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Summary of previous lecture

 We saw how the risk could generally be decomposed as a term of 
bias/approximation and a term of variance/estimation.

 This decomposition highlights the trade-off that needs to be dealt 
with in inference. This trade-off is related to the complexity of the set 
of functions under consideration
► Sets too simple lead to a large approximation error.
► Sets too large lead to a large estimation error.

 We defined this notion of complexity more precisely, using 
Rademacher complexity and VC dimension, and saw it also 
depended on the number of samples.

 These notions are crucial in modern applications, where we 
sometimes have few samples in high dimensions.



Plan for this lecture

 With the notion of bias-variance decomposition in mind we now turn 
to concrete examples of statistical learning methods.

 Focus on penalized empirical risk minimization techniques, which 
exactly implement the bias-variance trade-off.

 We focus on linear classification models for supervised learning, i.e., 
inference using labeled data (label in the form of a class).

 If no labeled data is available but we want to estimate and assumed 
latent structure, we need unsupervised learning techniques (e.g., 
dimension reduction or clustering).
► The same notion of bias-variance decomposition also applies in 

the unsupervised case (we're still estimating models from data).

 Once we have these techniques in place, we will consider kernels 
as a way to obtain non-linear models.

 First: a brief recap of constrained optimization techniques.



Intermezzo: constrained optimization basics

 We consider equality and inequality constrained optimization over x 
of a function f(x)

 No assumptions on the form of f, g, and h.

 We will show that the constrained and penalized forms are often 
equivalent in some sense.

 Let the constrained solution be given by f*, and thus f*=f(x*) for the 
global constrained minimizer x*.

minimize f (x)
subject to hi(x)=0, for i=1,. .. ,m,
and g j(x)≤0, for i=1,. .. , r ,



Lagrangian and dual function

 The Lagrangian of the optimization problem is given by

 Lambda and mu known as Lagrange multipliers, or dual variables.

 The Lagrangian dual function is given by

L : X×Rm×Rr→R

L(x ,λ ,μ)=f (x)+∑i=1

m
λihi(x)+∑ j=1

r
μ j g j(x)

q : Rm×Rr→R

q(λ ,μ)=inf x L(x ,λ ,μ)

=inf x (f (x)+∑i=1

m
λihi(x)+∑ j=1

r
μ j g j(x))



Properties of the dual function

 The Lagrange dual function q is concave.
► Even in the original problem is not convex.

 Proof:
► For each x the function     is linear.

► The pointwise minimum of concave functions is concave, 
therefore q is concave.

(λ ,μ) →L(x ,λ ,μ)

q : Rm×Rr→R

q(λ ,μ)=inf x L(x ,λ ,μ)

=inf x ( f (x)+∑i=1

m
λihi(x)+∑ j=1

r
μ j g j(x))



Properties of the dual function

 The dual function yields lower bounds on the optimal value f* of the 
original problem if μ is nonnegative:

 Let x* be any feasible point, i.e. h(x*)=0 and g(x*)<= 0.
 Then we have for any lambda and non-negative mu:

q(λ ,μ)≤f *

for μ≥0

∑i=1

m
λihi(x

*)+∑ j=1

r
μ j g j(x

*)≤0

L(x* ,λ ,μ)= f (x*)+∑i=1

m
λihi(x

*)+∑ j=1

r
μ j g j(x

*)≤f (x*)

q(λ ,μ)=inf x f (x)+∑i=1

m
λi hi(x)+∑ j=1

r
μ j g j(x)≤f (x

*)



Relation primal and dual problem

 For the primal problem 

 The Lagrange dual problem is:

where q is the concave Lagrange dual function and lambda and mu 
are the Lagrange multipliers associated with the (in)equality 
constraints.

minimize f (x)
subject to hi(x)=0, for i=1,. .. ,m,
and g j(x)≤0, for i=1,... , r ,

maximize q (λ ,μ)
subject to μ≥0



Weak duality

 Let d* be the optimal value of the Lagrange dual problem.
 Each q(λ,μ) is a lower bound of the optimal value of the primal 

problem.
 By definition d* is the best lower bound that can be obtained.

