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Convolutional Neural Networks Behind the Scenes

The goal is to learn a prediction function f : Rp → R given labeled
training data (xi, yi)i=1,...,n with xi in Rp, and yi in R:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.
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What is specific to multilayer neural networks?

The “neural network” space F is explicitly parametrized by:

f(x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)).

Linear operations are either unconstrained (fully connected) or
involve parameter sharing (e.g., convolutions).

Finding the optimal A1,A2, . . . ,Ak yields a non-convex
optimization problem in huge dimension.
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Convolutional Neural Networks Behind the Scenes

Picture from LeCun et al. [1998]

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model local stationarity of images at several scales;

they are state-of-the-art in many fields.

Julien Mairal Future of Random Projections 4/20



Convolutional Neural Networks in Front of the Scene

Picture from Olah et al. [2017]:
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Future of Convolutional Neural Networks

What are current high-potential problems to solve?

1 lack of robustness (see next slide).

2 learning with few labeled data.

3 learning with no supervision (see Tab. from Bojanowski and Joulin, 2017).
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Future of Convolutional Neural Networks

Illustration of instability. Picture from Kurakin et al. [2016].

Figure: Adversarial examples are generated by computer; then printed on paper;
a new picture taken on a smartphone fools the classifier.
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Future of Convolutional Neural Networks

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

The issue of regularization

today, heuristics are used (DropOut, weight decay, early stopping)...

...but they are not sufficient.

how to control variations of prediction functions?

|f(x)− f(x′)| should be close if x and x′ are “similar”.

what does it mean for x and x′ to be “similar”?

what should be a good regularization function Ω?

Julien Mairal Future of Random Projections 8/20



Back to the Past: Kernel Methods

min
f∈H

1

n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2H.

map data x in X to a Hilbert space and work with linear forms:

ϕ : X → H and f(x) = 〈ϕ(x), f〉H.
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Back to the Past: Kernel Methods

min
f∈H

1

n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2H.

Main purpose: embed data in a vectorial space where

many geometrical operations exist (angle computation, projection
on linear subspaces, definition of barycenters....).

one may learn potentially rich infinite-dimensional models.

regularization is natural:

|f(x)− f(x′)| ≤ ‖f‖H‖ϕ(x)− ϕ(x′)‖H.
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Back to the Past: Kernel Methods

Second purpose: unhappy with the current Euclidean structure?

lift data to a higher-dimensional space with nicer properties (e.g.,
linear separability, clustering structure).

then, the linear form f(x) = 〈ϕ(x), f〉H in H may correspond to a
non-linear model in X .
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Back to the Future: Deep Kernel Machines

What is the relation with deep neural networks?

it is possible to design functional spaces H where deep neural
networks live [Mairal, 2016].

f(x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)) = 〈f, ϕ(x)〉H.

we call the construction “convolutional kernel networks”.

Why do we care?

ϕ(x) is related to to network architecture and is independent of
training data. Is it stable? Does it lose signal information?

f is a predictive model. Can we control its stability?

|f(x)− f(x′)| ≤ ‖f‖H‖ϕ(x)− ϕ(x′)‖H.
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Back to the Future: Deep Kernel Machines

What is ϕ(x)?

Ω0ϕ0(z0) ∈ H0

{z1} + P1

ϕ1(z1) ∈ H1
Ω1

{z2} + P2

Ω2

ϕ2(z2) ∈ H2
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Back to the Future: Deep Kernel Machines

Convolutional kernel networks in practice.

I0

x

x′

kernel trick

projection on F1

M1

ψ1(x)

ψ1(x
′)

I1
linear pooling

Hilbert space H1

F1

ϕ1(x)

ϕ1(x
′)
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Back to the Future: Deep Kernel Machines

Technical details

Formally, a CKN is a sequence of operators

Φn(x) = AnMnPnAn−1Mn−1Pn−1 . . . A1M1P1A0x.

Pk performs patch extraction;

Mk performs kernel mapping

K(z, z′) = ‖z‖‖z′‖κ
( 〈z, z′〉
‖z‖‖z′‖

)
.

Ak performs linear pooling with a Gaussian filter.

The projection of a patch onto a finite-dimensional subspace yields a
convnet-type of operation:

ψ(z) = ‖z‖κ
(
W>W

)−1/2
κ

(
W>z

‖z‖

)
.
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Back to the Future: Deep Kernel Machines

Short summary

We have designed a functional space H to do deep learning.

Approximation of the kernel map yields the CKN model, whose
parameters can be learned with or without supervision.

Each layer of CKNs perform a geometrical operation (projection).

The functional space contains also classical convolutional neural
networks with smooth homogeneous activation functions.

For all these models f(x) = 〈f, ϕ(x)〉, and we study ϕ(x) and f .

Performance of CKNs

same as classical convnets in fully supervised setting (92% on
CIFAR-10 with VGG-like architecture and simple DA).

very competitive results for unsupervised learning on CIFAR-10.

seems robust to learning parameter choices.
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Back to the Future: Deep Kernel Machines

τ : Ω→ Ω: C1-diffeomorphism

Lτx(u) = x(u− τ(u)): action operator

Much richer group of transformations than translations

Invariance to Translations
Two dimensional group: R2

  Translations and Deformations

• Patterns are translated and deformed

Representation ϕ(·) is stable [Mallat, 2012] if:

‖ϕ(Lτx)− ϕ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖

‖∇τ‖∞ = supu ‖∇τ(u)‖ controls deformation

‖τ‖∞ = supu |τ(u)| controls translation
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Back to the Future: Deep Kernel Machines

Proposition [Bietti and Mairal, 2017]

if ‖∇τ‖∞ ≤ 1/2 and Φn is the representation at layer n,

‖Φn(Lτx)− Φn(x)‖ ≤
(
C1 (1 + n) ‖∇τ‖∞ +

C2

σn
‖τ‖∞

)
‖x‖

Remarks and additional results

The result requires small patches, as in recent architectures.

signal recovery: x can be recovered from ϕ(x).

It is possible to gain invariance to any group of transformation.

For a given deep network

f(x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)) = 〈f, ϕ(x)〉H

the norm ‖f‖H is controlled by the product
∏
i ‖Ai‖2.
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Papers

First model (not the right one)

J. Mairal, P. Koniusz, Z. Harchaoui and C. Schmid. Convolutional Kernel
Networks. NIPS 2014.

The right model with unsupervised and supervised learning

J. Mairal. End-to-End Kernel Learning with Supervised Convolutional Kernel
Networks. NIPS 2016.

Theoretical foundations

A. Bietti and J. Mairal. Group Invariance, Stability to Deformations, and
Complexity of Deep Convolutional Representations. preprint arXiv:1706.03078.
2018. (also NIPS 2017).

Practical application to biological sequences (ongoing work)

D. Chen, L. Jacob, and J. Mairal. Predicting Transcription Factor Binding Sites
with Convolutional Kernel Networks. preprint BiorXiv. 2017.
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Conclusion and Perspectives

Stability and generalization are related through regularization. There
are two types of perpectives for this approach:

For existing deep networks

new regularization functions, along with algorithmic tools to learn
with less labeled data, and obtain more stable models?

For designing new deep models

design deep models that are stable by design and that are easy to
regularize? ⇒ We already have models that are stable w.r.t
hyper-parameter choices.
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