Generic Acceleration Schemes for Gradient-Based Optimization

Hongzhou Lin¹, Julien Mairal¹, Zaid Harchaoui²

¹Inria, Grenoble ²University of Washington

Séminaire d'optimisation Paris, 2018

An alternate title: Acceleration by Smoothing

An alternate title: Acceleration by Smoothing

Another one:

Recent Variants of the Inexact Proximal Point Algorithm

Collaborators

Zaid Harchaoui

Dima Drusvyatskiy

Courtney Paquette

Publications and pre-prints

- H. Lin, J. Mairal and Z. Harchaoui. Catalyst Acceleration for First-order Convex Optimization: from Theory to Practice. *arXiv:1712.05654*. 2017.
- H. Lin, J. Mairal and Z. Harchaoui. A Generic Quasi-Newton Algorithm for Faster Gradient-Based Optimization. *arXiv:1610.00960.* 2017
- C. Paquette, H. Lin, D. Drusvyatskiy, J. Mairal, Z. Harchaoui. Catalyst for Gradient-Based Non-Convex Optimization. *AISTATS*. 2018
- H. Lin, J. Mairal and Z. Harchaoui. A Universal Catalyst for First-Order Optimization. *Adv. NIPS* 2015.

Main motivation

Minimizing large finite sums

Consider the minimization of a large sum of convex functions

$$\min_{\mathbf{x} \in \mathbb{R}^d} \left\{ f(\mathbf{x}) \stackrel{\triangle}{=} \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}) + \psi(\mathbf{x}) \right\},\,$$

where each f_i is L-smooth and convex and ψ is a convex regularization penalty but not necessarily differentiable.

Motivation

Our goal is to accelerate existing algorithms

- with Nesterov's principles;
- with Quasi-Newton heuristics;

Julien Mairal Generic Acceleration

Why do large finite sums matter?

Empirical risk minimization

$$\min_{\mathbf{x}\in\mathbb{R}^p}\left\{F(\mathbf{x})\stackrel{\triangle}{=}\frac{1}{n}\sum_{i=1}^n f_i(\mathbf{x})+\psi(\mathbf{x})\right\},\,$$

- Typically, *x* represents **model parameters**.
- Each function f_i measures the **fidelity** of x to a data point.
- ullet ψ is a regularization function to prevent overfitting.

For instance, given training data $(y_i, z_i)_{i=1,...,n}$ with features z_i in \mathbb{R}^p and labels y_i in $\{-1, +1\}$, we may want to predict y_i by $\operatorname{sign}(\langle z_i, x \rangle)$. The functions f_i measure how far the prediction is from the true label.

This would be a classification problem with a linear model.

Julien Mairal Generic Acceleration 5/

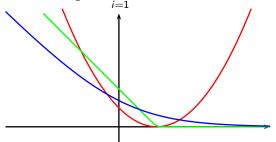
Why large finite sums matter?

A few examples

Ridge regression:
$$\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \frac{1}{2} (y_i - \langle x, z_i \rangle)^2 + \frac{\lambda}{2} ||x||_2^2.$$

Ridge regression:
$$\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \frac{1}{2} (y_i - \langle x, z_i \rangle)^2 + \frac{\lambda}{2} \|x\|_2^2.$$
 Linear SVM:
$$\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \max(0, 1 - y_i \langle x, z_i \rangle) + \frac{\lambda}{2} \|x\|_2^2.$$

 $\min_{\mathbf{x} \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^{\binom{n-1}{n}} \log \left(1 + e^{-y_i \langle \mathbf{x}, \mathbf{z}_i \rangle} \right) + \frac{\lambda}{2} \|\mathbf{x}\|_2^2.$ Logistic regression:



Why does the composite problem matter?

A few examples

Ridge regression:
$$\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \frac{1}{2} (y_i - \langle x, z_i \rangle)^2 + \frac{\lambda}{2} \|x\|_2^2.$$
 Linear SVM:
$$\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \max(0, 1 - y_i \langle x, z_i \rangle) + \frac{\lambda}{2} \|x\|_2^2.$$
 Logistic regression:
$$\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \log\left(1 + e^{-y_i \langle x, z_i \rangle}\right) + \frac{\lambda}{2} \|x\|_2^2.$$

The **squared** ℓ_2 -**norm** penalizes large entries in x.

Julien Mairal

Generic Acceleration

Why does the composite problem matter?

A few examples

Ridge regression:
$$\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \frac{1}{2} (y_i - \langle x, z_i \rangle)^2 + \lambda \|x\|_1.$$
 Linear SVM:
$$\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \max(0, 1 - y_i \langle x, z_i \rangle)^2 + \lambda \|x\|_1.$$
 Logistic regression:
$$\min_{x \in \mathbb{R}^p} \frac{1}{n} \sum_{i=1}^n \log \left(1 + e^{-y_i \langle x, z_i \rangle}\right) + \lambda \|x\|_1.$$

When one knows in advance that x should be sparse, one should use a sparsity-inducing regularization such as the ℓ_1 -norm.

[Chen et al., 1999, Tibshirani, 1996].

Julien Mairal

Part I: How to address finite-sum problems?

How to minimize a large finite sum of functions?

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) \stackrel{\triangle}{=} \frac{1}{n} \sum_{i=1}^n f_i(x) + \psi(x) \right\},\,$$

assuming here that the problem is μ -strongly convex.

We consider several alternatives

- Batch first-order methods (ISTA, FISTA).
- Stochastic first-order methods (SGD, mirror descent).
- Incremental first-order methods (SAG, SAGA, SDCA, MISO, ...).
- Quasi-Newton approaches (L-BFGS).

Julien Mairal Generic Acceleration

(Batch) gradient descent methods

Let us consider the composite problem

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) = f_0(x) + \psi(x) \right\},\,$$

where f_0 is convex, differentiable with L-Lipschitz continuous gradient and ψ is convex, but not necessarily differentiable.

The classical forward-backward/ISTA algorithm

$$x_k \leftarrow \operatorname*{arg\,min}_{x \in \mathbb{R}^p} \frac{1}{2} \left\| x - \left(x_{k-1} - \frac{1}{L} \nabla f_0(x_{k-1}) \right) \right\|_2^2 + \frac{1}{L} \psi(x).$$

- $f(x_k) f^* = O(1/k)$ for **convex** problems;
- $f(x_k) f^* = O((1 \mu/L)^k)$ for μ -strongly convex problems;

[Nowak and Figueiredo, 2001, Daubechies et al., 2004, Combettes and Wajs, 2006, Beck and Teboulle, 2009a, Wright et al., 2009, Nesterov, 2013]...

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● めのの

Accelerated gradient descent methods

Nesterov introduced in the 80's an acceleration scheme for the gradient descent algorithm. It was generalized later to the composite setting.

