
A Few Principles
of Gradient-Based Optimization

Julien Mairal

Inria Grenoble

Yerevan, 2018

Julien Mairal Principles of Gradient-Based Optimization 1/38

Part I: Gradient-based optimization

Julien Mairal Principles of Gradient-Based Optimization 2/38

Basics of gradient-based optimization

Smooth vs non-smooth

(a) smooth (b) non-smooth

An important quantity to quantify smoothness is the Lipschitz constant of the gradient:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

If f is twice differentiable, L may be chosen as the largest eigenvalue of the Hessian ∇2f .
This is an upper-bound on the function curvature.

Julien Mairal Principles of Gradient-Based Optimization 3/38

Basics of gradient-based optimization

Smooth vs non-smooth

(a) smooth (b) non-smooth

An important quantity to quantify smoothness is the Lipschitz constant of the gradient:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

If f is twice differentiable, L may be chosen as the largest eigenvalue of the Hessian ∇2f .
This is an upper-bound on the function curvature.

Julien Mairal Principles of Gradient-Based Optimization 3/38

Basics of gradient-based optimization

Convex vs non-convex

(a) non-convex (b) convex (c) strongly-convex

An important quantity to quantify convexity is the strong-convexity constant

f(x) ≥ f(y) +∇f(y)>(x− y) +
µ

2
‖x− y‖2,

If f is twice differentiable, µ may be chosen as the smallest eigenvalue of the Hessian
∇2f . This is a lower-bound on the function curvature.

Julien Mairal Principles of Gradient-Based Optimization 4/38

Basics of gradient-based optimization

Convex vs non-convex

(a) non-convex (b) convex (c) strongly-convex

An important quantity to quantify convexity is the strong-convexity constant

f(x) ≥ f(y) +∇f(y)>(x− y) +
µ

2
‖x− y‖2,

If f is twice differentiable, µ may be chosen as the smallest eigenvalue of the Hessian
∇2f . This is a lower-bound on the function curvature.

Julien Mairal Principles of Gradient-Based Optimization 4/38

Basics of gradient-based optimization
Convex Functions

Why do we care about convexity?

x

f(x)

x⋆

b

b

b

Julien Mairal Principles of Gradient-Based Optimization 5/38

Basics of gradient-based optimization
Convex Functions

Local observations give information about the global optimum

x

f(x)

x⋆

b

b

b

∇f(x) = 0 is a necessary and sufficient optimality condition for differentiable convex
functions;
it is often easy to upper-bound f(x)− f?.

Julien Mairal Principles of Gradient-Based Optimization 5/38

Basics of gradient-based optimization

If f is convex and smooth

x⋆

x

f(x)

b

b

b

b
x0

f(x) ≥ f(x0) +∇f(x0)>(x− x0)︸ ︷︷ ︸
linear approximation

;

if f is non-smooth, a similar inequality holds for subgradients.

Julien Mairal Principles of Gradient-Based Optimization 6/38

Basics of gradient-based optimization

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)>(x− x0)︸ ︷︷ ︸
linear approximation

+L
2 ‖x− x0‖22;

Julien Mairal Principles of Gradient-Based Optimization 7/38

Basics of gradient-based optimization

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)>(x− x0)︸ ︷︷ ︸
linear approximation

+L
2 ‖x− x0‖22;

g(x) = Cx0 + L
2 ‖x0 − (1/L)∇f(x0)− x‖22.

Julien Mairal Principles of Gradient-Based Optimization 7/38

Basics of gradient-based optimization

If ∇f is L-Lipschitz continuous (f does not need to be convex)

x⋆

x

f(x)g(x)

b

b

b

bb

b

x0x1

f(x) ≤ g(x) = f(x0) +∇f(x0)>(x− x0)︸ ︷︷ ︸
linear approximation

+L
2 ‖x− x0‖22;

x1 = x0 − 1
L∇f(x0) (gradient descent step).

Julien Mairal Principles of Gradient-Based Optimization 7/38

Basics of gradient-based optimization
Gradient descent algorithm

Assume that f is convex and L-smooth (∇f is L-Lipschitz).

Theorem

Consider the algorithm

xt ← xt−1 − 1
L∇f(xt−1).

Then,

f(xt)− f? ≤
L‖x0 − x?‖22

2t
.

How to prove this?

Read Nesterov’s book! [Nesterov, 2004].

Julien Mairal Principles of Gradient-Based Optimization 8/38

Basics of gradient-based optimization
Gradient descent algorithm

Assume that f is convex and L-smooth (∇f is L-Lipschitz).

Theorem

Consider the algorithm

xt ← xt−1 − 1
L∇f(xt−1).

Then,

f(xt)− f? ≤
L‖x0 − x?‖22

2t
.

How to prove this?

Read Nesterov’s book! [Nesterov, 2004].

Julien Mairal Principles of Gradient-Based Optimization 8/38

Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all x and z,

f(x) ≤ f(z) +∇f(z)>(x− z) + L

2
‖x− z‖22.

By using Taylor’s theorem with integral form,

f(x)− f(z) =
∫ 1

0

∇f(tx+ (1− t)z)>(x− z)dt.

Then,

f(x)−f(z)−∇f(z)>(x−z) =
∫ 1

0

(∇f(tx+(1−t)z)−∇f(z))>(x−z)dt

≤
∫ 1

0

|(∇f(tx+(1−t)z)−∇f(z))>(x−z)|dt

≤
∫ 1

0

‖∇f(tx+(1−t)z)−∇f(z)‖2‖x−z‖2dt (C.-S.)

