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Optimization is central to machine learning

In supervised learning, we learn a prediction function h : X → Y given
labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

[Vapnik, 1995, Shalev-Shwartz and Ben-David, 2014, Bottou et al., 2016]...
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labeled training data (xi, yi)i=1,...,n with xi in X , and yi in Y:

min
h∈H

1

n

n∑
i=1

L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

The labels yi are in

{−1,+1} for binary classification.

{1, . . . ,K} for multi-class classification.

R for regression.

Rk for multivariate regression.

any general set for structured prediction.
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min
h∈H

1

n

n∑
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L(yi, h(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(h)︸ ︷︷ ︸
regularization

.

Example with linear models: logistic regression, SVMs, etc.

assume there exists a linear relation between y and features x in Rp.

h(x) = w>x+ b is parametrized by w, b in Rp+1.

L is often a convex loss function.

Ω(h) is often the squared `2-norm ‖w‖2.
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Optimization is central to machine learning

A few examples of linear models with no bias b:

min
w∈Rp

1

n

n∑
i=1

1

2
(yi − w>xi)2 + λ‖w‖22.

min
w∈Rp

1

n

n∑
i=1

max(0, 1− yiw>xi) + λ‖w‖22.

Logistic regression: min
w∈Rp

1

n

n∑
i=1

log
(

1 + e−yiw
>xi

)
+ λ‖w‖22.
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Optimization is central to machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).
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Optimization is central to machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

A general principle

It underlies many paradigms:

deep neural networks,

kernel methods,

sparse estimation. (main topic of this sequence of lectures)

. . .
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Optimization is central to machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

Even with simple linear models, it leads to challenging problems in
optimization:

scaling both in the problem size n and dimension p;

exploiting the problem structure (sum, composite);

obtaining convergence and numerical stability guarantees;

obtaining statistical guarantees.
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Optimization is central to machine learning

The previous formulation is called empirical risk minimization; it follows
a classical scientific paradigm:

1 observe the world (gather data);

2 propose models of the world (design and learn);

3 test on new data (estimate the generalization error).

It is not limited to supervised learning

min
f∈F

1

n

n∑
i=1

L(f(xi)) + λΩ(f).

L is not a classification loss any more;

K-means, PCA, EM with mixture of Gaussian, matrix
factorization,... can be expressed that way.
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Paradigm 1: Deep neural networks

The goal is to learn a prediction function f : Rp → R given labeled
training data (xi, yi)i=1,...,n with xi in Rp, and yi in R:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.
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The goal is to learn a prediction function f : Rp → R given labeled
training data (xi, yi)i=1,...,n with xi in Rp, and yi in R:

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

What is specific to multilayer neural networks?

The “neural network” space F is explicitly parametrized by:

f(x) = σk(Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)).

Linear operations are either unconstrained (fully connected) or
involve parameter sharing (e.g., convolutions).

Finding the optimal A1,A2, . . . ,Ak yields a non-convex
optimization problem in huge dimension.
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Paradigm 1: Deep neural networks

Picture from LeCun et al. [1998]

What are the main features of CNNs?

they capture compositional and multiscale structures in images;

they provide some invariance;

they model local stationarity of images at several scales;

they are state-of-the-art in many fields.
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Paradigm 1: Deep neural networks

The keywords: multi-scale, compositional, invariant, local features.
Picture from Y. LeCun’s tutorial:
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Paradigm 1: Deep neural networks

Picture from Olah et al. [2017]:
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Paradigm 1: Deep neural networks

Picture from Olah et al. [2017]:
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Paradigm 1: Deep neural networks

ImageNet: 1000 image categories, 10M hand-labeled images.
Picture from unknown source:

Figure: Top-5 error rate
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Paradigm 1: Deep neural networks

What are current high-potential problems to solve?

1 lack of stability (see next slide).

2 learning with few labeled data.

3 learning with no supervision (see Tab. from Bojanowski and Joulin, 2017).
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Paradigm 1: Deep neural networks

Illustration of instability. Picture from Kurakin et al. [2016].

Figure: Adversarial examples are generated by computer; then printed on paper;
a new picture taken on a smartphone fools the classifier.
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Paradigm 1: Deep neural networks

min
f∈F

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

The issue of regularization

today, heuristics are used (DropOut, weight decay, early stopping)...

...but they are not sufficient.

how to control variations of prediction functions?

|f(x)− f(x′)| should be close if x and x′ are “similar”.

what does it mean for x and x′ to be “similar”?

what should be a good regularization function Ω?
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Paradigm 2: Kernel methods

min
f∈H

1

n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2H.

map data x in X to a Hilbert space and work with linear forms:

ϕ : X → H and f(x) = 〈ϕ(x), f〉H.

φ
X F

[Shawe-Taylor and Cristianini, 2004, Schölkopf and Smola, 2002]...

Julien Mairal Introduction to Three Paradigms in Machine Learning 14/25



Paradigm 2: Kernel methods

min
f∈H

1

n

n∑
i=1

L(yi, f(xi)) + λ‖f‖2H.

First purpose: embed data in a vectorial space where

many geometrical operations exist (angle computation, projection
on linear subspaces, definition of barycenters....).

one may learn potentially rich infinite-dimensional models.

regularization is natural: for all x, x′ in X ,

|f(x)− f(x′)| ≤ ‖f‖H‖φ(x)− φ(x′)‖H.

