



The proximal point algorithm

A naive approach consists of minimizing the smoothed objective F
instead of f with a method designed for smooth optimization.

Consider indeed

xk+1 = xk −
1

κ
∇F (xk).

By rewriting the gradient ∇F (xk) as κ(xk − p(xk)), we obtain

xk+1 = p(xk) = argmin
w∈Rp

{

f (w) +
κ

2
‖w − xk‖2

}

.

This is exactly the proximal point algorithm [Martinet, 1970,
Rockafellar, 1976].
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The accelerated proximal point algorithm

Consider now

xk+1 = yk −
1

κ
∇F (yk) and yk+1 = xk+1 + βk+1(xk+1 − xk),

where βk+1 is a Nesterov-like extrapolation parameter. We may now
rewrite the update using the value of ∇F , which gives:

xk+1 = p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk)

This is the accelerated proximal point algorithm of Güler [1992].
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The accelerated proximal point algorithm

Consider now

xk+1 = yk −
1

κ
∇F (yk) and yk+1 = xk+1 + βk+1(xk+1 − xk),

where βk+1 is a Nesterov-like extrapolation parameter. We may now
rewrite the update using the value of ∇F , which gives:

xk+1 = p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk)

This is the accelerated proximal point algorithm of Güler [1992].

Remarks

F may be better conditioned than f when 1 + κ/µ ≤ L/µ;

Computing p(yk) has a cost!
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A fresh look at Catalyst [Lin, Mairal, and Harchaoui, 2015]

Catalyst is a particular accelerated proximal point algorithm with
inexact gradients [Güler, 1992].

xk+1 ≈ p(yk) and yk+1 = xk+1 + βk+1(xk+1 − xk)

The quantity xk+1 is obtained by using an optimization methodM for
approximately solving:

xk+1 ≈ argmin
w∈Rp

{

f (w) +
κ

2
‖w − yk‖2

}

,

Catalyst provides Nesterov’s acceleration toM with...

restart strategies for solving the sub-problems;

global complexity analysis resulting in theoretical acceleration;

optimal balancing between outer and inner computations.

see also [Frostig et al., 2015, Schmidt et al., 2011, Salzo and Villa, 2012,
Devolder et al., 2014, Shalev-Shwartz and Zhang, 2016]
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This work

Contributions

Generic acceleration scheme, which applies to algorithmsM
that have linear convergence rates for strongly convex problems..

Provides explicit support to non-strongly convex objectives.

Complexity analysis for µ-strongly convex objectives.

Complexity analysis for non-strongly convex objectives.

Extension to non-convex optimization by Paquette, Lin,
Drusvyatskiy, Mairal, and Harchaoui [2017].

Julien Mairal Generic Acceleration 22/51



Requirements onM
Linear convergence

Say a sub-problem consists of minimizing h; we wantM to produce
a sequence of iterates (zt)t≥0 with linear convergence rate

h(zt)− h⋆ ≤ CM(1− τM)t(h(z0)− h⋆),

which may possibly hold only in expectation ifM is randomized.

No assumption is made on the behavior ofM for non-strongly
convex problems.

Variants may be allowed when linear convergence is stated in terms
of dual certificate.
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When do we stop the methodM?

Three strategies to balance outer and inner computations

(a) use a pre-defined sequence (εk)k≥0 and stop the optimization
methodM when the sub-problems min hk satisfies

hk(zt)− h⋆k ≤ εk .

(b) use a pre-defined sequence (δk)k≥0 and stop the optimization
methodM when the sub-problems min hk satisfies

hk(zt)− h⋆k ≤
δk
2
‖zt − yk‖2.

(c) use a pre-defined budget TM of iterations of the methodM.
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When do we stop the methodM?

Three strategies to balance outer and inner computations

(a) use a pre-defined sequence (εk)k≥0 and stop the optimization
methodM when the sub-problems min hk satisfies

hk(zt)− h⋆k ≤ εk .

(b) use a pre-defined sequence (δk)k≥0 and stop the optimization
methodM when the sub-problems min hk satisfies

hk(zt)− h⋆k ≤
δk
2
‖zt − yk‖2.

(c) use a pre-defined budget TM of iterations of the methodM.

Remark

(c) implies (a) and requires TM to be larger than necessary in
practice; it leads to the simplest and most effective strategies.
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When do we stop the methodM?

Three strategies for µ-strongly convex objectives f

(a) use

εk =
1

2
C (1− ρ)k+1 with C ≥ f (x0)− f ∗ and ρ <

√
q.

where q is the inverse of the condition number of F : q = µ

(µ+κ)

(b) use

δk =

√
q

2−√q .