 Therefore, the following weak duality always holds:

 This inequality holds when d* or f* are infinite.

 The difference d*-f* is called the optimal duality gap of the original 
problem.

d*≤f *



Strong duality

 Strong duality holds if the optimal duality gap is zero, i.e. d*=f*.

 If strong duality holds, then the best lower bound that can be 
obtained from the Lagrange dual function is tight.

 Strong duality does not hold of general non-linear problems.

 Strong duality usually holds for convex problems.

 Conditions that ensure strong duality for convex problems are called 
constraint qualification.



Slater's constraint qualification

 Strong duality holds for a convex problem (both f and the g's are 
convex)

if it is strictly feasible,i.e. there exists at least one feasible point 
that satisfies the constraints.

minimize f (x)
subject to Ax=b ,
and g j(x)≤0, for i=1,. .. , r ,



Dual optimal pairs

 Suppose that 
► strong duality holds,
► x* is primal optimal,
► (λ*,μ*) is dual optimal

then we have

 Therefore, both inequalities are in fact equalities.

f (x*)=q(λ* ,μ*)

=inf x {f (x)+∑i=1

m
λ i

*hi(x)+∑ j=1

r
μ j

* g j(x)}

≤ f (x*)+∑i=1

m
λi

*hi(x
*)+∑ j=1

r
μ j

* g j(x
*)

≤ f (x*)



Complementary slackness

 The second equality 

shows that for all j:

 This property is called complementary slackness:
either the i-th optimal Lagrange multiplier is zero
or the i-th constraint is active at the optimum.

μ j
*g j(x)=0

f (x*)+∑i=1

m
λi

*hi(x
*)+∑ j=1

r
μ j

* g j(x
*)= f (x*)



Reminder: Structural Risk Minimization

1) Define nested function sets of increasing complexity.
2) Minimize the empirical risk over each family.
3) Choose the solution giving the best generalization guarantees.

 Define a complexity measure over functions, and consider the 
classes

where

 Then in step 2 we solve

 We minimize the empirical risk while restricting ourselves to sets of 
functions of increasing complexity.

 This results in constrained optimization problems. Solving these 
problems for different loss functions and function spaces is an active 
topic of research.

H 1⊆H2⊆... ,

H j={f :Ω(f )≤μ j}, and μ1<μ2<...

minf∈H j
∑i=1

n
L( y i , f (x i)) ,



Equivalence with a penalized estimator

 We will mostly discuss penalized estimators

 The first term favors a good fit to the data, the second one favors 
regularity of f.

 We will show that the constrained and penalized forms are often 
equivalent in some sense.

 The approach will stay the same: we define a regularization function 
Ω which is relevant for our problem and we compare the 
generalization performances of the functions obtained for 
decreasing values of λ.

minf∈H∑i=1

n
L( y i , f (x i))+λΩ(f )



Equivalence with a penalized estimator

 In some cases, the constrained problem

is equivalent in some sense to the penalized problem

 Any solution of the constrained problem is a solution of the 
penalized problem, depending on μ and λ .
► The latter problem is sometimes easier to solve in practice.
► The estimator obtained from the latter problem sometimes corresponds 

to a maximum posterior likelihood problem.

minΩ( f )≤μ ∑i=1

n
L( y i , f (xi)),

minf ∈H∑i=1

n
L( y i , f (x i))+λΩ(f )



Equivalence with a penalized estimator

 Consider the case with
► L convex
► Ω convex
► Assume there exists an f with 

 Let us define

Ω(f )<μ

f λ∈arg minf L(f )+λΩ(f )

L(f )=∑i=1

n
L( y i , f (x i))

f μ∈argminΩ(f )≤μ L( f )



Equivalence with a penalized estimator

 We first show that the solution of the penalized problem

corresponds to a solution of the constrained problem for some mu.

 Let us constrain the maximum complexity to
► Clearly the constraint is satisfied for

 Suppose there exists another function f' with 

then 

which contradicts the optimality of      for the penalized problem.

 Note that we did not rely on convexity here, result is general.