≤
∫ 1

0

Lt‖x−z‖22dt =
L

2
‖x−z‖22.

Julien Mairal Principles of Gradient-Based Optimization 9/38

Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all x and z,

f(x) ≤ f(z) +∇f(z)>(x− z) + L

2
‖x− z‖22.

By using Taylor’s theorem with integral form,

f(x)− f(z) =
∫ 1

0

∇f(tx+ (1− t)z)>(x− z)dt.

Then,

f(x)−f(z)−∇f(z)>(x−z) =
∫ 1

0

(∇f(tx+(1−t)z)−∇f(z))>(x−z)dt

≤
∫ 1

0

|(∇f(tx+(1−t)z)−∇f(z))>(x−z)|dt

≤
∫ 1

0

‖∇f(tx+(1−t)z)−∇f(z)‖2‖x−z‖2dt (C.-S.)

≤
∫ 1

0

Lt‖x−z‖22dt =
L

2
‖x−z‖22.

Julien Mairal Principles of Gradient-Based Optimization 9/38

Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all x and z,

f(x) ≤ f(z) +∇f(z)>(x− z) + L

2
‖x− z‖22.

By using Taylor’s theorem with integral form,

f(x)− f(z) =
∫ 1

0

∇f(tx+ (1− t)z)>(x− z)dt.

Then,

f(x)−f(z)−∇f(z)>(x−z) =
∫ 1

0

(∇f(tx+(1−t)z)−∇f(z))>(x−z)dt

≤
∫ 1

0

|(∇f(tx+(1−t)z)−∇f(z))>(x−z)|dt

≤
∫ 1

0

‖∇f(tx+(1−t)z)−∇f(z)‖2‖x−z‖2dt (C.-S.)

≤
∫ 1

0

Lt‖x−z‖22dt =
L

2
‖x−z‖22.

Julien Mairal Principles of Gradient-Based Optimization 9/38

Proof (2/2)
Proof of the theorem

We have shown that for all x,

f(x) ≤ gt(x) = f(xt−1) +∇f(xt−1)
>(x− xt−1) +

L

2
‖x− xt−1‖22.

gt is minimized by xt; it can be rewritten gt(x) = gt(xt) +
L
2
‖x− xt‖22. Then,

Julien Mairal Principles of Gradient-Based Optimization 10/38

Proof (2/2)
Proof of the theorem

We have shown that for all x,

f(x) ≤ gt(x) = f(xt−1) +∇f(xt−1)
>(x− xt−1) +

L

2
‖x− xt−1‖22.

gt is minimized by xt; it can be rewritten gt(x) = gt(xt) +
L
2
‖x− xt‖22. Then,

f(xt)≤ gt(xt)

= f(xt−1) +∇f(xt−1)
>(x? − xt−1) +

L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22

Julien Mairal Principles of Gradient-Based Optimization 10/38

Proof (2/2)
Proof of the theorem

We have shown that for all x,

f(x) ≤ gt(x) = f(xt−1) +∇f(xt−1)
>(x− xt−1) +

L

2
‖x− xt−1‖22.

gt is minimized by xt; it can be rewritten gt(x) = gt(xt) +
L
2
‖x− xt‖22. Then,

f(xt) ≤ gt(xt) = gt(x
?)− L

2
‖x? − xt‖22

= f(xt−1) +∇f(xt−1)
>(x? − xt−1) +

L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22

Julien Mairal Principles of Gradient-Based Optimization 10/38

Proof (2/2)
Proof of the theorem

We have shown that for all x,

f(x) ≤ gt(x) = f(xt−1) +∇f(xt−1)
>(x− xt−1) +

L

2
‖x− xt−1‖22.

gt is minimized by xt; it can be rewritten gt(x) = gt(xt) +
L
2
‖x− xt‖22. Then,

f(xt) ≤ gt(xt) = gt(x
?)− L

2
‖x? − xt‖22

= f(xt−1) +∇f(xt−1)
>(x? − xt−1) +

L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22

Julien Mairal Principles of Gradient-Based Optimization 10/38

Proof (2/2)
Proof of the theorem

We have shown that for all x,

f(x) ≤ gt(x) = f(xt−1) +∇f(xt−1)
>(x− xt−1) +

L

2
‖x− xt−1‖22.

gt is minimized by xt; it can be rewritten gt(x) = gt(xt) +
L
2
‖x− xt‖22. Then,

f(xt) ≤ gt(xt) = gt(x
?)− L

2
‖x? − xt‖22

= f(xt−1) +∇f(xt−1)
>(x? − xt−1) +

L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22

≤ f? + L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22.

Julien Mairal Principles of Gradient-Based Optimization 10/38

Proof (2/2)
Proof of the theorem

We have shown that for all x,

f(x) ≤ gt(x) = f(xt−1) +∇f(xt−1)
>(x− xt−1) +

L

2
‖x− xt−1‖22.

gt is minimized by xt; it can be rewritten gt(x) = gt(xt) +
L
2
‖x− xt‖22. Then,

f(xt) ≤ gt(xt) = gt(x
?)− L

2
‖x? − xt‖22

= f(xt−1) +∇f(xt−1)
>(x? − xt−1) +

L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22

≤ f? + L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22.

By summing from t = 1 to T , we have a telescopic sum

T (f(xT)− f?) ≤
T∑
t=1

f(xt)− f? ≤
L

2
‖x? − x0‖22 −

L

2
‖x? − xT ‖22 ≤

L

2
‖x? − x0‖22.