FISTA

$$\begin{aligned} x_k &\leftarrow \arg\min_{x \in \mathbb{R}^p} \frac{1}{2} \left\| x - \left(\underbrace{y_{k-1}} - \frac{1}{L} \nabla f_0(y_{k-1}) \right) \right\|_2^2 + \frac{1}{L} \psi(x); \\ \text{Find } \alpha_k &> 0 \quad \text{s.t.} \quad \alpha_k^2 = (1 - \alpha_k) \alpha_{k-1}^2 + \frac{\mu}{L} \alpha_k; \\ y_k &\leftarrow x_k + \beta_k (x_k - x_{k-1}) \quad \text{with} \quad \beta_k = \frac{\alpha_{k-1} (1 - \alpha_{k-1})}{\alpha_{k-1}^2 + \alpha_k}. \end{aligned}$$

- $f(x_k) f^* = O(1/k^2)$ for **convex** problems;
- $f(x_k) f^* = O((1 \sqrt{\mu/L})^k)$ for μ -strongly convex problems;
- Acceleration works in many practical cases.

see also [Nesterov, 1983, 2004, 2013]

Julien Mairal Generic Acceleration 12/51

... or the recent return of Robins and Monroe, 1951. Consider

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}.$$

At iteration k, select at random an index i_k , and perform the update

$$x_k \leftarrow x_{k-1} - \eta_k \nabla f_{i_k}(x_{k-1})$$

13/51

Julien Mairal Generic Acceleration

... or the recent return of Robins and Monroe, 1951. Consider

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}.$$

At iteration k, select at random an index i_k , and perform the update

$$x_k \leftarrow x_{k-1} - \eta_k \nabla f_{i_k}(x_{k-1})$$
 (note that $\mathbb{E}[\nabla f_{i_k}(x_{k-1})] = \nabla f(x_{k-1})$).

13/51

Julien Mairal Generic Acceleration

... or the recent return of Robins and Monroe, 1951. Consider

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}.$$

At iteration k, select at random an index i_k , and perform the update

$$x_k \leftarrow x_{k-1} - \eta_k \nabla f_{i_k}(x_{k-1})$$
 (note that $\mathbb{E}[\nabla f_{i_k}(x_{k-1})] = \nabla f(x_{k-1})$).

Main features vs. batch

Complexity per-iteration is n times smaller;

... or the recent return of Robins and Monroe, 1951. Consider

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}.$$

At iteration k, select at random an index i_k , and perform the update

$$x_k \leftarrow x_{k-1} - \eta_k \nabla f_{i_k}(x_{k-1})$$
 (note that $\mathbb{E}[\nabla f_{i_k}(x_{k-1})] = \nabla f(x_{k-1})$).

Main features vs. batch

- Complexity per-iteration is n times smaller;
- Convergence rate is slower: at most O(1/k) for strongly-convex problems and $O(1/\sqrt{k})$ for convex ones, see [Nemirovski et al., 2009];

Julien Mairal

... or the recent return of Robins and Monroe, 1951. Consider

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}.$$

At iteration k, select at random an index i_k , and perform the update

$$x_k \leftarrow x_{k-1} - \eta_k \nabla f_{i_k}(x_{k-1})$$
 (note that $\mathbb{E}[\nabla f_{i_k}(x_{k-1})] = \nabla f(x_{k-1})$).

Main features vs. batch

- Complexity per-iteration is *n* times smaller;
- Convergence rate is slower: at most O(1/k) for strongly-convex problems and $O(1/\sqrt{k})$ for convex ones, see [Nemirovski et al., 2009];
- variants are compatible with prox ψ , e.g., [Duchi et al., 2011].

Julien Mairal Gen

... or the recent return of Robins and Monroe, 1951. Consider

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}.$$

At iteration k, select at random an index i_k , and perform the update

$$x_k \leftarrow x_{k-1} - \eta_k \nabla f_{i_k}(x_{k-1})$$
 (note that $\mathbb{E}[\nabla f_{i_k}(x_{k-1})] = \nabla f(x_{k-1})$).

Main features vs. batch

- Complexity per-iteration is *n* times smaller;
- Convergence rate is slower: at most O(1/k) for strongly-convex problems and $O(1/\sqrt{k})$ for convex ones, see [Nemirovski et al., 2009];
- variants are compatible with prox ψ , e.g., [Duchi et al., 2011].
- Sometimes a bit difficult to tune. When well tuned, the speed-up to obtain a solution with moderate accuracy may be huge.

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}.$$

Several **randomized** algorithms are designed with one ∇f_i computed per iteration, with **fast convergence rates**, e.g., SAG [Schmidt et al., 2017]:

$$x_k \leftarrow x_{k-1} - \frac{\gamma}{Ln} \sum_{i=1}^n y_i^k$$
 with $y_i^k = \begin{cases} \nabla f_i(x_{k-1}) & \text{if } i = i_k \\ y_i^{k-1} & \text{otherwise} \end{cases}$.

14/51

Julien Mairal Generic Acceleration

$$\min_{x \in \mathbb{R}^p} \left\{ f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x) \right\}.$$

Several **randomized** algorithms are designed with one ∇f_i computed per iteration, with **fast convergence rates**, e.g., SAG [Schmidt et al., 2017]:

$$x_k \leftarrow x_{k-1} - \frac{\gamma}{Ln} \sum_{i=1}^n y_i^k$$
 with $y_i^k = \begin{cases} \nabla f_i(x_{k-1}) & \text{if } i = i_k \\ y_i^{k-1} & \text{otherwise} \end{cases}$.

See also SVRG, SAGA, SDCA, MISO, Finito...

Some of these algorithms perform updates of the form

$$x_k \leftarrow x_{k-1} - \eta_k g_k$$
 with $\mathbb{E}[g_k] = \nabla f(x_{k-1}),$

but g_k has lower variance than in SGD.

[Schmidt et al., 2017, Xiao and Zhang, 2014, Defazio et al., 2014a,b, Shalev-Shwartz and Zhang, 2012, Mairal, 2015, Zhang and Xiao, 2015]

Julien Mairal

These methods achieve low (worst-case) complexity in expectation. The number of gradients evaluations to ensure $f(x_k) - f^* \le \varepsilon$ is

	$\mu > 0$
FISTA	$O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right)$
SVRG, SAG, SAGA, SDCA, MISO, Finito	$O\left(\max\left(n, \frac{L}{\mu}\right) \log\left(\frac{1}{\varepsilon}\right)\right)$

These methods achieve low (worst-case) complexity in expectation. The number of gradients evaluations to ensure $f(x_k) - f^* \le \varepsilon$ is

	$\mu > 0$
FISTA	$O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right)$
SVRG, SAG, SAGA, SDCA, MISO, Finito	$O\left(\max\left(n, \frac{L}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$

Main features vs. stochastic gradient descent

• Same complexity per-iteration (but higher memory footprint).