(c) use a pre-defined budget TM of iterations of the methodM for
solving each sub-problem with

TM =
1

τM
log

(

19CM
L+ κ

κ

)

. (be more aggressive in practice)
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When do we stop the methodM?

Three strategies for µ = 0

(a) use

εk =
f (x0)− f ⋆

2(k + 1)4+γ
with γ > 0.

(b) use

δk =
1

(k + 1)2
.

(c) use a pre-defined budget Tk of iterations of the methodM for
solving each sub-problem hk with

Tk = O(log(k)) (use a constant in practice)
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Other implementation details

See the arXiv paper for

Nesterov’s extrapolation parameters (fairly standard).

restart strategies for solving the sub-problems.
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Other implementation details

See the arXiv paper for

Nesterov’s extrapolation parameters (fairly standard).

restart strategies for solving the sub-problems.

Spoiler: optimal balance for inner/outer computations

To choose κ, maximize
τM√
µ+ κ

.

Remember that τM drives the convergence rate for the sub-problems

h(wt)− h⋆ ≤ CM(1− τM)t(h(w0)− h⋆).

For the standard gradient descent method, use κ = L− 2µ.

Julien Mairal Generic Acceleration 27/51



Outer-loop convergence analysis

With strong convexity

Using strategy (a),

f (xk)− f ∗ 6 C (1− ρ)k+1(f (x0)− f ∗) with ρ <
√
q,

and a similar result holds for (b).

Without strong convexity

Using strategy (b),

f (xk)− f ∗ 6
4κ‖x0 − x∗‖2

(k + 1)2
.

and a similar result holds for (a).
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Inner-loop convergence analysis

Using appropriate restart strategies, the inner-loop stopping criterions
are satisfied after Tk iterations, where

Tk = Õ

(

1

τM

)

when µ > 0,

and

Tk = Õ

(

log(k)

τM

)

when µ = 0.

The Õ hides logarithmic quantities in µ, κ and universal constants.
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Global complexity analysis

By combining the two previous strategies, we obtain that the guarantee
f (xk)− f ⋆ ≤ ε is achieved after N iterations of the methodM, where

N = Õ

(

1

τM
√
q
log

(

1

ε

))

when µ > 0,

and

N = Õ

(

1

τM

√

κ

ε
log

(

1

ε

))

when µ = 0.

Similar results hold also for randomized algorithms.
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Global complexity analysis

By combining the two previous strategies, we obtain that the guarantee
f (xk)− f ⋆ ≤ ε is achieved after N iterations of the methodM, where

N = Õ

(

1

τM
√
q
log

(

1

ε

))

when µ > 0,

and

N = Õ

(

1

τM

√

κ

ε
log

(

1

ε

))

when µ = 0.

Similar results hold also for randomized algorithms.

Theoretical choice of κ

maximize
τM√
µ+ κ

.

For gradient descent, τM = µ+κ

L+κ
⇒ κ = L− 2µ⇒ 1

τM
√
q
≤ 2

√

L
µ
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Applications

Expected computational complexity in the regime n ≤ L/µ when µ > 0,

µ > 0 µ = 0 Catalyst µ > 0 Cat. µ = 0

FG O

(

n

(

L

µ

)

log
(

1
ε

)

)

O
(

n
L

ε

)

Õ

(

n

√

L

µ
log

(

1
ε

)

)

Õ

(

n

√

L

ε

)

SAG

O

(

L

µ
log

(

1
ε

)

)

Õ

(√

nL

µ
log

(

1
ε

)

)

Õ

(

√

nL

ε

)

SAGA

Finito/MISO

NASDCA

SVRG

Acc-FG O

(

n

√

L

µ
log

(

1
ε

)

)

O

(

n

√

L

ε

)

no acceleration

Acc-SDCA Õ

(√

nL

µ
log

(

1
ε

)

)

NA
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Part III: QNing
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Limited-Memory BFGS (L-BFGS)

Pros

one of the largest practical success of smooth optimization.
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Limited-Memory BFGS (L-BFGS)

Pros

one of the largest practical success of smooth optimization.

Cons

worst-case convergence rates for strongly-convex functions are
linear, but much worse than the gradient descent method.

proximal variants typically requires solving many times

min
x∈Rd

1

2
(x − z)Bk(z − z) + ψ(x).

no guarantee of approximating the Hessian.
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An old idea (again)

Old idea: Smooth the function and then optimize.