Julien Mairal Principles of Gradient-Based Optimization 10/38

Proof (2/2)
Proof of the theorem

We have shown that for all x,

f(x) ≤ gt(x) = f(xt−1) +∇f(xt−1)
>(x− xt−1) +

L

2
‖x− xt−1‖22.

gt is minimized by xt; it can be rewritten gt(x) = gt(xt) +
L
2
‖x− xt‖22. Then,

f(xt) ≤ gt(xt) = gt(x
?)− L

2
‖x? − xt‖22

= f(xt−1) +∇f(xt−1)
>(x? − xt−1) +

L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22

≤ f? + L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22.

By summing from t = 1 to T , we have a telescopic sum

T (f(xT)− f?) ≤
T∑
t=1

f(xt)− f? ≤
L

2
‖x? − x0‖22 −

L

2
‖x? − xT ‖22 ≤

L

2
‖x? − x0‖22.

(green) - (red) - (blue) - telescopic sum

Julien Mairal Principles of Gradient-Based Optimization 10/38

Basics of gradient-based optimization

If ∇f is L-Lipschitz continuous and f µ-strongly convex

x⋆

x

f(x)

b

b

b

b
x0

f(x) ≤ f(x0) +∇f(x0)>(x− x0) + L
2 ‖x− x0‖22;

f(x) ≥ f(x0) +∇f(x0)>(x− x0) + µ
2‖x− x0‖22;

Julien Mairal Principles of Gradient-Based Optimization 11/38

Basics of gradient-based optimization

Proposition

When f is µ-strongly convex and L-smooth, the gradient descent algorithm with step-size
1/L produces iterates such that

f(xt)− f? ≤
(

1− µ

L

)t L‖x0 − x?‖22
2

.

We call that a linear convergence rate.

Remarks

if f is twice differentiable, L and µ represent the larget and smallest eigenvalues of the
Hessian, respectively.

L/µ is called the condition number.

Julien Mairal Principles of Gradient-Based Optimization 12/38

Basics of gradient-based optimization
Picture from F. Bach

Julien Mairal Principles of Gradient-Based Optimization 13/38

Proof

We start from a (blue) inequality from the previous proof

f(xt) ≤ f(xt−1) +∇f(xt−1)
>(x? − xt−1) +

L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22

≤ f? + L− µ
2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22.

In addition, blue! f(xt) ≥ f? + µ
2
‖xt − x?‖22, and thus

‖x? − xt‖22 ≤
L− µ
L+ µ

‖x? − xt−1‖22

≤
(
1− µ

L

)
‖x? − xt−1‖22.

Finally, green! f(xt) ≤ f? +∇f(x?)>(xt − x?) + L
2
‖xt − x?‖2 with ∇f(x?) = 0:

f(xt)− f?≤
L

2
‖xt − x?‖22 ≤

(
1− µ

L

)t L‖x? − x0‖22
2

It is all about green and blue.

Julien Mairal Principles of Gradient-Based Optimization 14/38

Proof

We start from a (blue) inequality from the previous proof

f(xt) ≤ f(xt−1) +∇f(xt−1)
>(x? − xt−1) +

L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22

≤ f? + L− µ
2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22.

In addition, blue! f(xt) ≥ f? + µ
2
‖xt − x?‖22, and thus

‖x? − xt‖22 ≤
L− µ
L+ µ

‖x? − xt−1‖22

≤
(
1− µ

L

)
‖x? − xt−1‖22.

Finally, green! f(xt) ≤ f? +∇f(x?)>(xt − x?) + L
2
‖xt − x?‖2 with ∇f(x?) = 0:

f(xt)− f?≤
L

2
‖xt − x?‖22 ≤

(
1− µ

L

)t L‖x? − x0‖22
2

It is all about green and blue.

Julien Mairal Principles of Gradient-Based Optimization 14/38

Proof

We start from a (blue) inequality from the previous proof

f(xt) ≤ f(xt−1) +∇f(xt−1)
>(x? − xt−1) +

L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22

≤ f? + L− µ
2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22.

In addition, blue! f(xt) ≥ f? + µ
2
‖xt − x?‖22, and thus

‖x? − xt‖22 ≤
L− µ
L+ µ

‖x? − xt−1‖22

≤
(
1− µ

L

)
‖x? − xt−1‖22.

Finally, green! f(xt) ≤ f? +∇f(x?)>(xt − x?) + L
2
‖xt − x?‖2 with ∇f(x?) = 0:

f(xt)− f?≤
L

2
‖xt − x?‖22 ≤

(
1− µ

L

)t L‖x? − x0‖22
2

It is all about green and blue.

Julien Mairal Principles of Gradient-Based Optimization 14/38

Proof

We start from a (blue) inequality from the previous proof

f(xt) ≤ f(xt−1) +∇f(xt−1)
>(x? − xt−1) +

L

2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22

≤ f? + L− µ
2
‖x? − xt−1‖22 −

L

2
‖x? − xt‖22.

In addition, blue! f(xt) ≥ f? + µ
2
‖xt − x?‖22, and thus

‖x? − xt‖22 ≤
L− µ
L+ µ

‖x? − xt−1‖22

≤
(
1− µ

L

)
‖x? − xt−1‖22.

Finally, green! f(xt) ≤ f? +∇f(x?)>(xt − x?) + L
2
‖xt − x?‖2 with ∇f(x?) = 0:

f(xt)− f?≤
L

2
‖xt − x?‖22 ≤

(
1− µ

L

)t L‖x? − x0‖22
2

It is all about green and blue.