μ=Ω(f λ)

f λ=arg minf L(f )+λΩ(f )

L(f ' )<L(f λ)
Ω(f ' )≤μ

f λ

f λ

L(f ' )+λΩ(f ' )<L(f λ)+λΩ(f λ)



Equivalence with a penalized estimator

 We now show that the solution of the constrained problem 

corresponds to a solution of the penalized problmem.

 Let us define the Lagrangian of the constrained problem as

 The dual of the constrained problem is

 Note that 

 By strong duality we have

L(f ,λ)=L(f )+λ (Ω(f )−μ )

f μ=arg minΩ(f )≤μ L(f )

q(λ)=minf L(f ,λ)

q(λ)=minf L(f ,λ)=L(f λ ,λ)

minΩ(f )≤μ L(f )=maxλ≥0 minf L(f , λ)=maxλ≥0 ( L(f λ)+λ(Ω(f λ)−μ) )



Equivalence with a penalized estimator

 In addition, by Slater's conditions again, there exists λ* such that

 By complementary slackness, it is necessary that 

which implies that         and

► Either λ*=0 and therefore the constrained problem gives the 
solution to the zero penalty case:

► Or        and therefore the constrained problem gives the 
solution to the penalized case

λ* (Ω(f λ*)−μ )=0

L(f μ)+0Ω(f μ)=L(f λ*)+0Ω(f λ*)

minΩ(f )≤μ L(f )=maxλ≥0 minf L(f , λ)=maxλ≥0 ( L(f λ)+λ(Ω(f λ)−μ) )

L(f μ)=minΩ(f )≤μ L(f )=L(f λ*)+λ*(Ω(f λ*)−μ)

L(f μ)=L(f λ*)

Ω(f λ*)=μ

L(f μ)+λ
*Ω(f μ)=L(f λ*)+λ*Ω(f μ)≤L(f λ*)+λ*Ω(f λ*)



Equivalence with a penalized estimator

 In some cases, the constrained problem

is equivalent in some sense to the penalized problem

 Any solution of the constrained problem is a solution of the 
penalized problem, depending on μ and λ .
► The latter problem is sometimes easier to solve in practice.
► The estimator obtained from the latter problem sometimes corresponds 

to a maximum posterior likelihood problem.

minΩ(f )≤μ ∑i=1

n
L( y i , f (x i)) ,

minf∈H∑i=1

n
L( y i , f (x i))+λΩ(f )



An example: the L2 penalty for a linear model

 Let us consider a linear model

 The penalty function 

 One of the most common penalty functions
► In support vector machines for classification.
► In ridge regression.

 Leads to functions with the following type of regularity:
► Two points that are close in terms of the Euclidean norm have 

similar function evaluations.
► Direct consequence of the Cauchy-Schwarz inequality:

f θ(x)=θ
T x , x∈R p

Ω(f θ)=∥θ∥2
2

∣f (x)−f (x ')∣=∣θT x−θT x '∣=∣θT (x−x ' )∣≤∥θ∥2∥x−x '∥2



An example: the L2 penalty for a linear model

 Let us consider a linear model

 The penalty function 

 Leads to functions with the following type of regularity:
► Two points that are close in terms of the Euclidean norm have 

similar function evaluations.

 This property can limit overfitting, and improve generalization: it 
makes functions behave similarly over similar, potentially 
unobserved, data.

 Of course, if there is no good predictor with this kind of regularity, 
the risk can be high because of the approximation error term.

f θ(x)=θ
T x , x∈R p

Ω(f θ)=∥θ∥2
2

∣f (x)−f (x ')∣≤∥θ∥2∥x−x '∥2



Common loss functions for regression

 L2 loss (considered before):

 L1 loss:  
► more robust against large errors
► Bayes estimator gives median instead of mean

L( y , f (x))=( y−f (x))2

L( y , f (x))=∣y−f (x )∣



Common loss functions for classification

 Assign class label using
► Zero-One loss:
► Hinge loss:
► Logistic loss:

L( y i , f (x i))=[ y i f (xi)≥0 ]
L( y i , f (x i))=max (0,1− y i f (xi))
L( y i , f (x i))=log2 (1+e−yi f ( xi))

y=sign (f (x))



Common loss functions for classification

 Assign class label using
► Zero-One loss:
► Hinge loss:
► Logistic loss:

 The zero-one loss counts the number of misclassifications, which is 
the “ideal” empirical loss.
► Discontinuity at zero makes optimization intractable.