These methods achieve low (worst-case) complexity in expectation. The number of gradients evaluations to ensure $f(x_k) - f^* < \varepsilon$ is

	$\mu > 0$
FISTA	$O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right)$
SVRG, SAG, SAGA, SDCA, MISO, Finito	$O\left(\max\left(n, \frac{L}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$

Main features vs. stochastic gradient descent

- Same complexity per-iteration (but higher memory footprint).
- Faster convergence (exploit the finite-sum structure).

These methods achieve low (worst-case) complexity in expectation. The number of gradients evaluations to ensure $f(x_k) - f^* \le \varepsilon$ is

	$\mu > 0$
FISTA	$O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right)$
SVRG, SAG, SAGA, SDCA, MISO, Finito	$O\left(\max\left(n, \frac{L}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$

Main features vs. stochastic gradient descent

- Same complexity per-iteration (but higher memory footprint).
- Faster convergence (exploit the finite-sum structure).
- Less parameter tuning than SGD.

These methods achieve low (worst-case) complexity in expectation. The number of gradients evaluations to ensure $f(x_k) - f^* \le \varepsilon$ is

	$\mu > 0$
FISTA	$O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right)$
SVRG, SAG, SAGA, SDCA, MISO, Finito	$O\left(\max\left(n, \frac{L}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$

Main features vs. stochastic gradient descent

- Same complexity per-iteration (but higher memory footprint).
- Faster convergence (exploit the finite-sum structure).
- Less parameter tuning than SGD.
- Some variants are compatible with composite term ψ .

Part II: Catalyst

An old idea

Old idea: Smooth the function and then optimize.

The Moreau-Yosida envelope

Given $f: \mathbb{R}^d \to \mathbb{R}$ a convex function, the Moreau-Yosida envelope of f is the function $F: \mathbb{R}^d \to \mathbb{R}$ defined as

$$F(x) = \min_{w \in \mathbb{R}^d} \left\{ f(w) + \frac{\kappa}{2} ||w - x||^2 \right\}.$$

The **proximal operator** p(x) is the unique minimizer of the problem.

Julien Mairal Generic Acceleration

The Moreau-Yosida regularization

$$F(x) = \min_{w \in \mathbb{R}^d} \left\{ f(w) + \frac{\kappa}{2} ||w - x||^2 \right\}.$$

Basic properties [see Lemaréchal and Sagastizábal, 1997]

Minimizing f and F is equivalent in the sense that

$$\min_{x \in \mathbb{R}^d} F(x) = \min_{x \in \mathbb{R}^d} f(x),$$

and the solution set of the two problems coincide with each other.

• F is continuously differentiable even when f is not and

$$\nabla F(x) = \kappa(x - p(x)).$$

In addition, ∇F is Lipschitz continuous with parameter $L_F = \kappa$.

• If f is μ -strongly convex then F is also strongly convex with parameter $\mu_F = \frac{\mu\kappa}{\mu + \kappa}$.

Julien Mairal

The Moreau-Yosida regularization

$$F(x) = \min_{w \in \mathbb{R}^d} \left\{ f(w) + \frac{\kappa}{2} ||w - x||^2 \right\}.$$

Basic properties [see Lemaréchal and Sagastizábal, 1997]

Minimizing f and F is equivalent in the sense that

$$\min_{x \in \mathbb{R}^d} F(x) = \min_{x \in \mathbb{R}^d} f(x),$$

and the solution set of the two problems coincide with each other.

• F is continuously differentiable even when f is not and

$$\nabla F(x) = \kappa(x - p(x)).$$

In addition, ∇F is Lipschitz continuous with parameter $L_F = \kappa$.

F enjoys nice properties: smoothness, (strong) convexity and we can control its condition number $1/q=1+\kappa/\mu$.

Julien Mairal Ge

The proximal point algorithm

A naive approach consists of minimizing the smoothed objective F instead of f with a method designed for smooth optimization.

Consider indeed

$$x_{k+1} = x_k - \frac{1}{\kappa} \nabla F(x_k).$$

By rewriting the gradient $\nabla F(x_k)$ as $\kappa(x_k - p(x_k))$, we obtain

$$x_{k+1} = p(x_k) = \arg\min_{w \in \mathbb{R}^p} \left\{ f(w) + \frac{\kappa}{2} ||w - x_k||^2 \right\}.$$

This is exactly the **proximal point algorithm** [Martinet, 1970, Rockafellar, 1976].

Julien Mairal Generic Acceleration

The accelerated proximal point algorithm

Consider now

$$x_{k+1} = y_k - \frac{1}{\kappa} \nabla F(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1} (x_{k+1} - x_k),$

where β_{k+1} is a Nesterov-like extrapolation parameter. We may now rewrite the update using the value of ∇F , which gives:

$$x_{k+1} = p(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$

This is the accelerated proximal point algorithm of Güler [1992].

The accelerated proximal point algorithm

Consider now

$$x_{k+1} = y_k - \frac{1}{\kappa} \nabla F(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1} (x_{k+1} - x_k),$

where β_{k+1} is a Nesterov-like extrapolation parameter. We may now rewrite the update using the value of ∇F , which gives:

$$x_{k+1} = p(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$

This is the accelerated proximal point algorithm of Güler [1992].

Remarks

- F may be better conditioned than f when $1 + \kappa/\mu \le L/\mu$;
- Computing $p(y_k)$ has a cost!

20/51

Julien Mairal Generic

A fresh look at Catalyst [Lin, Mairal, and Harchaoui, 2015]

Catalyst is a particular accelerated proximal point algorithm with inexact gradients [Güler, 1992].

$$x_{k+1} \approx p(y_k)$$
 and $y_{k+1} = x_{k+1} + \beta_{k+1}(x_{k+1} - x_k)$

The quantity x_{k+1} is obtained by using an optimization method $\mathcal M$ for approximately solving:

$$x_{k+1} pprox \operatorname*{arg\,min}_{w \in \mathbb{R}^p} \left\{ f(w) + \frac{\kappa}{2} \|w - y_k\|^2 \right\},$$

Catalyst provides Nesterov's acceleration to $\mathcal M$ with...

- restart strategies for solving the sub-problems;
- global complexity analysis resulting in theoretical acceleration;
- optimal balancing between outer and inner computations.

see also [Frostig et al., 2015, Schmidt et al., 2011, Salzo and Villa, 2012, Devolder et al., 2014, Shalev-Shwartz and Zhang, 2016]

This work

Contributions

- Generic acceleration scheme, which applies to algorithms M
 that have linear convergence rates for strongly convex problems...
- Provides explicit support to non-strongly convex objectives.
- ullet Complexity analysis for μ -strongly convex objectives.
- Complexity analysis for non-strongly convex objectives.
- Extension to non-convex optimization by Paquette, Lin, Drusvyatskiy, Mairal, and Harchaoui [2017].