Julien Mairal Principles of Gradient-Based Optimization 14/38

Basics of gradient-based optimization: composite problems

A composite optimization problem consists of minimizing the sum of a smooth and
non-smooth function

min
x∈Rp

{f(x) = f0(x) + ψ(x)} ,
where f0 is L-smooth and ψ is convex but not necessarily smooth.

Example

A popular choice is ψ(x) = ‖x‖1, which induces sparsity.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimiza-
tion with sparsity-inducing penalties. Foundations and Trends in
Machine Learning, 4(1). 2012.

Julien Mairal Principles of Gradient-Based Optimization 15/38

Basics of gradient-based optimization: composite problems

A composite optimization problem consists of minimizing the sum of a smooth and
non-smooth function

min
x∈Rp

{f(x) = f0(x) + ψ(x)} ,
where f0 is L-smooth and ψ is convex but not necessarily smooth.

Example

A popular choice is ψ(x) = ‖x‖1, which induces sparsity.

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimiza-
tion with sparsity-inducing penalties. Foundations and Trends in
Machine Learning, 4(1). 2012.

Julien Mairal Principles of Gradient-Based Optimization 15/38

Basics of gradient-based optimization: composite problems

Remark: with stepsize 1/L, gradient descent may be interpreted as iteratively minimizing a
tight upper-bound:

f(x)
gt(x)

b

b

xt−1

xt f(x) ≤ gt(x)

Figure: At each step, we update xt ∈ arg minx∈Rp gt(x)

Julien Mairal Principles of Gradient-Based Optimization 16/38

Basics of gradient-based optimization: composite problems
An important inequality for composite functions

If ∇f0 is L-Lipschitz continuous

x⋆

x

f(x) = f0(x) + ψ(x)g(x)

b

b

bb

b

x0x1

f(x) ≤ f0(x0) +∇f0(x0)>(x− x0) + L
2 ‖x− x0‖22 + ψ(x);

x1 minimizes g.

Julien Mairal Principles of Gradient-Based Optimization 17/38

Basics of gradient-based optimization: composite problems

Gradient descent for minimizing f consists of

xt ← arg min
x∈Rp

gt(x) ⇐⇒ xt ← xt−1 −
1

L
∇f(xt−1).

The proximal gradient method for minimizing f = f0 + ψ consists of

xt ← arg min
x∈Rp

gt(x),

which is equivalent to

xt ← arg min
x∈Rp

1

2

∥∥∥∥xt−1 −
1

L
∇f0(xt−1)− x

∥∥∥∥2

2

+
1

L
ψ(x).

It requires computing efficiently the proximal operator of ψ.

y 7→ arg min
x∈Rp

1

2
‖y − x‖22 + ψ(x).

Julien Mairal Principles of Gradient-Based Optimization 18/38

Basics of gradient-based optimization: composite problems

Remarks

also known as forward-backward algorithm;

same convergence rates as GD - same proofs;

there exists line search schemes to automatically tune L;

proximal operator can be computed for many interesting functions.

The case of `1

The proximal operator of λ‖.‖1 is the soft-thresholding operator

x[j] = sign(y[j])(|y[j]| − λ)+.

The resulting algorithm is called iterative soft-thresholding.

[Nowak and Figueiredo, 2001, Daubechies et al., 2004, Combettes and Wajs, 2006, Beck and
Teboulle, 2009, Wright et al., 2009, Nesterov, 2013]...

Julien Mairal Principles of Gradient-Based Optimization 19/38

Accelerated gradient descent methods

Nesterov introduced in the 80’s an acceleration scheme for the gradient descent algorithm.

Generalization to the composite setting: FISTA

xt ← arg min
x∈Rp

1

2

∥∥∥∥x− (yt−1 −
1

L
∇f0(yt−1)

)∥∥∥∥2

2

+
1

L
ψ(x);

Find αt > 0 s.t. α2
t = (1− αt)α2

t−1 +
µ

L
αt;

yt ← xt + βt(xt − xt−1) with βt =
αt−1(1− αt−1)

α2
t−1 + αt

.

f(xt)− f? = O(1/t2) for convex problems;

f(xt)− f? = O((1−
√
µ/L)t) for µ-strongly convex problems;

Acceleration works in many practical cases.

see [Beck and Teboulle, 2009, Nesterov, 1983, 2004, 2013]

Julien Mairal Principles of Gradient-Based Optimization 20/38

What do we mean by “acceleration”?

Complexity analysis

The complexity to guarantee f(xt)− f? ≤ ε, is given below

µ > 0 µ = 0

ISTA O
(
L
µ log

(
1
ε

))
O
(
L
ε

)
FISTA O

(√
L
µ log

(
1
ε

))
O

(√
L
ε

)

Remarks

the rate of FISTA is optimal for a “first-order local black box” [Nesterov, 2004].

for non-convex problems, acceleration often works in practice, but is poorly understood
from a theoretical perspective (local convexity? convexity along trajectories?
saddle-point escape?).

Julien Mairal Principles of Gradient-Based Optimization 21/38

How does “acceleration” work?

Unfortunately, the literature does not provide any simple geometric explanation...

but they
are a few obvious facts and a mechanism introduced by Nesterov, called “estimate
sequence”.

Obvious facts

Simple gradient descent steps are “blind” to the past iterates, and are based on a
purely local model of the objective.

Accelerated methods usually involve an extrapolation step yt = xt + βt(xt − xt−1)
with βt in (0, 1).

Nesterov interprets acceleration as relying on a better model of the objective called
estimate sequence.