The strategy appears in early work about variable metric bundle
methods. [Chen and Fukushima, 1999, Fukushima and Qi, 1996, Mifflin,

1996, Fuentes, Malick, and Lemaréchal, 2012, Burke and Qian, 2000] ...

The Moreau-Yosida envelope

Given f : Rd → R a convex function, the Moreau-Yosida envelope of f is
the function F : Rd → R defined as

F (x) = min
w∈Rd

{

f (w) +
κ

2
‖w − x‖2

}

.

The proximal operator p(x) is the unique minimizer of the problem.
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QNing

Main recipe

L-BFGS applied to the smoothed objective F with inexact
gradients [see Friedlander and Schmidt, 2012].

inexact gradients are obtained by solving sub-problems using a
first-order optimization methodM;

ideally,M is able to adapt to the problem structure (finite sum,
composite regularization).

replace L-BFGS steps by proximal point steps if no sufficient
decrease is estimated ⇒ no line search on F ;
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Obtaining inexact gradients

Algorithm Procedure ApproxGradient

input Current point x in R
d ; smoothing parameter κ > 0.

1: Compute the approximate mapping using an optimization
methodM:

z ≈ argmin
w∈Rd

{

h(w)
△
= f (w) +

κ

2
‖w − x‖2

}

,

2: Estimate the gradient ∇F (x)

g = κ(x − z).

output approximate gradient estimate g , objective value Fa
△
= h(z),

proximal mapping z .
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Algorithm QuickeNing

input x0 in R
p; number of iterations K ; κ > 0; minimization algorithmM.

1: Initialization: (g0,F0, z0) = ApproxGradient (x0,M); B0 = κI .
2: for k = 0, . . . ,K − 1 do
3: Perform the Quasi-Newton step

xtest = xk − B−1
k gk

(gtest,Ftest, ztest) = ApproxGradient (xtest,M) .

4: if Ftest ≤ Fk − 1
2κ‖gk‖2, then

5: (xk+1, gk+1,Fk+1, zk+1) = (xtest, gtest,Ftest, ztest).
6: else
7: Update the current iterate with the last proximal mapping:

xk+1 = zk = xk − (1/κ)gk

(gk+1,Fk+1, zk+1) = ApproxGradient (xk+1,M) .

8: end if
9: update Bk+1 = L-BFGS(Bk , xk+1 − xk , gk+1 − gk).

10: end for
output last proximal mapping zK (solution).
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The main characters:

the sequence (xk)k≥0 that minimizes F ;

the sequence (zk)k≥0 produced byM that minimizes f ;

the gradient approximations gk ≈ ∇F (xk);
the function value approximations Fk ≈ F (xk);

an L-BFGS update with inexact gradients;

an approximate sufficient descent condition.



Requirements onM and restarts

MethodM
Say a sub-problem consists of minimizing h; we wantM to produce
a sequence of iterates (wt)t≥0 with linear convergence rate

h(wt)− h⋆ ≤ CM(1− τM)t(h(w0)− h⋆).

Restarts

When f is smooth, we initialize w0 = x when solving

min
w∈Rd

{

f (w) +
κ

2
‖w − x‖2

}

.

When f = f0 + ψ is composite, we use the initialization

w0 = argmin
w∈Rd

{

f0(x) + 〈∇f0(x),w − x〉+ L+ κ

2
‖w − x‖2 + ψ(w)

}

.
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When do we stop the methodM?

Three strategies to balance outer and inner computations

(a) use a pre-defined sequence (εk)k≥0 and stop the optimization
methodM when the approximate proximal mapping is εk -accurate.

(b) define an adaptive stopping criterion that depends on quantities
that are available at iteration k .

(c) use a pre-defined budget TM of iterations of the methodM for
solving each sub-problem.
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When do we stop the methodM?

Three strategies to balance outer and inner computations

(a) use a pre-defined sequence (εk)k≥0 and stop the optimization
methodM when the approximate proximal mapping is εk -accurate.

(b) define an adaptive stopping criterion that depends on quantities
that are available at iteration k .

(c) use a pre-defined budget TM of iterations of the methodM for
solving each sub-problem.

Remarks

We have already seen all of this for Catalyst We have already seen
all of this for Catalyst..
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When do we stop the methodM?

Three strategies for µ-strongly convex objectives f

(a) use a pre-defined sequence (εk)k≥0 and stop the optimization
methodM when the approximate proximal mapping is εk -accurate.