Requirements on ${\mathcal M}$

Linear convergence

• Say a sub-problem consists of minimizing h; we want \mathcal{M} to produce a sequence of iterates $(z_t)_{t\geq 0}$ with linear convergence rate

$$h(z_t) - h^* \leq C_{\mathcal{M}} (1 - \tau_{\mathcal{M}})^t (h(z_0) - h^*),$$

which may possibly hold only in expectation if $\mathcal M$ is randomized.

- No assumption is made on the behavior of \mathcal{M} for non-strongly convex problems.
- Variants may be allowed when linear convergence is stated in terms of dual certificate.

Three strategies to balance outer and inner computations

(a) use a **pre-defined sequence** $(\varepsilon_k)_{k\geq 0}$ and stop the optimization method $\mathcal M$ when the sub-problems min h_k satisfies

$$h_k(z_t) - h_k^* \leq \varepsilon_k$$
.

(b) use a **pre-defined sequence** $(\delta_k)_{k\geq 0}$ and stop the optimization method $\mathcal M$ when the sub-problems min h_k satisfies

$$h_k(z_t) - h_k^{\star} \leq \frac{\delta_k}{2} ||z_t - y_k||^2.$$

(c) use a **pre-defined budget** $T_{\mathcal{M}}$ of iterations of the method \mathcal{M} .

24/51

Three strategies to balance outer and inner computations

(a) use a **pre-defined sequence** $(\varepsilon_k)_{k\geq 0}$ and stop the optimization method $\mathcal M$ when the sub-problems min h_k satisfies

$$h_k(z_t) - h_k^* \leq \varepsilon_k$$
.

(b) use a **pre-defined sequence** $(\delta_k)_{k\geq 0}$ and stop the optimization method $\mathcal M$ when the sub-problems min h_k satisfies

$$h_k(z_t) - h_k^{\star} \leq \frac{\delta_k}{2} ||z_t - y_k||^2.$$

(c) use a **pre-defined budget** $T_{\mathcal{M}}$ of iterations of the method \mathcal{M} .

Remark

• (c) implies (a) and requires $T_{\mathcal{M}}$ to be larger than necessary in practice; it leads to the simplest and most effective strategies.

24/51

Three strategies for μ -strongly convex objectives f

(a) use

$$arepsilon_k = rac{1}{2} C (1-
ho)^{k+1} \quad ext{with} \quad C \geq f(x_0) - f^* \ ext{and} \
ho < \sqrt{q}.$$

where q is the inverse of the condition number of F: $q=\frac{\mu}{(\mu+\kappa)}$

(b) use

$$\delta_k = \frac{\sqrt{q}}{2 - \sqrt{q}}.$$

(c) use a **pre-defined budget** $T_{\mathcal{M}}$ of iterations of the method \mathcal{M} for solving each sub-problem with

$$T_{\mathcal{M}} = \frac{1}{ au_{\mathcal{M}}} \log \left(19 C_{\mathcal{M}} \frac{L + \kappa}{\kappa} \right)$$
. (be more aggressive in practice)

25/51

Three strategies for $\mu = 0$

(a) use

$$arepsilon_k = rac{f(x_0) - f^*}{2(k+1)^{4+\gamma}} \quad \mathrm{with} \quad \gamma > 0.$$

(b) use

$$\delta_k = \frac{1}{(k+1)^2}.$$

(c) use a **pre-defined budget** T_k of iterations of the method \mathcal{M} for solving each sub-problem h_k with

$$T_k = O(\log(k))$$
 (use a constant in practice)

Other implementation details

See the arXiv paper for

- Nesterov's extrapolation parameters (fairly standard).
- restart strategies for solving the sub-problems.

Other implementation details

See the arXiv paper for

- Nesterov's extrapolation parameters (fairly standard).
- restart strategies for solving the sub-problems.

Spoiler: optimal balance for inner/outer computations

To choose κ , maximize

$$\frac{\tau_{\mathcal{M}}}{\sqrt{\mu + \kappa}}.$$

Remember that $au_{\mathcal{M}}$ drives the convergence rate for the sub-problems

$$h(w_t) - h^* \leq C_{\mathcal{M}} (1 - \tau_{\mathcal{M}})^t (h(w_0) - h^*).$$

For the standard gradient descent method, use $\kappa = L - 2\mu$.

With strong convexity

Using strategy (a),

$$f(x_k) - f^* \leqslant C(1 - \rho)^{k+1} (f(x_0) - f^*)$$
 with $\rho < \sqrt{q}$,

and a similar result holds for (b).

Without strong convexity

Using strategy (b),

$$f(x_k) - f^* \leqslant \frac{4\kappa ||x_0 - x^*||^2}{(k+1)^2}.$$

and a similar result holds for (a).

Using appropriate restart strategies, the inner-loop stopping criterions are satisfied after T_k iterations, where

$$\mathcal{T}_k = ilde{O}\left(rac{1}{ au_{\mathcal{M}}}
ight) \quad ext{when} \quad \mu > 0,$$

and

$$T_k = \tilde{O}\left(rac{\log(k)}{ au_{\mathcal{M}}}
ight) \quad ext{when} \quad \mu = 0.$$

The \tilde{O} hides logarithmic quantities in μ, κ and universal constants.

Global complexity analysis

By combining the two previous strategies, we obtain that the guarantee $f(x_k) - f^* \le \varepsilon$ is achieved after N iterations of the method \mathcal{M} , where

$$\mathit{N} = \tilde{\mathit{O}}\left(rac{1}{ au_{\mathcal{M}}\sqrt{q}}\log\left(rac{1}{arepsilon}
ight)
ight) \quad ext{when} \quad \mu > 0,$$

and

$$N = \tilde{O}\left(rac{1}{ au_{\mathcal{M}}}\sqrt{rac{\kappa}{arepsilon}}\log\left(rac{1}{arepsilon}
ight)
ight) \quad ext{when} \quad \mu = 0.$$

Similar results hold also for randomized algorithms.

Global complexity analysis

By combining the two previous strategies, we obtain that the guarantee $f(x_k) - f^* \le \varepsilon$ is achieved after N iterations of the method \mathcal{M} , where

$${\it N} = \tilde{O}\left(rac{1}{ au_{\cal M}\sqrt{q}}\log\left(rac{1}{arepsilon}
ight)
ight) \quad {
m when} \quad \mu > 0,$$

and

$$N = \tilde{O}\left(rac{1}{ au_{\mathcal{M}}}\sqrt{rac{\kappa}{arepsilon}}\log\left(rac{1}{arepsilon}
ight)
ight) \quad ext{when} \quad \mu = 0.$$

Similar results hold also for randomized algorithms.