 Hinge and logistic loss provide continuous and convex upperbounds

 Combined with convex penalties this leads to convex objective 
functions, for which global optima can be found.

 Methods based on convex objectives are also simpler to analyze.

 Convexity does, however, not guarantee better performance than 
non-convex counterparts in practice!

L( y i , f (x i))=[ y i f (xi)≥0 ]
L( y i , f (x i))=max (0,1− y i f (xi))
L( y i , f (x i))=log2 (1+e

−yi f ( xi))

y=sign (f (x))



Binary linear classifier

 Decision function is linear in the features:
 Classification based on the sign of f(x)

 Decision surface is (d-1) dimensional 

hyper-plane orthogonal to w 
 Offset from origin is determined by b

 We drop offset b, absorb it in x and w

 We will now consider the two most commonly used linear classifiers
► Logistic discriminant
► Support vector machines

f(x)=0

w

f (x)=wT x+b

x←(xT 1)T

w←(wT b)T



Logistic discriminant classifier

 Map linear score function to class probabilities with sigmoid 

 For binary classification problem, we have by definition

► Exercise: show that 

σ(z)= 1
1+ exp(−z)

p( y=+1∣x)=σ (wT x)

p( y=−1∣x)=1−p ( y=+ 1∣x)

p( y=−1∣x)=σ(−wT x)



Logistic discriminant classifier

 Map linear score function to class probabilities with sigmoid.
 The class boundary at f(x)=0, or equivalently p(y|x)=1/2.
 Soft transition between class assignment along decision boundary.

w

p(y|x)=1/2

f(x)=-5

f(x)=+5



Logistic discriminant classifier

 Probability of class y given by sigmoid of score function times label

 Log-likelihood of correct classification of i.i.d. data in training set

 We have obtained the logistic loss as negative log-likelihood 

p( y∣x)=σ( ywT x)

log∏i=1

n
p( y i∣x i)=∑i=1

n
log p( yi∣x i)

=∑i=1

n
log σ( yiw

T xi)

=−∑i=1

n
log (1+exp (− yiw

T xi))

=−Llogistic( yi ,w
T xi)



Logistic discriminant estimation

 Estimate classifier from data by minimizing, e.g. L2, penalized loss:

 Exercise 1: derive the gradient

 Exercise 2: Show that this is a convex optimization problem

minw∑i=1

n
L( y i ,w

T x i)+λ
1
2
wT w

=minw∑i=1

n
log (1+exp(−y iw

T xi))+λ
1
2
wTw

∂ L( y i ,w
T xi)

∂w
=−y i(1−p( y i∣xi))x i



Logistic discriminant estimation

 Solve objective function using first or second order methods

► E.g. using gradient descent, conjugate gradient descent,...
► Stochastic gradient descent for large-scale problems

 Recall the gradient

 Consider gradient descent, starting from w=0
► Each step we add to w a linear combination of the data points
► Magnitude of weight given by probability of misclassification
► Sign of weight given by the label

 The optimal w is a linear combination of the data samples
► L2 regularization term does not change this property

minw∑i=1

n
log (1+exp(−y iw

T x i))+λ
1
2
wTw

∂ L( y i ,w
T xi)

∂w
=−y i(1−p( y i∣xi))x i



Support Vector Machines

 Find linear function to separate positive and negative examples
 Which function best separates the samples ?

► Function inducing the largest margin

y i=+1 : wT x i+b>0

y i=−1 : wT xi+b<0



Support vector machines

 Witout loss of generality, define function value at the margin as +/- 1 
 Now constrain w to that all points fall on correct side of the margin:

 By construction we have that the “support vectors”, the ones that define the 
margin, have function values

 Express the size of the margin

in terms of w.