εk =
1

2
C (1− ρ)k+1 with C ≥ f (x0)− f ∗ and ρ =

µ

4(µ+ κ)
.

(b) For minimizing h(w) = f (w) + (κ/2)‖w − x‖2, stop when

h(wt)− h⋆ ≤ κ

36
‖wt − x‖2.

(c) use a pre-defined budget TM of iterations of the methodM for
solving each sub-problem with

TM =
1

τM
log

(

19CM
L+ κ

κ

)

. (be more aggressive in practice)
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Remarks and worst-case global complexity

Composite objectives and sparsity

Consider a composite problem with a sparse solution (e.g., ψ = ℓ1). The
method produces two sequences (xk)k≥0 and (zk)k≥0;

F (xk)→ F ⋆, minimizes the smoothed objective ⇒ no sparsity;

f (zk)→ f ⋆, minimizes the true objective ⇒ the iterates may be
sparse ifM handles composite optimization problems;

Global complexity

The number of iterations ofM to guarantee f (zk)− f ⋆ ≤ ε is at most

Õ( µ+κ

τMµ
log(1/ε)) for µ-strongly convex problems.

Õ( κR2

τMε
) for convex problems.
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Global Complexity and choice of κ

Example for gradient descent

With the right step-size, we have τM = (µ+ κ)/(L+ κ) and the
complexity for µ > 0 becomes

Õ

(

L+ κ

µ
log(1/ε)

)

.

Example for SVRG for minimizing the sum of n functions

τM = min(1/n, (µ+ κ)/(L+ κ)) and the complexity for µ > 0 is

Õ

(

max

(

µ+ κ

µ
n,

L+ κ

µ

)

log(1/ε)

)

.
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Global Complexity and choice of κ

Example for gradient descent

With the right step-size, we have τM = (µ+ κ)/(L+ κ) and the
complexity for µ > 0 becomes

Õ

(

L+ κ

µ
log(1/ε)

)

.

Example for SVRG for minimizing the sum of n functions

τM = min(1/n, (µ+ κ)/(L+ κ)) and the complexity for µ > 0 is

Õ

(

max

(

µ+ κ

µ
n,

L+ κ

µ

)

log(1/ε)

)

.

QuickeNing does not provide any theoretical acceleration, but it
does not degrade significantly the worst-case performance of M
(unlike L-BFGS vs gradient descent).
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Global Complexity and choice of κ

Example for gradient descent

With the right step-size, we have τM = (µ+ κ)/(L+ κ) and the
complexity for µ > 0 becomes

Õ

(

L+ κ

µ
log(1/ε)

)

.

Example for SVRG for minimizing the sum of n functions

τM = min(1/n, (µ+ κ)/(L+ κ)) and the complexity for µ > 0 is

Õ

(

max

(

µ+ κ

µ
n,

L+ κ

µ

)

log(1/ε)

)

.
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Then, how to choose κ?
(i) assume that L-BFGS steps do as well as Nesterov.
(ii) choose κ as in Catalyst.



Experiments: formulations

ℓ2-regularized Logistic Regression:

min
x∈Rd

1

n

n
∑

i=1

log
(

1 + exp(−bi aTi x)
)

+
µ

2
‖x‖2,

ℓ1-regularized Linear Regression (LASSO):

min
x∈Rd

1

2n

n
∑

i=1

(bi − aTi x)
2 + λ‖x‖1,

ℓ1 − ℓ22-regularized Linear Regression (Elastic-Net):

min
x∈Rd

1

2n

n
∑

i=1

(bi − aTi x)
2 + λ‖x‖1 +

µ

2
‖x‖2,
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Experiments: Datasets

We consider four standard machine learning datasets with different
characteristics in terms of size and dimension

name covtype alpha real-sim rcv1

n 581 012 250 000 72 309 781 265

d 54 500 20 958 47 152

we simulate the ill-conditioned regime µ = 1/(100n);

λ for the Lasso leads to about 10% non-zero coefficients.
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Experiments: QuickeNing-SVRG

We consider the methods

SVRG: the Prox-SVRG algorithm of Xiao and Zhang [2014].

Catalyst-SVRG: Catalyst applied to SVRG;

L-BFGS (for smooth objectives): Mark Schmidt’s implementation.

QuickeNing-SVRG1: QuickeNing with aggressive strategy (c):
one pass over the data in the inner loop.

QuickeNing-SVRG2: strategy (b), compatible with theory.

