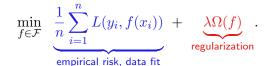
Foundations of Deep Learning from a Kernel Point of View

Julien Mairal Inria Grenoble

Future of Random Projections II, 2018

Convolutional Neural Networks Behind the Scenes

The goal is to learn a **prediction function** $f : \mathbb{R}^p \to \mathbb{R}$ given labeled training data $(x_i, y_i)_{i=1,...,n}$ with x_i in \mathbb{R}^p , and y_i in \mathbb{R} :



Convolutional Neural Networks Behind the Scenes

The goal is to learn a **prediction function** $f : \mathbb{R}^p \to \mathbb{R}$ given labeled training data $(x_i, y_i)_{i=1,...,n}$ with x_i in \mathbb{R}^p , and y_i in \mathbb{R} :

What is specific to multilayer neural networks?

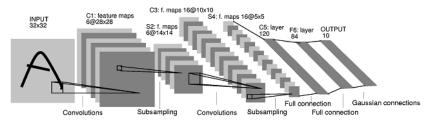
• The "neural network" space ${\mathcal F}$ is explicitly parametrized by:

$$f(x) = \sigma_k(\mathbf{A}_k \sigma_{k-1}(\mathbf{A}_{k-1} \dots \sigma_2(\mathbf{A}_2 \sigma_1(\mathbf{A}_1 x)) \dots)).$$

- Linear operations are either unconstrained (fully connected) or involve parameter sharing (e.g., convolutions).
- Finding the optimal $A_1, A_2, ..., A_k$ yields a non-convex optimization problem in huge dimension.

Convolutional Neural Networks Behind the Scenes

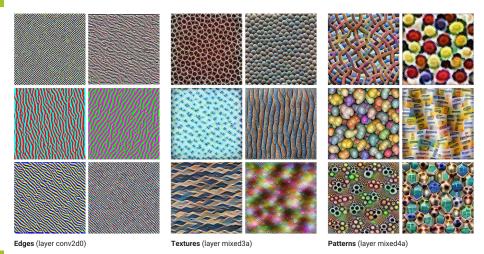
Picture from LeCun et al. [1998]



What are the main features of CNNs?

- they capture compositional and multiscale structures in images;
- they provide some invariance;
- they model local stationarity of images at several scales;
- they are state-of-the-art in many fields.

Convolutional Neural Networks in Front of the Scene Picture from Olah et al. [2017]:



Julien Mairal Future

▲ 同 ▶ → 三 ▶

Convolutional Neural Networks in Front of the Scene

Picture from Olah et al. [2017]:

Patterns (layer mixed4a)

Parts (layers mixed4b & mixed4c)

Objects (layers mixed4d & mixed4e)

<ロ> <同> <同> < 同> < 三> < 三>

Future of Convolutional Neural Networks

What are current high-potential problems to solve?

- Iack of robustness (see next slide).
- learning with few labeled data.
- learning with no supervision (see Tab. from Bojanowski and Joulin, 2017).

Method	Acc@1
Random (Noroozi & Favaro, 2016)	12.0
SIFT+FV (Sánchez et al., 2013)	55.6
Wang & Gupta (2015)	29.8
Doersch et al. (2015)	30.4
Zhang et al. (2016)	35.2
¹ Noroozi & Favaro (2016)	38.1
BiGAN (Donahue et al., 2016)	32.2
NAT	36.0

Table 3. Comparison of the proposed approach to state-of-the-art unsupervised feature learning on ImageNet. A full multi-layer perceptron is retrained on top of the features. We compare to several self-supervised approaches and an unsupervised approach. Julien Mairal

Future of Convolutional Neural Networks

Illustration of instability. Picture from Kurakin et al. [2016].

Figure: Adversarial examples are generated by computer; then printed on paper; a new picture taken on a smartphone fools the classifier.

Future of Convolutional Neural Networks

$$\min_{f \in \mathcal{F}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i))}_{\text{empirical risk, data fit}} + \underbrace{\lambda \Omega(f)}_{\text{regularization}}.$$

The issue of regularization

- today, heuristics are used (DropOut, weight decay, early stopping)...
- ...but they are not sufficient.
- how to control variations of prediction functions?

|f(x) - f(x')| should be close if x and x' are "similar".

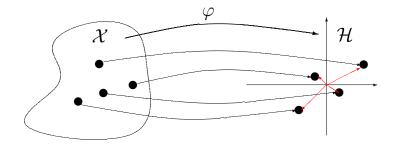
- what does it mean for x and x' to be "similar"?
- what should be a good regularization function Ω?