Margin
Support vectors

y i(w
T x i+b)≥1

wT x i+b=y i

f(x)=+1

f(x)=0
f(x)=-1



Support vector machines

 Let's consider a support vector x from the positive class

 Let z be its projection on the decision plane
► Since w is normal vector to the decision plane, we have
► and since z is on the decision plane

 Solve for alpha

 Margin is twice distance from x to z

MarginSupport vectors

f ( x)=wT x+ b=1

z=x−αw
f (z)=wT (x−αw)+b=0

∥x−z∥2=∥x−(x−αw)∥2

∥αw∥2=α∥w∥2

∥w∥2

∥w∥2
2=

1
∥w∥2

wT (x−αw)+b=0
wT x+b−αwTw=0

αwTw=1

α= 1

∥w∥2
2



Support vector machines

 To find the maximum-margin separating hyperplane, we 
► Maximize the margin, while ensuring correct classification
► Minimize the norm of w, s.t.

 Solve using quadratic program with linear inequality constraints over 
p+1 variables

Margin
Support vectors

∀ i : y i(w
T x i+b)≥1

f(x)=+1

f(x)=0
f(x)=-1

argminw ,b
1
2
wTw

subject to y i(w
T xi+b)≥1



Support vector machines: optimization

 The primal version of the optimization problem:

 For each constraint, i.e. for each data point, we introduce a 
corresponding dual variable alpha, which leads to the Lagrangian:

► Note sign-swap of constraint terms, since here we have larger-
equal, rather than smaller equal as in the general presentation.

argminw
1
2
wTw

subject to yi(w
T xi+b)≥1

L(w ,b ,α)=1
2
wTw−∑i=1

n
αi ( yi(wT xi+b)−1)



Support vector machines: optimization

 The Lagrangian is convex and quadratic in w.
 It is minimized w.r.t. w for:

 The Lagrangian is affine in b.
 It has minimum minus infinity, except when:

∇w L=w−∑i=1

n
αi y i xi=0

L(w ,b ,α)=1
2
wTw−∑i=1

n
αi ( yi(wT xi+b)−1)

w=∑i=1

n
αi yi xi

∇b L=∑i=1

n
αi yi=0



Support vector machines: optimization

 We therefore obtain the Lagrange dual function:

 The dual problem is: 

q (α)=inf w ,b L(w ,b ,α)

maximize   q(α)
subject to α≥0

={if ∑i=1

n
αi yi=0: ∑i=1

n
αi−

1
2
∑i , j=1

n
yi y jαiα j xi

T x j

otherwise : −∞ }

=inf w ,b
1
2
wTw−∑i=1

n
αi ( yi(wT xi+b)−1)

=inf w ,b
1
2
wTw−wT∑i=1

n
αi yi xi−b∑i=1

n
αi yi+∑i=1

n
αi



Support vector machines: optimization

 The dual problem is therefore equal to 

subject to

 This is a quadratic program with n variables, with simple linear 
constraints.

 Note that the data is accessed only in terms of pairwise dot-
products.

 Less variables to solve with respect to primal problem, if we have 
less data points than dimensions.

α≥0, ∑i=1

n
αi yi=0

maximize ∑i=1

n
αi−

1
2∑i , j=1

n
yi y jαiα j xi

T x j



Support vector machines: inseperable classes

 For non-separable classes we incorporate hinge-loss 

 Recall: convex and piecewise linear upper bound on zero/one loss.
► Zero if point on the correct side of the margin
► Otherwise given by absolute difference from score at margin

L( y i , f (x i))=max (0,1− y i f (xi))



Support vector machines: inseperable classes

 Minimize penalized loss function

► Quadratic function, plus piecewise linear functions.

 Transformation into a quadratic program
► Define “slack variables” that measure the loss for each data point
► Should be non-negative, and at least as large as the loss

 Solution of the quadratic program has again the property that w is a 
linear combination of the data points.

minw ,b λ 1
2
wTw + ∑i

max (0,1− yi(w
T xi+b))

minw ,b , {ξi} λ 1
2
wTw + ∑i

ξi

subject to∀i : ξi≥0  and ξi≥1− yi(w
T x i+b)



Dealing with more than two classes

 So far, we have only considered the, useful, case for two classes
► E.g., is this email spam or not ?