Theoretical choice of κ

maximize

$$\frac{\tau_{\mathcal{M}}}{\sqrt{\mu + \kappa}}$$
.

For gradient descent, $\tau_{\mathcal{M}} = \frac{\mu + \kappa}{L + \kappa} \Rightarrow \kappa = L - 2\mu \Rightarrow \frac{1}{\tau_{\mathcal{M}}\sqrt{q}} \leq 2\sqrt{\frac{L}{\mu}}$

Applications

Expected computational complexity in the regime $n \le L/\mu$ when $\mu > 0$,

	$\mu > 0$	$\mu=0$	Catalyst $\mu>0$	Cat. $\mu=0$
FG	$O\left(n\left(\frac{L}{\mu}\right)\log\left(\frac{1}{\varepsilon}\right)\right)$		$\tilde{O}\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right)$	$\tilde{O}\left(n\sqrt{\frac{L}{\varepsilon}}\right)$
SAG		$O\left(n\frac{L}{\varepsilon}\right)$		
SAGA				
Finito/MISO	$O\left(\frac{L}{\mu}\log\left(\frac{1}{\varepsilon}\right)\right)$		$\tilde{O}\left(\sqrt{rac{nL}{\mu}}\log\left(rac{1}{arepsilon} ight) ight)$	$\tilde{O}\left(\sqrt{rac{nL}{arepsilon}} ight)$
SDCA		NA		
SVRG				
Acc-FG	$O\left(n\sqrt{\frac{L}{\mu}}\log\left(\frac{1}{\varepsilon}\right)\right)$	$O\left(n\sqrt{\frac{L}{\varepsilon}}\right)$	no acceleration	
Acc-SDCA	$\tilde{O}\left(\sqrt{rac{nL}{\mu}}\log\left(rac{1}{arepsilon} ight) ight)$	NA		

Part III: QNing

Limited-Memory BFGS (L-BFGS)

Pros

• one of the largest practical success of smooth optimization.

Limited-Memory BFGS (L-BFGS)

Pros

• one of the largest practical success of smooth optimization.

Cons

- worst-case convergence rates for strongly-convex functions are linear, but much worse than the gradient descent method.
- proximal variants typically requires solving many times

$$\min_{x\in\mathbb{R}^d}\frac{1}{2}(x-z)B_k(z-z)+\psi(x).$$

• no guarantee of approximating the Hessian.

An old idea (again)

Old idea: Smooth the function and then optimize.

• The strategy appears in early work about variable metric bundle methods. [Chen and Fukushima, 1999, Fukushima and Qi, 1996, Mifflin, 1996, Fuentes, Malick, and Lemaréchal, 2012, Burke and Qian, 2000] ...

The Moreau-Yosida envelope

Given $f: \mathbb{R}^d \to \mathbb{R}$ a convex function, the Moreau-Yosida envelope of f is the function $F: \mathbb{R}^d \to \mathbb{R}$ defined as

$$F(x) = \min_{w \in \mathbb{R}^d} \left\{ f(w) + \frac{\kappa}{2} ||w - x||^2 \right\}.$$

The **proximal operator** p(x) is the unique minimizer of the problem.

34/51

QNing

Main recipe

- L-BFGS applied to the smoothed objective F with inexact gradients [see Friedlander and Schmidt, 2012].
- inexact gradients are obtained by solving sub-problems using a first-order optimization method M;
- ideally, M is able to adapt to the problem structure (finite sum, composite regularization).
- replace L-BFGS steps by proximal point steps if no sufficient decrease is estimated ⇒ no line search on F;

Obtaining inexact gradients

Algorithm Procedure ApproxGradient

input Current point x in \mathbb{R}^d ; smoothing parameter $\kappa > 0$.

1: Compute the approximate mapping using an optimization method \mathcal{M} :

$$z pprox rg \min_{w \in \mathbb{R}^d} \left\{ h(w) \stackrel{\triangle}{=} f(w) + \frac{\kappa}{2} \|w - x\|^2
ight\},$$

2: Estimate the gradient $\nabla F(x)$

$$g=\kappa(x-z).$$

output approximate gradient estimate g, objective value $F_a \stackrel{\triangle}{=} h(z)$, proximal mapping z.

Algorithm QuickeNing

input x_0 in \mathbb{R}^p ; number of iterations K; $\kappa > 0$; minimization algorithm \mathcal{M} .

- 1: Initialization: $(g_0, F_0, z_0) = \text{ApproxGradient}(x_0, \mathcal{M}); B_0 = \kappa I.$
- 2: **for** k = 0, ..., K 1 **do**
- 3: Perform the Quasi-Newton step

$$egin{aligned} x_{\mathsf{test}} &= x_k - B_k^{-1} g_k \ (g_{\mathsf{test}}, F_{\mathsf{test}}, z_{\mathsf{test}}) &= \mathsf{ApproxGradient}\left(x_{\mathsf{test}}, \mathcal{M}
ight) \,. \end{aligned}$$

- 4: **if** $F_{\text{test}} \leq F_k \frac{1}{2\kappa} ||g_k||^2$, **then**
- 5: $(x_{k+1}, g_{k+1}, F_{k+1}, z_{k+1}) = (x_{\text{test}}, g_{\text{test}}, F_{\text{test}}, z_{\text{test}}).$
- 6: **else**
- 7: Update the current iterate with the last proximal mapping:

$$egin{aligned} x_{k+1} &= z_k = x_k - (1/\kappa) g_k \ (g_{k+1}, F_{k+1}, z_{k+1}) &= \mathsf{ApproxGradient}\left(x_{k+1}, \mathcal{M}
ight) \,. \end{aligned}$$

- 8: **end if**
- 9: update $B_{k+1} = \text{L-BFGS}(B_k, x_{k+1} x_k, g_{k+1} g_k)$.
- 10: end for

output last proximal mapping z_K (solution).

Algorithm QuickeNing

input x_0 in \mathbb{R}^p ; number of iterations K; $\kappa > 0$; minimization algorithm \mathcal{M} .

- 1: Initialization: $(g_0, F_0, z_0) = \text{ApproxGradient}(x_0, \mathcal{M}); B_0 = \kappa I.$
- 2: **for** k = 0, ..., K 1 **do**
- 3: Perform the Quasi-Newton step

$$egin{aligned} x_{ ext{test}} &= x_k - B_k^{-1} g_k \ (g_{ ext{test}}, F_{ ext{test}}, z_{ ext{test}}) &= ext{ApproxGradient}\left(x_{ ext{test}}, \mathcal{M}
ight) \,. \end{aligned}$$

The main characters:

- the sequence $(x_k)_{k>0}$ that minimizes F;
- the sequence $(z_k)_{k\geq 0}$ produced by $\mathcal M$ that minimizes f;
- the gradient approximations $g_k \approx \nabla F(x_k)$;
- the function value approximations $F_k \approx F(x_k)$;
- an L-BFGS update with inexact gradients;
- an approximate sufficient descent condition.