The principle is generic and does not assume anything about the nature
of the set X (vectors, sets, graphs, sequences).
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Paradigm 2: Kernel methods

Second purpose: unhappy with the current Euclidean structure?

lift data to a higher-dimensional space with nicer properties (e.g.,
linear separability, clustering structure).

then, the linear form f(x) = 〈ϕ(x), f〉H in H may correspond to a
non-linear model in X .

2R

x1

x2

x1

x2

2
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Paradigm 2: Kernel methods (technical parenthesis)

How does it work? representation by pairwise comparisons

Define a “comparison function”: K : X × X 7→ R.
Represent a set of n data points S = {x1, . . . , xn} by the n× n
matrix:

Kij := K(xi, xj).

1    0.5  0.3
0.5  1    0.6
0.3  0.6  1

K=

X

S

(S)=(aatcgagtcac,atggacgtct,tgcactact)φ
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Paradigm 2: Kernel methods (technical parenthesis)

Theorem (Aronszajn, 1950)

K : X × X → R is a positive definite kernel if and only if there exists a
Hilbert space H and a mapping ϕ : X → H, such that

for any x, x′ in X , K(x, x′) = 〈ϕ(x), ϕ(x′)〉H.

φ
X F
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Paradigm 2: Kernel methods (technical parenthesis)

Mathematical details

the only thing we require about K is symmetry and positive
definiteness

∀x1, . . . , xn ∈ X , α1, . . . , αn ∈ R,
∑
ij

αiαjK(xi, xj) ≥ 0.

then, there exists a Hilbert space H of functions f : X → R, called
the reproducing kernel Hilbert space (RKHS) such that

∀f ∈ H, x ∈ X , f(x) = 〈ϕ(x), f〉H,

and the mapping ϕ : X → H (from Aronszajn’s theorem) satisfies

ϕ(x) : y 7→ K(x, y).
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Paradigm 2: Kernel methods (technical parenthesis)

Why mapping data in X to the functional space H?

it becomes feasible to learn a prediction function f ∈ H:

min
f∈H

1

n

n∑
i=1

L(yi, f(xi))︸ ︷︷ ︸
empirical risk, data fit

+ λ‖f‖2H︸ ︷︷ ︸
regularization

.

(why? the solution lives in a finite-dimensional hyperplane).

non-linear operations in X become inner-products in H since

∀f ∈ H, x ∈ X , f(x) = 〈ϕ(x), f〉H.

the norm of the RKHS is a natural regularization function:

|f(x)− f(x′)| ≤ ‖f‖H‖ϕ(x)− ϕ(x′)‖H.
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Paradigm 2: Kernel methods (non-technical parenthesis)

What are the main features of kernel methods?

builds well-studied functional spaces to do machine learning;

decoupling of data representation and learning algorithm;

typically, convex optimization problems in a supervised context;

versatility: applies to vectors, sequences, graphs, sets,. . . ;

natural regularization function to control the learning capacity;

But...

decoupling of data representation and learning may not be a good
thing, according to recent supervised deep learning success.

requires kernel design.

O(n2) scalability problems.

[Shawe-Taylor and Cristianini, 2004, Schölkopf and Smola, 2002, Müller et al., 2001]
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Paradigm 3: The sparsity principle

Let us consider again the classical scientific paradigm:
1 observe the world (gather data);
2 propose models of the world (design and learn);
3 test on new data (estimate the generalization error).

But...

it is not always possible to distinguish the generalization error of
various models based on available data.

when a complex model A performs slightly better than a simple
model B, should we prefer A or B?

generalization error requires a predictive task: what about
unsupervised learning? which measure should we use?

we are also leaving aside the problem of non i.i.d. train/test data,
biased data, testing with counterfactual reasoning...

[Corfield et al., 2009].

[Corfield et al., 2009, Bottou et al., 2013, Schölkopf et al., 2012].
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Paradigm 3: The sparsity principle

(a) Dorothy Wrinch
1894–1980

(b) Harold Jeffreys
1891–1989

The existence of simple laws is, then, apparently, to be
regarded as a quality of nature; and accordingly we may infer
that it is justifiable to prefer a simple law to a more complex
one that fits our observations slightly better.

[Wrinch and Jeffreys, 1921].
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Paradigm 3: The sparsity principle

Remarks: sparsity is...

appealing for experimental sciences for model interpretation;

(too-)well understood in some mathematical contexts:

min
w∈Rp

1

n

n∑
i=1

L
(
yi, w

>xi

)
︸ ︷︷ ︸

empirical risk, data fit

+ λ‖w‖1︸ ︷︷ ︸
regularization

.

extremely powerful for unsupervised learning in the context of
matrix factorization, and simple to use.

Today’s challenges

Develop sparse and stable (and invariant?) models.

Go beyond clustering / low-rank / union of subspaces.

[Olshausen and Field, 1996, Chen, Donoho, and Saunders, 1999, Tibshirani, 1996]...
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Some references

On kernel methods

B. Schölkopf and A. J. Smola. Learning with kernels: support
vector machines, regularization, optimization, and beyond. 2002.

J. Shawe-Taylor and N. Cristianini. An introduction to support
vector machines and other kernel-based learning methods. 2004.

635 slides: http://members.cbio.mines-paristech.fr/

~jvert/svn/kernelcourse/course/2017mva/index.html

On sparse estimation

M. Elad. Sparse and Redundant Representations: From Theory to
Applications in Signal and Image Processing. 2010.

J. Mairal, F. Bach, and J. Ponce. Sparse Modeling for Image and
Vision Processing. 2014. free online.
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