# Foundations of Deep Learning from a Kernel Point of View

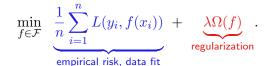
Julien Mairal Inria Grenoble

Future of Random Projections II, 2018



## Convolutional Neural Networks Behind the Scenes

The goal is to learn a **prediction function**  $f : \mathbb{R}^p \to \mathbb{R}$  given labeled training data  $(x_i, y_i)_{i=1,...,n}$  with  $x_i$  in  $\mathbb{R}^p$ , and  $y_i$  in  $\mathbb{R}$ :



# Convolutional Neural Networks Behind the Scenes

The goal is to learn a **prediction function**  $f : \mathbb{R}^p \to \mathbb{R}$  given labeled training data  $(x_i, y_i)_{i=1,...,n}$  with  $x_i$  in  $\mathbb{R}^p$ , and  $y_i$  in  $\mathbb{R}$ :



#### What is specific to multilayer neural networks?

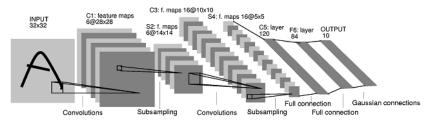
• The "neural network" space  ${\mathcal F}$  is explicitly parametrized by:

$$f(x) = \sigma_k(\mathbf{A}_k \sigma_{k-1}(\mathbf{A}_{k-1} \dots \sigma_2(\mathbf{A}_2 \sigma_1(\mathbf{A}_1 x)) \dots)).$$

- Linear operations are either unconstrained (fully connected) or involve parameter sharing (e.g., convolutions).
- Finding the optimal  $A_1, A_2, ..., A_k$  yields a non-convex optimization problem in huge dimension.

# Convolutional Neural Networks Behind the Scenes

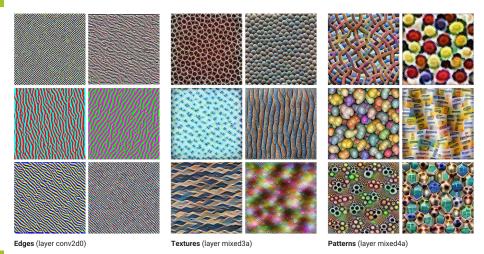
## Picture from LeCun et al. [1998]



## What are the main features of CNNs?

- they capture compositional and multiscale structures in images;
- they provide some invariance;
- they model local stationarity of images at several scales;
- they are state-of-the-art in many fields.

# Convolutional Neural Networks in Front of the Scene Picture from Olah et al. [2017]:



Julien Mairal Future

▲ 同 ▶ → 三 ▶

# Convolutional Neural Networks in Front of the Scene

Picture from Olah et al. [2017]:



Patterns (layer mixed4a)

Parts (layers mixed4b & mixed4c)

Objects (layers mixed4d & mixed4e)

<ロ> <同> <同> < 同> < 三> < 三>

# Future of Convolutional Neural Networks

### What are current high-potential problems to solve?

- Iack of robustness (see next slide).
- learning with few labeled data.
- learning with no supervision (see Tab. from Bojanowski and Joulin, 2017).

| Method                               | Acc@1 |
|--------------------------------------|-------|
| Random (Noroozi & Favaro, 2016)      | 12.0  |
| SIFT+FV (Sánchez et al., 2013)       | 55.6  |
| Wang & Gupta (2015)                  | 29.8  |
| Doersch et al. (2015)                | 30.4  |
| Zhang et al. (2016)                  | 35.2  |
| <sup>1</sup> Noroozi & Favaro (2016) | 38.1  |
| BiGAN (Donahue et al., 2016)         | 32.2  |
| NAT                                  | 36.0  |

Table 3. Comparison of the proposed approach to state-of-the-art unsupervised feature learning on ImageNet. A full multi-layer perceptron is retrained on top of the features. We compare to several self-supervised approaches and an unsupervised approach. Julien Mairal

# Future of Convolutional Neural Networks

#### Illustration of instability. Picture from Kurakin et al. [2016].

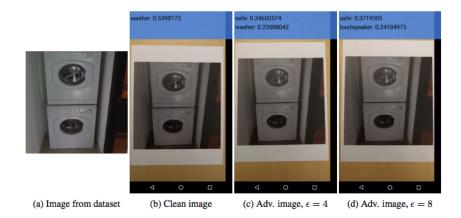


Figure: Adversarial examples are generated by computer; then printed on paper; a new picture taken on a smartphone fools the classifier.

# Future of Convolutional Neural Networks

$$\min_{f \in \mathcal{F}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i))}_{\text{empirical risk, data fit}} + \underbrace{\lambda \Omega(f)}_{\text{regularization}}.$$

#### The issue of regularization

- today, heuristics are used (DropOut, weight decay, early stopping)...
- ...but they are not sufficient.
- how to control variations of prediction functions?

|f(x) - f(x')| should be close if x and x' are "similar".