10: ena tor

output last proximal mapping z_K (solution).

Requirements on ${\mathcal M}$ and restarts

Method \mathcal{M}

• Say a sub-problem consists of minimizing h; we want \mathcal{M} to produce a sequence of iterates $(w_t)_{t\geq 0}$ with linear convergence rate

$$h(w_t) - h^* \leq C_{\mathcal{M}} (1 - \tau_{\mathcal{M}})^t (h(w_0) - h^*).$$

Restarts

• When f is smooth, we **initialize** $w_0 = x$ when solving

$$\min_{w\in\mathbb{R}^d}\left\{f(w)+\frac{\kappa}{2}\|w-x\|^2\right\}.$$

• When $f = f_0 + \psi$ is composite, we use the initialization

$$w_0 = \operatorname*{arg\,min}_{w \in \mathbb{R}^d} \left\{ f_0(x) + \langle \nabla f_0(x), w - x \rangle + \frac{L + \kappa}{2} \|w - x\|^2 + \psi(w) \right\}.$$

◆ロ → ◆団 → ◆ き → を き め へ ○ ○

Three strategies to balance outer and inner computations

- (a) use a **pre-defined sequence** $(\varepsilon_k)_{k\geq 0}$ and stop the optimization method \mathcal{M} when the approximate proximal mapping is ε_k -accurate.
- (b) define an adaptive stopping criterion that depends on quantities that are available at iteration k.
- (c) use a **pre-defined budget** $T_{\mathcal{M}}$ of iterations of the method \mathcal{M} for solving each sub-problem.

Three strategies to balance outer and inner computations

- (a) use a **pre-defined sequence** $(\varepsilon_k)_{k\geq 0}$ and stop the optimization method $\mathcal M$ when the approximate proximal mapping is ε_k -accurate.
- (b) define an adaptive stopping criterion that depends on quantities that are available at iteration k.
- (c) use a **pre-defined budget** $T_{\mathcal{M}}$ of iterations of the method \mathcal{M} for solving each sub-problem.

Remarks

 We have already seen all of this for Catalyst We have already seen all of this for Catalyst..

Three strategies for μ -strongly convex objectives f

(a) use a **pre-defined sequence** $(\varepsilon_k)_{k\geq 0}$ and stop the optimization method \mathcal{M} when the approximate proximal mapping is ε_k -accurate.

$$arepsilon_k = rac{1}{2}C(1-
ho)^{k+1} \quad ext{with} \quad C \geq f(x_0) - f^* \ ext{and} \
ho = rac{\mu}{4(\mu+\kappa)}.$$

(b) For minimizing $h(w) = f(w) + (\kappa/2)||w - x||^2$, stop when

$$h(w_t)-h^{\star}\leq \frac{\kappa}{36}\|w_t-x\|^2.$$

(c) use a **pre-defined budget** $T_{\mathcal{M}}$ of iterations of the method \mathcal{M} for solving each sub-problem with

$$T_{\mathcal{M}} = rac{1}{ au_{\mathcal{M}}} \log \left(19 C_{\mathcal{M}} rac{L + \kappa}{\kappa}
ight)$$
 . (be more aggressive in practice)

◆ロト ◆部ト ◆差ト ◆差ト を からぐ

40/51

Remarks and worst-case global complexity

Composite objectives and sparsity

Consider a composite problem with a sparse solution (e.g., $\psi = \ell_1$). The method produces two sequences $(x_k)_{k\geq 0}$ and $(z_k)_{k\geq 0}$;

- $F(x_k) \to F^*$, minimizes the **smoothed objective** \Rightarrow no sparsity;
- $f(z_k) \to f^*$, minimizes the **true objective** \Rightarrow the iterates may be sparse if \mathcal{M} handles composite optimization problems;

Global complexity

The number of iterations of \mathcal{M} to guarantee $f(z_k) - f^* \leq \varepsilon$ is at most

- $\tilde{O}(\frac{\mu+\kappa}{\tau_M\mu}\log(1/\varepsilon))$ for μ -strongly convex problems.
- $\tilde{O}(\frac{\kappa R^2}{\tau_{\mathcal{M}}\varepsilon})$ for convex problems.

Global Complexity and choice of κ

Example for gradient descent

With the right step-size, we have $\tau_{\mathcal{M}}=(\mu+\kappa)/(L+\kappa)$ and the complexity for $\mu>0$ becomes

$$\tilde{O}\left(\frac{L+\kappa}{\mu}\log(1/\varepsilon)\right)$$
.

Example for SVRG for minimizing the sum of n functions $\tau_{\mathcal{M}} = \min(1/n, (\mu + \kappa)/(L + \kappa))$ and the complexity for $\mu > 0$ is

$$\tilde{O}\left(\max\left(\frac{\mu+\kappa}{\mu}\textit{n},\frac{L+\kappa}{\mu}\right)\log(1/\varepsilon)\right).$$

Global Complexity and choice of κ

Example for gradient descent

With the right step-size, we have $\tau_{\mathcal{M}}=(\mu+\kappa)/(L+\kappa)$ and the complexity for $\mu>0$ becomes

$$\tilde{O}\left(\frac{L+\kappa}{\mu}\log(1/\varepsilon)\right)$$
.

Example for SVRG for minimizing the sum of n functions $\tau_{\mathcal{M}} = \min(1/n, (\mu + \kappa)/(L + \kappa))$ and the complexity for $\mu > 0$ is

$$\tilde{O}\left(\max\left(\frac{\mu+\kappa}{\mu}n,\frac{L+\kappa}{\mu}\right)\log(1/\varepsilon)\right).$$

QuickeNing does not provide any theoretical acceleration, but it does not degrade significantly the worst-case performance of ${\cal M}$ (unlike L-BFGS vs gradient descent).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ めの○

Julien Mairal Ge

Global Complexity and choice of κ

Example for gradient descent

With the right step-size, we have $\tau_{\mathcal{M}}=(\mu+\kappa)/(L+\kappa)$ and the complexity for $\mu>0$ becomes

$$\tilde{O}\left(\frac{L+\kappa}{\mu}\log(1/\varepsilon)\right)$$
.

Example for SVRG for minimizing the sum of n functions $\tau_{\mathcal{M}} = \min(1/n, (\mu + \kappa)/(L + \kappa))$ and the complexity for $\mu > 0$ is

$$\tilde{O}\left(\max\left(rac{\mu+\kappa}{\mu}n,rac{L+\kappa}{\mu}
ight)\log(1/arepsilon)
ight).$$

Then, how to choose κ ?