Julien Mairal Principles of Gradient-Based Optimization 22/38

How does “acceleration” work?

Unfortunately, the literature does not provide any simple geometric explanation... but they
are a few obvious facts and a mechanism introduced by Nesterov, called “estimate
sequence”.

Obvious facts

Simple gradient descent steps are “blind” to the past iterates, and are based on a
purely local model of the objective.

Accelerated methods usually involve an extrapolation step yt = xt + βt(xt − xt−1)
with βt in (0, 1).

Nesterov interprets acceleration as relying on a better model of the objective called
estimate sequence.

Julien Mairal Principles of Gradient-Based Optimization 22/38

How does “acceleration” work?

Definition of estimate sequence [Nesterov].

A pair of sequences (ϕt)t≥0 and (λt)t≥0, with λt ≥ 0 and ϕt : Rp → R, is called an
estimate sequence of function f if λt → 0 and

for any x ∈ Rp and all t ≥ 0, ϕt(x)− f(x) ≤ λt(ϕ0(x)− f(x)).

In addition, if for some sequence (xt)t≥0 we have

f(xt) ≤ ϕ?t
M
= min

x∈Rp
ϕt(x),

then
f(xt)− f? ≤ λt(ϕ0(x?)− f?),

where x? is a minimizer of f .

Julien Mairal Principles of Gradient-Based Optimization 23/38

How does “acceleration” work?

In summary, we need two properties

1 ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x);

2 f(xt) ≤ ϕ?t
M
= minx∈Rp ϕt(x).

Remarks

ϕt is neither an upper-bound, nor a lower-bound;

Finding the right estimate sequence is often nontrivial.

Julien Mairal Principles of Gradient-Based Optimization 24/38

How does “acceleration” work?

In summary, we need two properties

1 ϕt(x) ≤ (1− λt)f(x) + λtϕ0(x);

2 f(xt) ≤ ϕ?t
M
= minx∈Rp ϕt(x).

How to build an estimate sequence?

Define ϕt recursively

ϕt(x)
M
= (1− αt)ϕt−1(x) + αtdt(x),

where dt is a lower-bound, e.g., if f is smooth,

dt(x)
M
= f(yt) +∇f(yt)

>(x− yt) +
µ

2
‖x− yt‖22,

Then, work hard to choose αt as large as possible, and yt and xt such that property 2 holds.
Subsequently, λt =

∏t
t=1(1− αt).

Julien Mairal Principles of Gradient-Based Optimization 24/38

Part II: Stochastic optimization

and variance reduction

Julien Mairal Principles of Gradient-Based Optimization 25/38

Stochastic optimization

Figure: Adaline, [Widrow and Hoff, 1960]: A physical device that performs least square regression
using stochastic gradient descent.

Julien Mairal Principles of Gradient-Based Optimization 26/38

Problems considered in this part

Minimization of (large) finite sums

min
x∈Rp

{
f(x) =

1

n

n∑
i=1

fi(x) + ψ(x)

}
.

Minimization of expectations with infinite data

min
x∈Rp

{f(x) = Ez[`(x, z)] + ψ(x)} .

The finite-sum problem corresponds to the empirical risk minimization problem, whereas the
second one corresponds to the expected cost.

Julien Mairal Principles of Gradient-Based Optimization 27/38

The stochastic gradient descent algorithm

Consider now the minimization of an expectation

min
x∈Rp

f(x) = Ez[`(x, z)],

To simplify, we assume that for all z, x 7→ `(x, z) is differentiable.

Algorithm

At iteration t,

Randomly draw one example zt from the training set;

Update the current iterate

xt ← xt−1 − ηt∇ft(xt−1) with ft(x) = `(x, zt).

Perform online averaging of the iterates (optional)

x̃t ← (1− γt)x̃t−1 + γtxt.

Julien Mairal Principles of Gradient-Based Optimization 28/38

The stochastic gradient descent algorithm

There are various learning rates strategies (constant, varying step-sizes), and averaging
strategies. Depending on the problem assumptions and choice of ηt, γt, classical
convergence rates may be obtained:

f(x̃t)− f? = O(1/
√
t) for convex problems;

f(x̃t)− f? = O(1/t) for strongly-convex ones;

Remarks

The convergence rates are not great, but the complexity per-iteration is small (1
gradient evaluation for minimizing an empirical risk versus n for the batch algorithm).

When the amount of data is infinite, the method minimizes the expected risk (which
is what we want).

Due to Robbins and Monro [1951].

[Nemirovski, Juditsky, Lan, and Shapiro, 2009, Moulines and Bach, 2011]...

Julien Mairal Principles of Gradient-Based Optimization 29/38

The stochastic gradient descent algorithm

What theory tells us

first use a constant step-size: the objective function value decreases quickly (as full
GD) until it oscillates.

then, use a decreasing step size and start averaging.

What practice “seems” to tell us

for deep networks, reducing twice the learning rate by 10 every x epochs seems ok.

use a mini batch (cheap parallelization), but not too large?

use Nesterov/Heavy-ball’s extrapolation?

use an adaptive learning rate strategy? (see next slide)

averaging? or not?

solutions tend to have small norm: implicit regularization?

Practice changes every year. Beware of big inductive claims.

Julien Mairal Principles of Gradient-Based Optimization 30/38

The stochastic gradient descent algorithm

What theory tells us

first use a constant step-size: the objective function value decreases quickly (as full
GD) until it oscillates.

then, use a decreasing step size and start averaging.