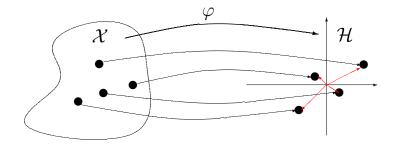
- what does it mean for x and x' to be "similar"?
- what should be a good regularization function Ω?

Back to the Past: Kernel Methods

$$\min_{f \in \mathcal{H}} \quad \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \|f\|_{\mathcal{H}}^2.$$

• map data x in  $\mathcal{X}$  to a Hilbert space and work with linear forms:

 $\varphi: \mathcal{X} \to \mathcal{H}$  and  $f(x) = \langle \varphi(x), f \rangle_{\mathcal{H}}.$ 



## Back to the Past: Kernel Methods

$$\min_{f \in \mathcal{H}} \quad \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \|f\|_{\mathcal{H}}^2.$$

#### Main purpose: embed data in a vectorial space where

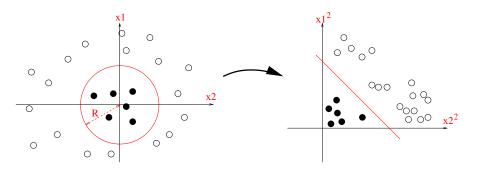
- many geometrical operations exist (angle computation, projection on linear subspaces, definition of barycenters....).
- one may learn potentially rich infinite-dimensional models.
- regularization is natural:

$$|f(x) - f(x')| \le ||f||_{\mathcal{H}} ||\varphi(x) - \varphi(x')||_{\mathcal{H}}.$$

## Back to the Past: Kernel Methods

Second purpose: unhappy with the current Euclidean structure?

- lift data to a higher-dimensional space with **nicer properties** (e.g., linear separability, clustering structure).
- then, the linear form  $f(x) = \langle \varphi(x), f \rangle_{\mathcal{H}}$  in  $\mathcal{H}$  may correspond to a non-linear model in  $\mathcal{X}$ .



#### What is the relation with deep neural networks?

• it is possible to design functional spaces  ${\cal H}$  where deep neural networks live [Mairal, 2016].

$$f(x) = \sigma_k(\mathbf{A}_k \sigma_{k-1}(\mathbf{A}_{k-1} \dots \sigma_2(\mathbf{A}_2 \sigma_1(\mathbf{A}_1 x)) \dots)) = \langle f, \varphi(x) \rangle_{\mathcal{H}}.$$

• we call the construction "convolutional kernel networks".

#### Why do we care?

 φ(x) is related to to network architecture and is independent of training data. Is it stable? Does it lose signal information?

#### What is the relation with deep neural networks?

• it is possible to design functional spaces  ${\cal H}$  where deep neural networks live [Mairal, 2016].

$$f(x) = \sigma_k(\mathbf{A}_k \sigma_{k-1}(\mathbf{A}_{k-1} \dots \sigma_2(\mathbf{A}_2 \sigma_1(\mathbf{A}_1 x)) \dots)) = \langle f, \varphi(x) \rangle_{\mathcal{H}}.$$

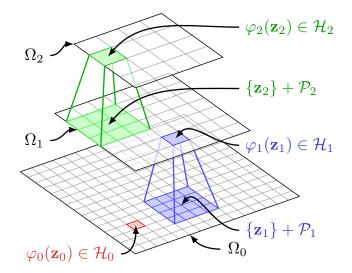
• we call the construction "convolutional kernel networks".

#### Why do we care?

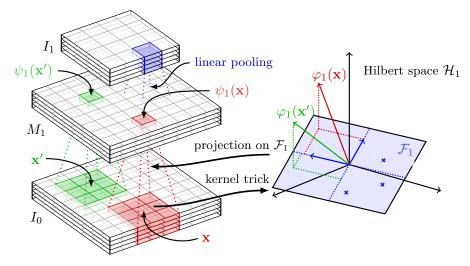
- φ(x) is related to to network architecture and is independent of training data. Is it stable? Does it lose signal information?
- f is a predictive model. Can we control its stability?

$$|f(x) - f(x')| \le ||f||_{\mathcal{H}} ||\varphi(x) - \varphi(x')||_{\mathcal{H}}$$

What is  $\varphi(x)$ ?



#### Convolutional kernel networks in practice.



### Technical details

Formally, a CKN is a sequence of operators

$$\Phi_n(x) = A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \dots A_1 M_1 P_1 A_0 x.$$

- $P_k$  performs patch extraction;
- $M_k$  performs kernel mapping

$$K(z, z') = \|z\| \|z'\| \kappa \left(\frac{\langle z, z'\rangle}{\|z\| \|z'\|}\right).$$

•  $A_k$  performs linear pooling with a Gaussian filter.