- (i) assume that L-BFGS steps do as well as Nesterov.
- (ii) choose κ as in Catalyst.

Generic Acceleration 42/51

Experiments: formulations

• ℓ_2 -regularized Logistic Regression:

$$\min_{\boldsymbol{x} \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp(-b_i \, \boldsymbol{a}_i^T \boldsymbol{x}) \right) + \frac{\mu}{2} \|\boldsymbol{x}\|^2,$$

• ℓ_1 -regularized Linear Regression (LASSO):

$$\min_{x \in \mathbb{R}^d} \quad \frac{1}{2n} \sum_{i=1}^n (b_i - a_i^T x)^2 + \lambda ||x||_1,$$

• $\ell_1 - \ell_2^2$ -regularized Linear Regression (Elastic-Net):

$$\min_{x \in \mathbb{R}^d} \quad \frac{1}{2n} \sum_{i=1}^n (b_i - a_i^T x)^2 + \lambda ||x||_1 + \frac{\mu}{2} ||x||^2,$$

- 4 B > 4 B > 4 B > - B - 쒼익()

Experiments: Datasets

We consider four standard machine learning datasets with different characteristics in terms of size and dimension

name	covtype	alpha	real-sim	rcv1
n	581 012	250 000	72 309	781 265
d	54	500	20 958	47 152

- we simulate the ill-conditioned regime $\mu = 1/(100n)$;
- \bullet λ for the Lasso leads to about 10% non-zero coefficients.

Experiments: QuickeNing-SVRG

We consider the methods

- **SVRG**: the Prox-SVRG algorithm of Xiao and Zhang [2014].
- Catalyst-SVRG: Catalyst applied to SVRG;
- L-BFGS (for smooth objectives): Mark Schmidt's implementation.
- QuickeNing-SVRG1: QuickeNing with aggressive strategy (c): one pass over the data in the inner loop.
- QuickeNing-SVRG2: strategy (b), compatible with theory.

We produce 12 figures (3 formulations, 4 datasets).

Experiments: QuickeNing-SVRG (log scale)



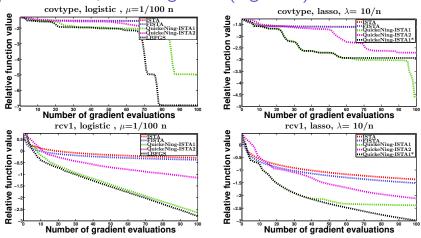
- QuickeNing-SVRG1 ≥ SVRG, QuickeNing-SVRG2;
- QuickeNing-SVRG2 ≥ SVRG;
- QuickeNing-SVRG1 \geq Catalyst-SVRG in 10/12 cases.

Experiments: QuickeNing-ISTA

We consider the methods

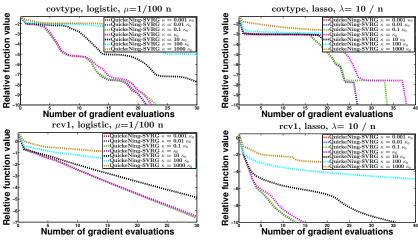
- **ISTA**: the proximal gradient descent method with line search.
- FISTA: the accelerated ISTA of Beck and Teboulle [2009b].
- L-BFGS (for smooth objectives): Mark Schmidt's implementation.
- QuickeNing-ISTA1: QuickeNing with aggressive strategy (c): one pass over the data in the inner loop.
- QuickeNing-ISTA2: strategy (b), compatible with theory.

Experiments: QuickeNing-ISTA (log scale)



- L-BFGS (for smooth f) is slightly better than QuickeNing-ISTA1;
- QuickeNing-ISTA \geq or \gg FISTA in 11/12 cases.
- QuickeNing-ISTA1 > QuickeNing-ISTA2.

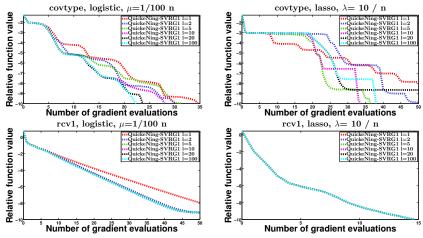
Experiments: Influence of κ



- κ_0 is the parameter (same as in Catalyst) used in all experiments;
- QuickeNing slows down when using $\kappa > \kappa_0$;
- here, for SVRG, QuickeNing is robust to small values of $\kappa!$

49/51

Experiments: Influence of I



- I = 100 in all previous experiments;
- *l* = 5 seems to be a reasonable choice in many cases, especially for sparse problems.

Conclusions and perspectives

- A simple generic Quasi-Newton method for composite functions, with simple sub-problems, and complexity guarantees.
- We also have a variant for dual approaches.
- Does not solve the gap between theory and practice for L-BFGS.

Perspectives

- QuickeNing-BCD, QuickeNing-SAG,SAGA,SDCA...
- Other types of smoothing? ⇒ Links with recent Quasi-Newton methods applied to other envelopes [Stella et al., 2016].
- Simple line search improves slightly the performance.

Lemma: approximate descent property

$$F(x_{k+1}) \leq f(z_k) \leq F(x_k) - \frac{1}{4\kappa} \|\nabla F(x_k)\|_2^2 + 2\varepsilon_k.$$

Then, ε_k should be smaller than $\frac{1}{4\kappa} ||\nabla F(x_k)||_2^2$, and indeed

52/51

Lemma: approximate descent property

$$F(x_{k+1}) \leq f(z_k) \leq F(x_k) - \frac{1}{4\kappa} \|\nabla F(x_k)\|_2^2 + 2\varepsilon_k.$$

Then, ε_k should be smaller than $\frac{1}{4\kappa} \|\nabla F(x_k)\|_2^2$, and indeed

Proposition: convergence with impractical ε_k and $\mu > 0$

If
$$\varepsilon_k \leq \frac{1}{16\kappa} \|\nabla F(x_k)\|_2^2$$
, define $\rho = \frac{\mu}{4(\mu + \kappa)}$, then

$$F(x_{k+1}) - F^* \le f(z_k) - f^* \le (1 - \rho)^{k+1} (f(x_0) - f^*).$$

Unfortunately, $\|\nabla F(x_k)\|$ is unknown.

Lemma: approximate descent property

$$F(x_{k+1}) \leq f(z_k) \leq F(x_k) - \frac{1}{4\kappa} \|\nabla F(x_k)\|_2^2 + 2\varepsilon_k.$$

Then, ε_k should be smaller than $\frac{1}{4\kappa} \|\nabla F(x_k)\|_2^2$, and indeed

Proposition: convergence with impractical ε_k and $\mu > 0$

If
$$arepsilon_k \leq rac{1}{16\kappa} \|
abla F(x_k) \|_2^2$$
, define $ho = rac{\mu}{4(\mu + \kappa)}$, then

$$F(x_{k+1}) - F^* \le f(z_k) - f^* \le (1 - \rho)^{k+1} (f(x_0) - f^*).$$

Unfortunately, $\|\nabla F(x_k)\|$ is unknown.