We produce 12 figures (3 formulations, 4 datasets).
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Experiments: QuickeNing-SVRG (log scale)
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QuickeNing-SVRG1 ≥ SVRG, QuickeNing-SVRG2;

QuickeNing-SVRG2 ≥ SVRG;

QuickeNing-SVRG1 ≥ Catalyst-SVRG in 10/12 cases.
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Experiments: QuickeNing-ISTA

We consider the methods

ISTA: the proximal gradient descent method with line search.

FISTA: the accelerated ISTA of Beck and Teboulle [2009b].

L-BFGS (for smooth objectives): Mark Schmidt’s implementation.

QuickeNing-ISTA1: QuickeNing with aggressive strategy (c): one
pass over the data in the inner loop.

QuickeNing-ISTA2: strategy (b), compatible with theory.
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Experiments: QuickeNing-ISTA (log scale)
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L-BFGS (for smooth f ) is slightly better than QuickeNing-ISTA1;

QuickeNing-ISTA ≥ or ≫ FISTA in 11/12 cases.

QuickeNing-ISTA1 ≥ QuickeNing-ISTA2.
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Experiments: Influence of κ
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κ0 is the parameter (same as in Catalyst) used in all experiments;

QuickeNing slows down when using κ > κ0;

here, for SVRG, QuickeNing is robust to small values of κ!
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Experiments: Influence of l
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l = 100 in all previous experiments;

l = 5 seems to be a reasonable choice in many cases, especially for
sparse problems.
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Conclusions and perspectives

A simple generic Quasi-Newton method for composite functions,
with simple sub-problems, and complexity guarantees.

We also have a variant for dual approaches.

Does not solve the gap between theory and practice for L-BFGS.

Perspectives

QuickeNing-BCD, QuickeNing-SAG,SAGA,SDCA...

Other types of smoothing? ⇒ Links with recent Quasi-Newton
methods applied to other envelopes [Stella et al., 2016].

Simple line search improves slightly the performance.
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Outer-loop convergence analysis

Lemma: approximate descent property

F (xk+1) ≤ f (zk) ≤ F (xk)−
1

4κ
‖∇F (xk)‖22 + 2εk .

Then, εk should be smaller than 1
4κ‖∇F (xk)‖22, and indeed
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Outer-loop convergence analysis

Lemma: approximate descent property

F (xk+1) ≤ f (zk) ≤ F (xk)−
1

4κ
‖∇F (xk)‖22 + 2εk .

Then, εk should be smaller than 1
4κ‖∇F (xk)‖22, and indeed

Proposition: convergence with impractical εk and µ > 0

If εk ≤ 1
16κ‖∇F (xk)‖22, define ρ = µ

4(µ+κ) , then

F (xk+1)− F ∗ ≤ f (zk)− f ∗ ≤ (1− ρ)k+1 (f (x0)− f ∗).

Unfortunately, ‖∇F (xk)‖ is unknown.
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Outer-loop convergence analysis

Lemma: approximate descent property

F (xk+1) ≤ f (zk) ≤ F (xk)−
1

4κ
‖∇F (xk)‖22 + 2εk .

Then, εk should be smaller than 1
4κ‖∇F (xk)‖22, and indeed

Proposition: convergence with impractical εk and µ > 0

If εk ≤ 1
16κ‖∇F (xk)‖22, define ρ = µ

4(µ+κ) , then

F (xk+1)− F ∗ ≤ f (zk)− f ∗ ≤ (1− ρ)k+1 (f (x0)− f ∗).

Unfortunately, ‖∇F (xk)‖ is unknown.

Lemma: convergence with adaptive εk and µ > 0

If εk ≤ 1
36κ‖gk‖2, then εk ≤ 1

16‖∇F (xk)‖2.

This is strategy (b). gk is known and easy to compute.
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Inner-loop complexity analysis

Restart for L-smooth functions

For minimizing h, initialize the methodM with w0 = x . Then,

h(w0)− h∗ ≤ L+ κ

2κ2
‖∇F (x)‖2. (1)

Proof.

We have the optimality condition ∇f (w∗) + κ(w∗ − x) = 0. As a result,

h(w0)−h∗

= f (x)−
(

f (w∗) +
κ

2
‖w∗ − x‖2

)

≤ f (w∗)+〈∇f (w∗), x−w∗〉+ L

2
‖x−w∗‖2−

(

f (w∗)+
κ

2
‖w∗−x‖2

)

=
L+ κ

2
‖w∗ − x‖2 = L+ κ

2κ2
‖∇F (x)‖2.
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