Back to the Past: Kernel Methods

$$\min_{f \in \mathcal{H}} \quad \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \|f\|_{\mathcal{H}}^2.$$

• map data x in \mathcal{X} to a Hilbert space and work with linear forms:

 $\varphi: \mathcal{X} \to \mathcal{H}$ and $f(x) = \langle \varphi(x), f \rangle_{\mathcal{H}}.$



Back to the Past: Kernel Methods

$$\min_{f \in \mathcal{H}} \quad \frac{1}{n} \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \|f\|_{\mathcal{H}}^2.$$

Main purpose: embed data in a vectorial space where

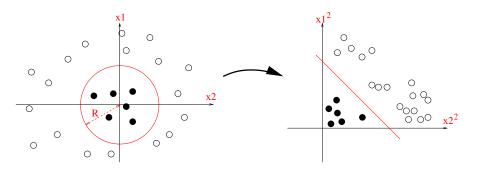
- many geometrical operations exist (angle computation, projection on linear subspaces, definition of barycenters....).
- one may learn potentially rich infinite-dimensional models.
- regularization is natural:

$$|f(x) - f(x')| \le ||f||_{\mathcal{H}} ||\varphi(x) - \varphi(x')||_{\mathcal{H}}.$$

Back to the Past: Kernel Methods

Second purpose: unhappy with the current Euclidean structure?

- lift data to a higher-dimensional space with **nicer properties** (e.g., linear separability, clustering structure).
- then, the linear form $f(x) = \langle \varphi(x), f \rangle_{\mathcal{H}}$ in \mathcal{H} may correspond to a non-linear model in \mathcal{X} .



What is the relation with deep neural networks?

• it is possible to design functional spaces ${\cal H}$ where deep neural networks live [Mairal, 2016].

$$f(x) = \sigma_k(\mathbf{A}_k \sigma_{k-1}(\mathbf{A}_{k-1} \dots \sigma_2(\mathbf{A}_2 \sigma_1(\mathbf{A}_1 x)) \dots)) = \langle f, \varphi(x) \rangle_{\mathcal{H}}.$$

• we call the construction "convolutional kernel networks".

Why do we care?

 φ(x) is related to to network architecture and is independent of training data. Is it stable? Does it lose signal information?

What is the relation with deep neural networks?

• it is possible to design functional spaces ${\cal H}$ where deep neural networks live [Mairal, 2016].

$$f(x) = \sigma_k(\mathbf{A}_k \sigma_{k-1}(\mathbf{A}_{k-1} \dots \sigma_2(\mathbf{A}_2 \sigma_1(\mathbf{A}_1 x)) \dots)) = \langle f, \varphi(x) \rangle_{\mathcal{H}}.$$

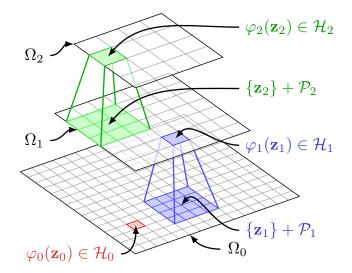
• we call the construction "convolutional kernel networks".

Why do we care?

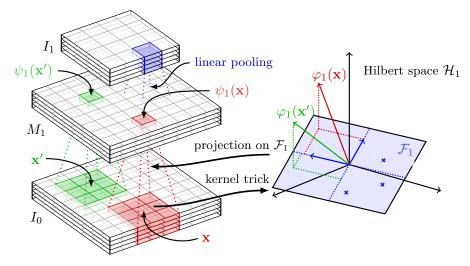
- φ(x) is related to to network architecture and is independent of training data. Is it stable? Does it lose signal information?
- f is a predictive model. Can we control its stability?

$$|f(x) - f(x')| \le ||f||_{\mathcal{H}} ||\varphi(x) - \varphi(x')||_{\mathcal{H}}$$

What is $\varphi(x)$?



Convolutional kernel networks in practice.



Technical details

Formally, a CKN is a sequence of operators

$$\Phi_n(x) = A_n M_n P_n A_{n-1} M_{n-1} P_{n-1} \dots A_1 M_1 P_1 A_0 x.$$

- P_k performs patch extraction;
- M_k performs kernel mapping

$$K(z, z') = \|z\| \|z'\| \kappa \left(\frac{\langle z, z'\rangle}{\|z\| \|z'\|}\right).$$

• A_k performs linear pooling with a Gaussian filter.

