## Kernel Methods for Statistical Learning Homework 1

Posted: October 16, 2014
Due: November 6, 2014

Hand your work in at the November 4 course, or send it by email to: jakob.verbeek@inria.fr

## 1 Logistic discriminant classification for two classes

The logistic discriminant classifier is given by:

$$
\begin{equation*}
p(y=+1 \mid x)=\sigma\left(w^{T} x\right) \tag{1}
\end{equation*}
$$

where the sigmoid function is given by

$$
\begin{equation*}
\sigma(z)=(1+\exp (-z))^{-1} \tag{2}
\end{equation*}
$$

The logistic loss for a training sample $x_{i}$ with class label $y_{i}$ is given by:

$$
\begin{equation*}
L\left(y_{i}, w^{T} x_{i}\right)=-\log p\left(y_{i} \mid x_{i}\right) \tag{3}
\end{equation*}
$$

Exercise 1.a : Show that $p(y=-1 \mid x)=\sigma\left(-w^{T} x\right)$.

Exercise 1.b : Derive that the gradient of the logistic loss has the form

$$
\begin{equation*}
\nabla_{w} L\left(y_{i}, w^{T} x_{i}\right)=-y_{i}\left(1-p\left(y_{i} \mid x_{i}\right)\right) x_{i} \tag{4}
\end{equation*}
$$

Exercise 1.c : Show that the logistic loss function is convex.

## 2 Manipulation with kernels

The following exercises require basic manipulations with kernels.

Exercise 2.a : Given the kernel $k(x, y)=\sum_{i=1}^{p} \min (x(i), y(i))$ for p-dimensional vectors of non-negative integers $x, y \in \mathbb{N}_{+}^{p}$. Show that $k(x, y)$ is a positive definite kernel.

Exercise 2.b : Let $\mathcal{H}$ be the set of second-order polynomials over real numbers, i.e. for $x \in \mathbb{R}$, we have $\mathcal{H}=\left\{f_{a, b, c}(x): f(x)=a x^{2}+b x+c\right\}$, forming a Hilbert space with inner product $\left\langle f_{1}, f_{2}\right\rangle_{H}=a_{1} a_{2}+b_{1} b_{2} / 2+c_{1} c_{2}$. Show that $\mathcal{H}$ is a reproducing kernel Hilbert space.

## 3 Bias-variance decomposition for linear regression

Consider a uni-dimensional linear regression problem where we try to estimate a function $f(x)=\theta x$ from a set of training data $\left(x_{i}, y_{i}\right)$ for $i=1, \ldots, n$, and $\theta, x_{i}, y_{i} \in \mathbb{R}$. Suppose that the data is i.i.d. sampled from the model $y=\bar{\theta} x+\epsilon$, where $\epsilon$ is drawn from a zeromean distribution with variance $\sigma^{2}$. We estimate the unknown parameter $\bar{\theta}$ by means of a penalized empirical risk minimisation as:

$$
\begin{equation*}
\hat{\theta}=\arg \min _{\theta}\left\{\lambda \frac{1}{2} \theta^{2}+\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\theta x_{i}\right)^{2}\right\} \tag{5}
\end{equation*}
$$

Exercise 3.a : Show that the estimator can be obtained in closed form as:

$$
\begin{equation*}
\hat{\theta}=\left(\sum_{i=1}^{n} x_{i}^{2}+\lambda\right)^{-1} \sum_{i=1}^{n} x_{i} y_{i} \tag{6}
\end{equation*}
$$

Exercise 3.b : Show that the bias of the estimator is given by

$$
\begin{equation*}
\mathbb{E}_{p(\epsilon)}[\hat{\theta}-\bar{\theta}]=-\lambda\left(\sum_{i=1}^{n} x_{i}^{2}+\lambda\right)^{-1} \bar{\theta} \tag{7}
\end{equation*}
$$

Exercise 3.c : Show that the variance of the estimator is given by

$$
\begin{equation*}
\mathbb{E}_{p(\epsilon)}\left[\left(\hat{\theta}-\mathbb{E}_{p(\epsilon)}[\hat{\theta}]\right)^{2}\right]=\sigma^{2}\left(\sum_{i=1}^{n} x_{i}^{2}+\lambda\right)^{-2}\left(\sum_{i=1}^{n} x_{i}^{2}\right) \tag{8}
\end{equation*}
$$

Exercise 3.d : Derive similar results as in exercises 3.a, 3.b, and 3.c, for the case where $\theta, x_{i} \in \mathbb{R}^{p}$ and $y \in \mathbb{R}$.