What practice “seems” to tell us

for deep networks, reducing twice the learning rate by 10 every x epochs seems ok.

use a mini batch (cheap parallelization), but not too large?

use Nesterov/Heavy-ball’s extrapolation?

use an adaptive learning rate strategy? (see next slide)

averaging? or not?

solutions tend to have small norm: implicit regularization?

Practice changes every year. Beware of big inductive claims.

Julien Mairal Principles of Gradient-Based Optimization 30/38

The stochastic gradient descent algorithm

What theory tells us

first use a constant step-size: the objective function value decreases quickly (as full
GD) until it oscillates.

then, use a decreasing step size and start averaging.

What practice “seems” to tell us

for deep networks, reducing twice the learning rate by 10 every x epochs seems ok.

use a mini batch (cheap parallelization), but not too large?

use Nesterov/Heavy-ball’s extrapolation?

use an adaptive learning rate strategy? (see next slide)

averaging? or not?

solutions tend to have small norm: implicit regularization?

Practice changes every year. Beware of big inductive claims.

Julien Mairal Principles of Gradient-Based Optimization 30/38

The stochastic gradient descent algorithm
Inspired by Jamie Soel’s presentation at NIPS’2018

SGD:
xt = xt−1 − ηt∇ft(xt−1).

Heavy-Ball momentum:

xt = xt−1 − ηt∇ft(xt−1) + βt(xt−1 − xt−2).

Nesterov’s extrapolation:

xt = xt−1 − ηt∇ft(xt−1 + βt(xt−1 − xt−2)) + βt(xt−1 − xt−2).

AdaGrad [Duchi et al., 2011]

xt = xt−1 − ηtH−1
t ∇ft(xt−1).

Adam [Kingma and Ba, 2014]:

xt = xt−1 − ηtH−1
t ∇ft(xt−1) + βtH

−1
t Ht−1(xt−1 − xt−2).

Julien Mairal Principles of Gradient-Based Optimization 31/38

The stochastic gradient descent algorithm
Inspired by Jamie Soel’s presentation at NIPS’2018

SGD:
xt = xt−1 − ηt∇ft(xt−1).

Heavy-Ball momentum:

xt = xt−1 − ηt∇ft(xt−1) + βt(xt−1 − xt−2).

Nesterov’s extrapolation:

xt = xt−1 − ηt∇ft(xt−1 + βt(xt−1 − xt−2)) + βt(xt−1 − xt−2).

AdaGrad [Duchi et al., 2011]

xt = xt−1 − ηtH−1
t ∇ft(xt−1).

Adam [Kingma and Ba, 2014]:

xt = xt−1 − ηtH−1
t ∇ft(xt−1) + βtH

−1
t Ht−1(xt−1 − xt−2).

Julien Mairal Principles of Gradient-Based Optimization 31/38

The stochastic gradient descent algorithm
Inspired by Jamie Soel’s presentation at NIPS’2018

SGD:
xt = xt−1 − ηt∇ft(xt−1).

Heavy-Ball momentum:

xt = xt−1 − ηt∇ft(xt−1) + βt(xt−1 − xt−2).

Nesterov’s extrapolation:

xt = xt−1 − ηt∇ft(xt−1 + βt(xt−1 − xt−2)) + βt(xt−1 − xt−2).

AdaGrad [Duchi et al., 2011]

xt = xt−1 − ηtH−1
t ∇ft(xt−1).

Adam [Kingma and Ba, 2014]:

xt = xt−1 − ηtH−1
t ∇ft(xt−1) + βtH

−1
t Ht−1(xt−1 − xt−2).

Julien Mairal Principles of Gradient-Based Optimization 31/38

The stochastic gradient descent algorithm
Inspired by Jamie Soel’s presentation at NIPS’2018

SGD:
xt = xt−1 − ηt∇ft(xt−1).

Heavy-Ball momentum:

xt = xt−1 − ηt∇ft(xt−1) + βt(xt−1 − xt−2).

Nesterov’s extrapolation:

xt = xt−1 − ηt∇ft(xt−1 + βt(xt−1 − xt−2)) + βt(xt−1 − xt−2).

AdaGrad [Duchi et al., 2011]

xt = xt−1 − ηtH−1
t ∇ft(xt−1).

Adam [Kingma and Ba, 2014]:

xt = xt−1 − ηtH−1
t ∇ft(xt−1) + βtH

−1
t Ht−1(xt−1 − xt−2).

Julien Mairal Principles of Gradient-Based Optimization 31/38

The stochastic gradient descent algorithm
Inspired by Jamie Soel’s presentation at NIPS’2018

SGD:
xt = xt−1 − ηt∇ft(xt−1).

Heavy-Ball momentum:

xt = xt−1 − ηt∇ft(xt−1) + βt(xt−1 − xt−2).

Nesterov’s extrapolation:

xt = xt−1 − ηt∇ft(xt−1 + βt(xt−1 − xt−2)) + βt(xt−1 − xt−2).

AdaGrad [Duchi et al., 2011]

xt = xt−1 − ηtH−1
t ∇ft(xt−1).

Adam [Kingma and Ba, 2014]:

xt = xt−1 − ηtH−1
t ∇ft(xt−1) + βtH

−1
t Ht−1(xt−1 − xt−2).

Julien Mairal Principles of Gradient-Based Optimization 31/38

Back to finite sums

Consider now the case of interest:

min
x∈Rp

1

n

n∑
i=1

fi(x),

Question

Can we do as well as SGD in terms of cost per iteration, while enjoying a fast (linear)
convergence rate like (accelerated or not) gradient descent?