Lemma: convergence with adaptive ε_k and $\mu > 0$

If
$$\varepsilon_k \leq \frac{1}{36\kappa} \|g_k\|^2$$
, then $\varepsilon_k \leq \frac{1}{16} \|\nabla F(x_k)\|^2$.

This is strategy (b). g_k is known and easy to compute.

Inner-loop complexity analysis

Restart for L-smooth functions

For minimizing h, initialize the method \mathcal{M} with $w_0 = x$. Then,

$$h(w_0) - h^* \le \frac{L + \kappa}{2\kappa^2} \|\nabla F(x)\|^2.$$
 (1)

Proof.

We have the optimality condition $\nabla f(w^*) + \kappa(w^* - x) = 0$. As a result,

$$h(w_0) - h^*$$

$$= f(x) - \left(f(w^*) + \frac{\kappa}{2} \| w^* - x \|^2 \right)$$

$$\leq f(w^*) + \langle \nabla f(w^*), x - w^* \rangle + \frac{L}{2} \| x - w^* \|^2 - \left(f(w^*) + \frac{\kappa}{2} \| w^* - x \|^2 \right)$$

$$= \frac{L + \kappa}{2} \| w^* - x \|^2 = \frac{L + \kappa}{2\kappa^2} \| \nabla F(x) \|^2.$$

References I

- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009a.
- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, 2009b.
- J.V. Burke and Maijian Qian. On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating. *Mathematical Programming*, 88(1):157–181, 2000.
- S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. *SIAM Journal on Scientific Computing*, 20:33–61, 1999.
- Xiaojun Chen and Masao Fukushima. Proximal quasi-Newton methods for nondifferentiable convex optimization. *Mathematical Programming*, 85(2): 313–334, 1999.
- P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. *SIAM Multiscale Modeling and Simulation*, 4(4):1168–1200, 2006.

References II

- I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. *Communications on Pure and Applied Mathematics*, 57(11):1413–1457, 2004.
- Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient method with support for non-strongly convex composite objectives. In *Advances in Neural Information Processing Systems (NIPS)*, 2014a.
- Aaron Defazio, Justin Domke, and Tibério S Caetano. Finito: A faster, permutable incremental gradient method for big data problems. In *Proceedings of the International Conferences on Machine Learning (ICML)*, 2014b.
- Olivier Devolder, F. Glineur, and Yurii Nesterov. First-order methods of smooth convex optimization with inexact oracle. *Mathematical Programming*, 146 (1-2):37–75, 2014.
- J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. 12:2121–2159, 2011.

References III

- Michael P Friedlander and Mark Schmidt. Hybrid deterministic-stochastic methods for data fitting. *SIAM Journal on Scientific Computing*, 34(3): A1380–A1405, 2012.
- Roy Frostig, Rong Ge, Sham M Kakade, and Aaron Sidford. Un-regularizing: approximate proximal point and faster stochastic algorithms for empirical risk minimization. In *Proceedings of the International Conferences on Machine Learning (ICML)*, 2015.
- Marc Fuentes, Jérôme Malick, and Claude Lemaréchal. Descentwise inexact proximal algorithms for smooth optimization. *Computational Optimization and Applications*, 53(3):755–769, 2012.
- Masao Fukushima and Liqun Qi. A globally and superlinearly convergent algorithm for nonsmooth convex minimization. *SIAM Journal on Optimization*, 6(4):1106–1120, 1996.
- O. Güler. New proximal point algorithms for convex minimization. *SIAM Journal on Optimization*, 2(4):649–664, 1992.

References IV

- Claude Lemaréchal and Claudia Sagastizábal. Practical aspects of the Moreau–Yosida regularization: Theoretical preliminaries. *SIAM Journal on Optimization*, 7(2):367–385, 1997.
- Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order optimization. In *Advances in Neural Information Processing Systems (NIPS)*, 2015.
- J. Mairal. Incremental majorization-minimization optimization with application to large-scale machine learning. SIAM Journal on Optimization, 25(2): 829–855, 2015.
- Bernard Martinet. Brève communication. régularisation d'inéquations variationnelles par approximations successives. 4(3):154–158, 1970.
- Robert Mifflin. A quasi-second-order proximal bundle algorithm. *Mathematical Programming*, 73(1):51–72, 1996.
- Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approximation approach to stochastic programming. *SIAM Journal on optimization*, 19(4):1574–1609, 2009.

References V

- Y. Nesterov. *Introductory lectures on convex optimization: a basic course.* Kluwer Academic Publishers, 2004.
- Y. Nesterov. Gradient methods for minimizing composite objective function. *Mathematical Programming*, 140(1):125–161, 2013.
- Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o (1/k2). In *Doklady an SSSR*, volume 269, pages 543–547, 1983.
- R. D. Nowak and M. A. T. Figueiredo. Fast wavelet-based image deconvolution using the EM algorithm. In *Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers.*, 2001.
- Courtney Paquette, Hongzhou Lin, Dmitriy Drusvyatskiy, Julien Mairal, and Zaid Harchaoui. Catalyst acceleration for gradient-based non-convex optimization. arXiv preprint arXiv:1703.10993, 2017.
- R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. *SIAM Journal on Control and Optimization*, 14(5):877–898, 1976.
- Saverio Salzo and Silvia Villa. Inexact and accelerated proximal point algorithms. *Journal of Convex Analysis*, 19(4):1167–1192, 2012.

References VI

- M. Schmidt, N. Le Roux, and F. Bach. Convergence rates of inexact proximal-gradient methods for convex optimization. 2011.
- M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient. *Mathematical Programming*, 160(1):83–112, 2017.
- S. Shalev-Shwartz and T. Zhang. Proximal stochastic dual coordinate ascent. *arXiv:1211.2717*, 2012.
- S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for regularized loss minimization. *Mathematical Programming*, 155(1):105–145, 2016.
- Lorenzo Stella, Andreas Themelis, and Panagiotis Patrinos. Forward-backward quasi-newton methods for nonsmooth optimization problems. *arXiv* preprint *arXiv*:1604.08096, 2016.
- R. Tibshirani. Regression shrinkage and selection via the Lasso. 58(1):267–288, 1996.

References VII

- S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by separable approximation. *IEEE Transactions on Signal Processing*, 57(7): 2479–2493, 2009.
- L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction. *SIAM Journal on Optimization*, 24(4):2057–2075, 2014.
- Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for regularized empirical risk minimization. In *Proceedings of the International Conferences on Machine Learning (ICML)*, 2015.