 Many practical problems have more classes
► E.g., which fruit is placed on the supermarket weight scale: apple, 

orange, or banana ?
 First idea: construction from multiple binary classifiers

► Learn binary “base” classifiers independently

 One vs rest approach:
► Train: 1 vs (2 & 3),  2 vs (1 & 3), 3 vs (1 & 2)

 Issue: regions claimed by several classes



Dealing with more than two classes

 One vs one approach: 
► Train:  1 vs 2, and 1 vs 3, and 2 vs 3

 Issue: conflicts in some regions



Dealing with more than two classes

 Instead: define a separate linear score function for each class

 Assign sample to the class of the function with maximum value 

 Exercise 1: give the expression for points

where two classes have equal score

 Exercise 2: show that the set of points 

assigned to a class is convex
► If two points are assigned to a class, then all points on connecting line 

are also assgined to that class.

f k (x)=wk
T x

y=argmaxk f k (x )



Multi-class logistic discriminant classifier

 Map score functions to class probabilities with “soft-max” 

► The class probability estimates are non-negative, and sum to one.

 Relative probability of classes changes exponentially with the 
difference in the linear score functions

 For any given pair of classes, they are equally 

likely on a hyperplane in the feature space

p( y=c∣x)=
exp( f c (x))

∑k=1

K
exp( f k( x))

f k (x)=wk
T x

p( y=c∣x)
p ( y=k∣x)

=
exp( f c (x))
exp ( f k (x))

=exp( f c( x)−f k (x ))



Multi-class logistic discriminant: estimation

 Consider the likelihood of correct classification of i.i.d. data in training set

 As before, we define loss function as negative log-likelihood

 Estimate model by means of penalized empirical risk

 This objective function is also convex in the w vectors 

minw∑i=1

n
L( y i , {f k (x i)})+λ

1
2
∑k=1

K
wk
Tw k

log∏i=1

n
p( y i∣x i)=∑i=1

n
log p( y i∣x i)

=∑i=1

n ( f yi(xi)−log∑k=1

K
exp(f k (xi)))

L( y , {f k (x)})=−f y(x)+ log∑k=1

K
exp(f k (x))



Multi-class logistic discriminant: estimation

 Derivative of loss function has an intuitive interpretation
► Focus on points with poor classification, w is linear combination of x's

 Gradient is zero when 

► If x also contains the constant 1 as last element then empirical count of each 
class matches expected count.

► Therefore, for each class 1st order moment matches for empirical distribution 
and the model's class conditional distribution.

∂ L
∂wk

=∑i=1

n

([ yi=k ]−p( yi=k∣xi)) xi

L=∑i=1

n
L( y i ,{f k (xi)})

∑i=1

n
[ yi=k ]xi

∑i=1

n
[ yi=k ]

=
∑i=1

n
p( y i=k∣xi)xi

∑i=1

n
p( yi=k∣xi)

∑i=1

n
[ y i=k ]=∑i=1

n
p( yi=k∣xi)

∑i=1

n
[ y i=k ]xi=∑i=1

n
p( yi=k∣xi) xi



Summary of linear classifiers

 Two most widely used binary linear classifiers:
► Logistic discriminant, also considered the extension to >2 classes.
► Support vector machines, similar multi-class extensions exist.

 Both minimize convex upper bounds on the 0/1 loss
 In both cases the optimal weight vector w is a linear combination of 

the data points

 Therefore, we only need the inner-products between data points to 
use the classifier. This also holds for the optimization of w.

w=∑i=1

n
αi xi

f (x)=wT x+b

=∑i=1

n
αi (xiT x )+b



Nonlinear Classification

 So far we just considered linear classifiers.
 Obviously limits the problems that can be addressed.
 What to do it the data is not linearly separable?

 Similar to what we considered last week for regression with higher-
order polynomials, we can do linear classification on non-linear 
features. For example augment map the data to R2 by adding x2.