For n = 1, no!

The rates are optimal for a “first-order local black box” [Nesterov, 2004].

For n ≥ 1, yes! We need to design algorithms

whose per-iteration computational complexity is smaller than n;

whose convergence rate may be worse than FISTA....

...but with a better expected computational complexity.

Julien Mairal Principles of Gradient-Based Optimization 32/38

Incremental gradient descent methods

min
x∈Rp

{
f(x) =

1

n

n∑
i=1

fi(x)

}
.

Several randomized algorithms are designed with one ∇fi computed per iteration, with fast
convergence rates, e.g., SAG [Schmidt et al., 2013]:

xk ← xk−1 −
γ

Ln

n∑
i=1

yki with yki =

{ ∇fi(xk−1) if i = ik
yk−1
i otherwise

.

See also SVRG, SAGA, SDCA, MISO, Finito...
Some of these algorithms perform updates of the form

xk ← xk−1 − ηkgk with E[gk] = ∇f(xk−1),

but gk has lower variance than in SGD.

[Schmidt et al., 2013, Xiao and Zhang, 2014, Defazio et al., 2014a,b, Shalev-Shwartz and Zhang,
2012, Mairal, 2015, Zhang and Xiao, 2015]

Julien Mairal Principles of Gradient-Based Optimization 33/38

Incremental gradient descent methods

min
x∈Rp

{
f(x) =

1

n

n∑
i=1

fi(x)

}
.

Several randomized algorithms are designed with one ∇fi computed per iteration, with fast
convergence rates, e.g., SAG [Schmidt et al., 2013]:

xk ← xk−1 −
γ

Ln

n∑
i=1

yki with yki =

{ ∇fi(xk−1) if i = ik
yk−1
i otherwise

.

See also SVRG, SAGA, SDCA, MISO, Finito...
Some of these algorithms perform updates of the form

xk ← xk−1 − ηkgk with E[gk] = ∇f(xk−1),

but gk has lower variance than in SGD.

[Schmidt et al., 2013, Xiao and Zhang, 2014, Defazio et al., 2014a,b, Shalev-Shwartz and Zhang,
2012, Mairal, 2015, Zhang and Xiao, 2015]

Julien Mairal Principles of Gradient-Based Optimization 33/38

Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation. The number of
gradients evaluations to ensure E[f(xk)− f?] ≤ ε is

µ > 0

FISTA O
(
n
√

L
µ log

(
1
ε

))
SVRG, SAG, SAGA, SDCA, MISO, Finito O

(
max

(
n, L̄µ

)
log
(

1
ε

))

Julien Mairal Principles of Gradient-Based Optimization 34/38

Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation. The number of
gradients evaluations to ensure E[f(xk)− f?] ≤ ε is

µ > 0

FISTA O
(
n
√

L
µ log

(
1
ε

))
SVRG, SAG, SAGA, SDCA, MISO, Finito O

(
max

(
n, L̄µ

)
log
(

1
ε

))
Main features vs. stochastic gradient descent

Same complexity per-iteration (but higher memory footprint).

Faster convergence (exploit the finite-sum structure).

Less parameter tuning than SGD.

Some variants are compatible with a composite term ψ.

SVRG is better than FISTA if n ≥
√
L/µ.

Julien Mairal Principles of Gradient-Based Optimization 34/38

Incremental gradient descent methods

These methods achieve low (worst-case) complexity in expectation. The number of
gradients evaluations to ensure E[f(xk)− f?] ≤ ε is

µ > 0

FISTA O
(
n
√

L
µ log

(
1
ε

))
SVRG, SAG, SAGA, SDCA, MISO, Finito O

(
max

(
n, L̄µ

)
log
(

1
ε

))
Important remarks

When fi(x) = `(z>i x), the memory footprint is O(n) otherwise O(dn), except for
SVRG (O(d)).

Some algorithms require an estimate of µ;

L̄ is the average (or max) of the Lipschitz constants of the ∇fi’s.

The L for fista is the Lipschitz constant of ∇f : L ≤ L̄.

Julien Mairal Principles of Gradient-Based Optimization 34/38

Incremental gradient descent methods
inspired from F. Bach’s slides.

Variance reduction

Consider two random variables X,Y and define

Z = X − Y + E[Y].

Then,

E[Z] = E[X]

Var(Z) = Var(X) + Var(Y)− 2cov(X,Y).

The variance of Z may be smaller if X and Y are positively correlated.

Why is it useful for stochastic optimization?

step-sizes for SGD have to decrease to ensure convergence.

with variance reduction, one may use larger constant step-sizes.

Julien Mairal Principles of Gradient-Based Optimization 35/38

Incremental gradient descent methods
inspired from F. Bach’s slides.

Variance reduction

Consider two random variables X,Y and define

Z = X − Y + E[Y].

Then,

E[Z] = E[X]

Var(Z) = Var(X) + Var(Y)− 2cov(X,Y).

The variance of Z may be smaller if X and Y are positively correlated.

Why is it useful for stochastic optimization?

step-sizes for SGD have to decrease to ensure convergence.

with variance reduction, one may use larger constant step-sizes.

Julien Mairal Principles of Gradient-Based Optimization 35/38

Incremental gradient descent methods

SVRG

xt = xt−1 − γ (∇fit(xt−1)−∇fit(y) +∇f(y)) ,

where y is updated every epoch and E[∇fit(y)|Ft−1] = ∇f(y).