The projection of a patch onto a finite-dimensional subspace yields a convnet-type of operation:

$$\psi(z) = \|z\|\kappa \left(W^{\top}W\right)^{-1/2}\kappa \left(\frac{W^{\top}z}{\|z\|}\right)$$

Short summary

- We have designed a functional space \mathcal{H} to do deep learning.
- Approximation of the kernel map yields the CKN model, whose parameters can be learned with or without supervision.
- Each layer of CKNs perform a geometrical operation (projection).
- The functional space contains also classical convolutional neural networks with smooth homogeneous activation functions.
- \bullet For all these models $f(x)=\langle f,\varphi(x)\rangle,$ and we study $\varphi(x)$ and f.

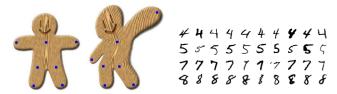
Short summary

- We have designed a functional space \mathcal{H} to do deep learning.
- Approximation of the kernel map yields the CKN model, whose parameters can be learned with or without supervision.
- Each layer of CKNs perform a geometrical operation (projection).
- The functional space contains also classical convolutional neural networks with smooth homogeneous activation functions.
- \bullet For all these models $f(x)=\langle f,\varphi(x)\rangle,$ and we study $\varphi(x)$ and f.

Performance of CKNs

- same as classical convnets in fully supervised setting (92% on CIFAR-10 with VGG-like architecture and simple DA).
- very competitive results for unsupervised learning on CIFAR-10.
- seems robust to learning parameter choices.

- $\tau: \Omega \to \Omega$: C^1 -diffeomorphism
- $L_{\tau}x(u) = x(u \tau(u))$: action operator
- Much richer group of transformations than translations



• Representation $\varphi(\cdot)$ is **stable** [Mallat, 2012] if:

 $\|\varphi(L_{\tau}x) - \varphi(x)\| \le (C_1 \|\nabla \tau\|_{\infty} + C_2 \|\tau\|_{\infty}) \|x\|$

- $\|\nabla \tau\|_{\infty} = \sup_{u} \|\nabla \tau(u)\|$ controls deformation
- $\|\tau\|_{\infty} = \sup_{u} |\tau(u)|$ controls translation

Proposition [Bietti and Mairal, 2017]

if $\|\nabla \tau\|_\infty \leq 1/2$ and Φ_n is the representation at layer n,

$$\|\Phi_n(L_{\tau}x) - \Phi_n(x)\| \le \left(C_1 (1+n) \|\nabla \tau\|_{\infty} + \frac{C_2}{\sigma_n} \|\tau\|_{\infty}\right) \|x\|$$

Remarks and additional results

- The result requires small patches, as in recent architectures.
- signal recovery: x can be recovered from $\varphi(x)$.
- It is possible to gain invariance to any group of transformation.
- For a given deep network

$$f(x) = \sigma_k(\mathbf{A}_k \sigma_{k-1}(\mathbf{A}_{k-1} \dots \sigma_2(\mathbf{A}_2 \sigma_1(\mathbf{A}_1 x)) \dots)) = \langle f, \varphi(x) \rangle_{\mathcal{H}}$$

the norm $||f||_{\mathcal{H}}$ is controlled by the product $\prod_i ||\mathbf{A}_i||_2$.

Papers

First model (not the right one)

• J. Mairal, P. Koniusz, Z. Harchaoui and C. Schmid. Convolutional Kernel Networks. NIPS 2014.

The right model with unsupervised and supervised learning

• J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel Networks. NIPS 2016.

Theoretical foundations

 A. Bietti and J. Mairal. Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations. preprint arXiv:1706.03078. 2018. (also NIPS 2017).

Practical application to biological sequences (ongoing work)

• D. Chen, L. Jacob, and J. Mairal. Predicting Transcription Factor Binding Sites with Convolutional Kernel Networks. preprint BiorXiv. 2017.

Conclusion and Perspectives

Stability and generalization are related through **regularization**. There are two types of perpectives for this approach:

For existing deep networks

• new regularization functions, along with algorithmic tools to learn with less labeled data, and obtain more stable models?

For designing new deep models

 design deep models that are stable by design and that are easy to regularize? ⇒ We already have models that are stable w.r.t hyper-parameter choices.

References I

- Alberto Bietti and Julien Mairal. Group invariance and stability to deformations of deep convolutional representations. *arXiv preprint arXiv:1706.03078*, 2017.
- Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world. *arXiv preprint arXiv:1607.02533*, 2016.
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. *P. IEEE*, 86(11):2278–2324, 1998.
- J. Mairal. End-to-end kernel learning with supervised convolutional kernel networks. In *Adv. NIPS*, 2016.
- Stéphane Mallat. Group invariant scattering. Communications on Pure and Applied Mathematics, 65(10):1331–1398, 2012.
- Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. 2017.