0 x

x2

0 x
Slide credit: Andrew Moore



Φ:  x → φ(x)

Non-linear feature mappings for classification

 Map the original input space to some higher-dimensional feature 
space where the training set is separable

 Data occupies a (non-linear) subspace of dimension equal to the 
original space.

 Which features could separate this 2dimensional data linearly ?

Slide credit: Andrew Moore



Non-linear feature mappings for classification

 Remember that for classification we only need dot-products.
 Let's calculate the dot-product explicitly for our example.

► New dot-product easily computed from the original one.

Φ:  x → φ(x)

ϕ(x)=( x1
2

x2
2

√2 x1 x2
)

k (x , z)=ϕ(x)T ϕ(z)=?
=x1

2 z1
2+x2

2 z2
2+2x1 x2 z1 z2

=( x1 z1+x2 z2)
2

=( xT z )2



Non-linear feature mappings for classification

 Suppose we also want to keep the original features to still be able to 
implement linear functions
► Again efficient computation in 6d, roughly at cost of 2d dot-product

Φ:  x → φ(x)

ϕ(x )=(
1

√2 x1

√2 x2

x1
2

x2
2

√2 x1 x2

)
k ( x , y)=ϕ( x)T ϕ( y )=?

=1+ 2xT y+ (xT y )2

=(xT y+ 1)2

0 x
Slide credit: Andrew Moore

0 x
Slide credit: Andrew Moore



Non-linear feature mappings for classification

 What happens if we do the same for higher dimensional data
► Which feature vector            corresponds to it ?

► First term, encodes an additional 1 in each feature vector
► Second term, encodes scaling of the original features by sqrt(2)
► Let's consider the third term

► In total we have 1 + 2D + D(D-1)/2 features ! 
► But computed as efficiently as dot-product in original space

( xT y )2=( x1 y1+ ...+ xD yD)
2

k ( x , y)=( xT y+ 1 )2=1+ 2xT y+ (xT y )2

=∑d=1

D
(xd yd)

2+2∑d=1

D−1

∑i=d+1

D
(xd yd)(xi y i)

=∑d=1

D
xd

2 yd
2+2∑d=1

D−1

∑i=d+1

D
(xd x i)( yd yi)

ϕ(x )=(1 ,√2 x1 ,√2 x2, ... ,√2 xD , x1
2 , x2

2 , ... , xD
2 ,√2 x1 x2 , ... ,√2 x1 xD , ... ,√2 xD−1 xD )

T

Original features Squares Products of two distinct elements

ϕ(x )



Nonlinear classification with kernels

 The kernel trick: instead of explicitly computing the feature 
transformation φ(x), define a kernel function K such that

       K(xi , xj) = φ(xi ) · φ(xj)

 We will see that conversely, if a kernel is positive definite then it 
computes an inner product in some feature space, possibly with 
large number or infinite number of dimensions.

 This allows us to obtain nonlinear classification in the original space:
f (x) = b+wTϕ(x)

= b+∑i
αiϕ(xi)

Tϕ(x)

= b+∑i
αi k (xi , x)



Summary linear classification

 Linear classifiers learned by minimizing convex cost functions
► Logistic loss: smooth objective, minimized using gradient descent, etc.
► Hinge loss: piecewise linear objective, quadratic programming
► Both require only computing inner product between data points

 Non-linear classification can be done with linear classifiers over new 
features that are non-linear functions of the original features
► Kernel functions efficiently compute inner products in (very) high-

dimensional spaces, can even be infinite dimensional.

 Using kernel functions non-linear classification has drawbacks
► Requires storing the support vectors, may cost lots of memory.
► Computing kernel between new data point and support vectors may be 

computationally expensive 

 Kernel functions can also be used for other linear data analysis 
► Principle component analysis, k-means, CCA, regression, ...



Representation by pairwise comparisons

 We can think of a kernel function as a pairwise comparison function

 Represent a set of n data points by the n x n matrix

 Always an n x n matrix, whatever the nature of the data
► Same algorithms will work for any type of data: images, text...