The projection of a patch onto a finite-dimensional subspace yields a convnet-type of operation:

$$\psi(z) = \|z\|\kappa \left(W^{\top}W\right)^{-1/2}\kappa \left(\frac{W^{\top}z}{\|z\|}\right)$$

### Short summary

- We have designed a functional space  $\mathcal{H}$  to do deep learning.
- Approximation of the kernel map yields the CKN model, whose parameters can be learned with or without supervision.
- Each layer of CKNs perform a geometrical operation (projection).
- The functional space contains also classical convolutional neural networks with smooth homogeneous activation functions.
- $\bullet$  For all these models  $f(x)=\langle f,\varphi(x)\rangle,$  and we study  $\varphi(x)$  and f.

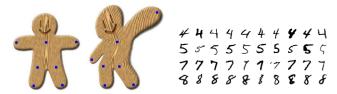
## Short summary

- We have designed a functional space  $\mathcal{H}$  to do deep learning.
- Approximation of the kernel map yields the CKN model, whose parameters can be learned with or without supervision.
- Each layer of CKNs perform a geometrical operation (projection).
- The functional space contains also classical convolutional neural networks with smooth homogeneous activation functions.
- $\bullet$  For all these models  $f(x)=\langle f,\varphi(x)\rangle,$  and we study  $\varphi(x)$  and f.

## Performance of CKNs

- same as classical convnets in fully supervised setting (92% on CIFAR-10 with VGG-like architecture and simple DA).
- very competitive results for unsupervised learning on CIFAR-10.
- seems robust to learning parameter choices.

- $\tau: \Omega \to \Omega$ :  $C^1$ -diffeomorphism
- $L_{\tau}x(u) = x(u \tau(u))$ : action operator
- Much richer group of transformations than translations



• Representation  $\varphi(\cdot)$  is **stable** [Mallat, 2012] if:

 $\|\varphi(L_{\tau}x) - \varphi(x)\| \le (C_1 \|\nabla \tau\|_{\infty} + C_2 \|\tau\|_{\infty}) \|x\|$ 

- $\|\nabla \tau\|_{\infty} = \sup_{u} \|\nabla \tau(u)\|$  controls deformation
- $\|\tau\|_{\infty} = \sup_{u} |\tau(u)|$  controls translation

## Proposition [Bietti and Mairal, 2017]

if  $\|\nabla \tau\|_\infty \leq 1/2$  and  $\Phi_n$  is the representation at layer n,

$$\|\Phi_n(L_{\tau}x) - \Phi_n(x)\| \le \left(C_1 (1+n) \|\nabla \tau\|_{\infty} + \frac{C_2}{\sigma_n} \|\tau\|_{\infty}\right) \|x\|$$

#### Remarks and additional results

- The result requires small patches, as in recent architectures.
- signal recovery: x can be recovered from  $\varphi(x)$ .
- It is possible to gain invariance to any group of transformation.
- For a given deep network

$$f(x) = \sigma_k(\mathbf{A}_k \sigma_{k-1}(\mathbf{A}_{k-1} \dots \sigma_2(\mathbf{A}_2 \sigma_1(\mathbf{A}_1 x)) \dots)) = \langle f, \varphi(x) \rangle_{\mathcal{H}}$$

the norm  $||f||_{\mathcal{H}}$  is controlled by the product  $\prod_i ||\mathbf{A}_i||_2$ .

## Papers

## First model (not the right one)

• J. Mairal, P. Koniusz, Z. Harchaoui and C. Schmid. Convolutional Kernel Networks. NIPS 2014.

#### The right model with unsupervised and supervised learning

• J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks. NIPS 2016.

#### Theoretical foundations

 A. Bietti and J. Mairal. Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations. preprint arXiv:1706.03078. 2018. (also NIPS 2017).

#### Practical application to biological sequences (ongoing work)

• D. Chen, L. Jacob, and J. Mairal. Predicting Transcription Factor Binding Sites with Convolutional Kernel Networks. preprint BiorXiv. 2017.

# Conclusion and Perspectives

**Stability and generalization** are related through **regularization**. There are two types of perpectives for this approach:

#### For existing deep networks

• new regularization functions, along with algorithmic tools to learn with less labeled data, and obtain more stable models?

#### For designing new deep models

 design deep models that are stable by design and that are easy to regularize? ⇒ We already have models that are stable w.r.t hyper-parameter choices.

## References I

- Alberto Bietti and Julien Mairal. Group invariance and stability to deformations of deep convolutional representations. *arXiv preprint arXiv:1706.03078*, 2017.
- Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. *arXiv preprint arXiv:1607.02533*, 2016.
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. *P. IEEE*, 86(11):2278–2324, 1998.
- J. Mairal. End-to-end kernel learning with supervised convolutional kernel networks. In *Adv. NIPS*, 2016.
- Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics, 65(10):1331–1398, 2012.
- Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. 2017.