SAGA

xt = xt−1 − γ
(
∇fit(xt−1)− yt−1

it
+ 1

n

∑n
i=1 y

t−1
i

)
,

where E[yt−1
it
|Ft−1] = 1

n

∑n
i=1 y

t−1
i and yti =

{
∇fi(xt−1) if i = it
yt−1
i otherwise.

MISO/Finito: for n ≥ L/µ, same form as SAGA but

1
n

∑n
i=1 y

t−1
i = −µxt−1 and yti =

{
∇fi(xt−1)− µxt−1 if i = it
yt−1
i otherwise.

Julien Mairal Principles of Gradient-Based Optimization 36/38

Can we do even better for large finite sums?

Without vs with acceleration

µ > 0

FISTA O
(
n
√

L
µ log

(
1
ε

))
SVRG, SAG, SAGA, SDCA, MISO, Finito O

(
max

(
n, L̄µ

)
log
(

1
ε

))
Accelerated versions Õ

(
max

(
n,
√
n L̄µ

)
log
(

1
ε

))
Acceleration for specific algorithms [Shalev-Shwartz and Zhang, 2014, Lan, 2015,
Allen-Zhu, 2016].

Generic acceleration: Catalyst [Lin, Mairal, and Harchaoui, 2015].

see [Agarwal and Bottou, 2015] for discussions about optimality.

SVRG is better than FISTA if n ≥
√
L/µ.

AccSVRG is better than SVRG if n ≤ L/µ.

Julien Mairal Principles of Gradient-Based Optimization 37/38

Can we do even better for large finite sums?

Without vs with acceleration

µ > 0

FISTA O
(
n
√

L
µ log

(
1
ε

))
SVRG, SAG, SAGA, SDCA, MISO, Finito O

(
max

(
n, L̄µ

)
log
(

1
ε

))
Accelerated versions Õ

(
max

(
n,
√
n L̄µ

)
log
(

1
ε

))
if n is huge (one-pass learning): use SGD!

Julien Mairal Principles of Gradient-Based Optimization 37/38

Questions about incremental methods

Do they work in practice?

for convex objectives

on training error: huge improvements over well-tuned SGD.
on test error: less clear (not worse than SGD).
much easier to use than SGD.

for non-convex objectives: nothing clear yet.

When is acceleration useful?

when the problem is badly conditioned (L/µ large).

when the amount of data is large, but not too large (such that one-pass un-regularized
SGD does not work).

Julien Mairal Principles of Gradient-Based Optimization 38/38

References I

A. Agarwal and L. Bottou. A lower bound for the optimization of finite sums. In Proceedings of the
International Conference on Machine Learning (ICML), 2015.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. arXiv
preprint arXiv:1603.05953, 2016.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward splitting. SIAM
Multiscale Modeling and Simulation, 4(4):1168–1200, 2006.

I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse
problems with a sparsity constraint. Communications on Pure and Applied Mathematics, 57(11):
1413–1457, 2004.

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with support
for non-strongly convex composite objectives. In Advances in Neural Information Processing
Systems (NIPS), 2014a.

Julien Mairal Principles of Gradient-Based Optimization 39/38

References II
A. J. Defazio, T. S. Caetano, and J. Domke. Finito: A faster, permutable incremental gradient

method for big data problems. In Proceedings of the International Conference on Machine
Learning (ICML), 2014b.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Guanghui Lan. An optimal randomized incremental gradient method. arXiv preprint
arXiv:1507.02000, 2015.

H. Lin, J. Mairal, and Z. Harchaoui. A universal catalyst for first-order optimization. In Advances in
Neural Information Processing Systems, 2015.

J. Mairal. Incremental majorization-minimization optimization with application to large-scale machine
learning. SIAM Journal on Optimization, 25(2):829–855, 2015.

Eric Moulines and Francis R Bach. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. In Advances in Neural Information Processing Systems, pages 451–459, 2011.

Julien Mairal Principles of Gradient-Based Optimization 40/38

References III
Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic

approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):
1574–1609, 2009.

Y. Nesterov. Introductory lectures on convex optimization: a basic course. Kluwer Academic
Publishers, 2004.

Y. Nesterov. Gradient methods for minimizing composite objective function. Mathematical
Programming, 140(1):125–161, 2013.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o (1/k2). In Doklady an SSSR, volume 269, pages 543–547, 1983.

R. D. Nowak and M. A. T. Figueiredo. Fast wavelet-based image deconvolution using the EM
algorithm. In Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and
Computers., 2001.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

Julien Mairal Principles of Gradient-Based Optimization 41/38

References IV
M. Schmidt, N. Le Roux, and F. Bach. Minimizing finite sums with the stochastic average gradient.

arXiv:1309.2388, 2013.

S. Shalev-Shwartz and T. Zhang. Proximal stochastic dual coordinate ascent. arXiv:1211.2717, 2012.

S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization. Mathematical Programming, pages 1–41, 2014.

B. Widrow and M. E. Hoff. Adaptive switching circuits. In IRE WESCON convention record,
volume 4, pages 96–104. New York, 1960.

S.J. Wright, R.D. Nowak, and M.A.T. Figueiredo. Sparse reconstruction by separable approximation.
IEEE Transactions on Signal Processing, 57(7):2479–2493, 2009.

L. Xiao and T. Zhang. A proximal stochastic gradient method with progressive variance reduction.
SIAM Journal on Optimization, 24(4):2057–2075, 2014.

Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for regularized empirical risk
minimization. In Proceedings of the International Conference on Machine Learning (ICML), 2015.

Julien Mairal Principles of Gradient-Based Optimization 42/38