 Modularity between the choice of K and the choice of algorithms.

 Poor scalability with respect to the data size (squared in n).

 We will restrict attention to a specific class of kernels.

K : X×X→R

[K ]ij=K (xi , x j)



Positive definite kernels

 Definition: A positive definite kernel on the set X is a function 

which is symmetric: 

and which satisfies

 Equivalently, a kernel K is positive definite if and only if, for any n 
and any set of n points, the similarity matrix K is positive 
semidefinite:

K : X×X→R

∀(x , x ')∈X 2: K (x , x ' )=K (x ' , x)

∀n∈N
∀(x1, ... , xn)∈R

n  and (a1, ... , an)∈R
n

∑i=1

n

∑ j=1

n
ai a jK (xi , x j)≥0

aT K a≥0



The simplest positive definite kernel

 Lemma: The kernel function defined by the inner product over 
vectors is a positive definite kernel.
► This kernel is known as the “linear kernel”

 Proof
► Symmetry: 

► Positive definiteness:

K : X×X→R
∀(x , x ')∈X 2: K (x , x ' )=xT x '

∑i=1

n

∑ j=1

n

aia jK (xi , x j)=∑i=1

n

∑ j=1

n

aia j xi
T x j=∥∑i=1

n

ai xi∥2
2≥0

K (x , x ')=xT x '=(x ')T x=K (x ' , x)



More generally: for any embedding function

 Lemma: The kernel function defined by the inner product over data 
points embedded in a vector space by a function φ is a positive 
definite kernel.

 Proof
► Symmetry: 

► Positive definiteness:

K : X×X→R
∀(x , x ' )∈X 2 : K (x , x ')=⟨ϕ(x)ϕ(x ')⟩H

∑i=1

n

∑ j=1

n
aia jK (xi , x j)=∑i=1

n

∑ j=1

n
aia j ⟨ϕ(xi) ,ϕ(x j)⟩H=∥∑i=1

n
aiϕ(xi)∥H

2 ≥0

K (x , x ' )=⟨ϕ(x) ,ϕ(x ')⟩H=⟨ϕ(x ') ,ϕ(x)⟩H=K (x ' , x)



Conversely: Kernels as inner products

 Theorem (Aronszajn,1950)

K is a positive definite kernel on the set X if and only if there exists a 
Hilbert space H and a mapping

such that for any x and x' in X

 Establishes the correspondence between kernels and 
representations.

Φ : X→H

K (x , x ' )=⟨ϕ(x) ,ϕ(x ')⟩H



Some definitions

 An inner product on an R-vector space H is a mapping

that is bilinear, symmetric, and such that

 A vector space endowed with an inner product is called pre-Hilbert. 
It is endowed with a norm defined by the inner product as

 A Hilbert space is a pre-Hilbert space complete for the norm 
defined by the inner product.
► In other words: any Cauchy series of points in H, has a limit in H.
► A series is Cauchy if for any          there exists some N, such 

that for any   we have that

H×H→R
(f , g) →〈 f , g〉H

⟨ f , f ⟩H>0 for all f ∈H ∖0

∥f∥H=〈 f , f 〉H
2

f 1, f 2, f 3, ...
∥f n−f m∥H<ϵ

ϵ>0
m,n>N



Proof, for the case of finite sets X

 Suppose X is a finite set of size n:

 Any positive definite kernel           is entirely defined by the 
n x n symmetric positive semidefinite matrix 

 The kernel matrix can therefore be diagonalized on an orthonormal 
basis of eigenvectors with non-negative eigenvalues

► Eigenvectors are the columns of U.
► Eigenvalues in the diagonal matrix lambda.

 Therefore

with

X={x1, x2, ... , xn}

K : X×X→R

K=U ΛU T

[K ]ij=K (xi , x j)

K (xi , x j)=[U ΛU T ]ij=∑l=1

N

λ lul(i)ul( j)

=〈ϕ(xi),ϕ(x j)〉

ϕ(xi)=(√λ1u1(i) ,√λ2u2(i) ... ,√λnun(i))
T
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