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Summary of previous lecture

 We saw how the risk could generally be decomposed as a term of 
bias/approximation and a term of variance/estimation.

 This decomposition highlights the trade-off that needs to be dealt 
with in inference. This trade-off is related to the complexity of the set 
of functions under consideration
► Sets too simple lead to a large approximation error.
► Sets too large lead to a large estimation error.

 We defined this notion of complexity more precisely, using 
Rademacher complexity and VC dimension, and saw it also 
depended on the number of samples.

 These notions are crucial in modern applications, where we 
sometimes have few samples in high dimensions.



Plan for this lecture

 With the notion of bias-variance decomposition in mind we now turn 
to concrete examples of statistical learning methods.

 Focus on penalized empirical risk minimization techniques, which 
exactly implement the bias-variance trade-off.

 We focus on linear classification models for supervised learning, i.e., 
inference using labeled data (label in the form of a class).

 If no labeled data is available but we want to estimate and assumed 
latent structure, we need unsupervised learning techniques (e.g., 
dimension reduction or clustering).
► The same notion of bias-variance decomposition also applies in 

the unsupervised case (we're still estimating models from data).

 Once we have these techniques in place, we will consider kernels 
as a way to obtain non-linear models.

 First: a brief recap of constrained optimization techniques.



Intermezzo: constrained optimization basics

 We consider equality and inequality constrained optimization over x 
of a function f(x)

 No assumptions on the form of f, g, and h.

 We will show that the constrained and penalized forms are often 
equivalent in some sense.

 Let the constrained solution be given by f*, and thus f*=f(x*) for the 
global constrained minimizer x*.

minimize f (x)
subject to hi(x)=0, for i=1,. .. ,m,
and g j(x)≤0, for i=1,. .. , r ,



Lagrangian and dual function

 The Lagrangian of the optimization problem is given by

 Lambda and mu known as Lagrange multipliers, or dual variables.

 The Lagrangian dual function is given by

L : X×Rm×Rr→R

L(x ,λ ,μ)=f (x)+∑i=1

m
λihi(x)+∑ j=1

r
μ j g j(x)

q : Rm×Rr→R

q(λ ,μ)=inf x L(x ,λ ,μ)

=inf x (f (x)+∑i=1

m
λihi(x)+∑ j=1

r
μ j g j(x))



Properties of the dual function

 The Lagrange dual function q is concave.
► Even in the original problem is not convex.

 Proof:
► For each x the function     is linear.

► The pointwise minimum of concave functions is concave, 
therefore q is concave.

(λ ,μ) →L(x ,λ ,μ)

q : Rm×Rr→R

q(λ ,μ)=inf x L(x ,λ ,μ)

=inf x ( f (x)+∑i=1

m
λihi(x)+∑ j=1

r
μ j g j(x))



Properties of the dual function

 The dual function yields lower bounds on the optimal value f* of the 
original problem if μ is nonnegative:

 Let x* be any feasible point, i.e. h(x*)=0 and g(x*)<= 0.
 Then we have for any lambda and non-negative mu:

q(λ ,μ)≤f *

for μ≥0

∑i=1

m
λihi(x

*)+∑ j=1

r
μ j g j(x

*)≤0

L(x* ,λ ,μ)= f (x*)+∑i=1

m
λihi(x

*)+∑ j=1

r
μ j g j(x

*)≤f (x*)

q(λ ,μ)=inf x f (x)+∑i=1

m
λi hi(x)+∑ j=1

r
μ j g j(x)≤f (x

*)



Relation primal and dual problem

 For the primal problem 

 The Lagrange dual problem is:

where q is the concave Lagrange dual function and lambda and mu 
are the Lagrange multipliers associated with the (in)equality 
constraints.

minimize f (x)
subject to hi(x)=0, for i=1,. .. ,m,
and g j(x)≤0, for i=1,... , r ,

maximize q (λ ,μ)
subject to μ≥0



Weak duality

 Let d* be the optimal value of the Lagrange dual problem.
 Each q(λ,μ) is a lower bound of the optimal value of the primal 

problem.
 By definition d* is the best lower bound that can be obtained.

 Therefore, the following weak duality always holds:

 This inequality holds when d* or f* are infinite.

 The difference d*-f* is called the optimal duality gap of the original 
problem.

d*≤f *



Strong duality

 Strong duality holds if the optimal duality gap is zero, i.e. d*=f*.

 If strong duality holds, then the best lower bound that can be 
obtained from the Lagrange dual function is tight.

 Strong duality does not hold of general non-linear problems.

 Strong duality usually holds for convex problems.

 Conditions that ensure strong duality for convex problems are called 
constraint qualification.



Slater's constraint qualification

 Strong duality holds for a convex problem (both f and the g's are 
convex)

if it is strictly feasible,i.e. there exists at least one feasible point 
that satisfies the constraints.

minimize f (x)
subject to Ax=b ,
and g j(x)≤0, for i=1,. .. , r ,



Dual optimal pairs

 Suppose that 
► strong duality holds,
► x* is primal optimal,
► (λ*,μ*) is dual optimal

then we have

 Therefore, both inequalities are in fact equalities.

f (x*)=q(λ* ,μ*)

=inf x {f (x)+∑i=1

m
λ i

*hi(x)+∑ j=1

r
μ j

* g j(x)}

≤ f (x*)+∑i=1

m
λi

*hi(x
*)+∑ j=1

r
μ j

* g j(x
*)

≤ f (x*)



Complementary slackness

 The second equality 

shows that for all j:

 This property is called complementary slackness:
either the i-th optimal Lagrange multiplier is zero
or the i-th constraint is active at the optimum.

μ j
*g j(x)=0

f (x*)+∑i=1

m
λi

*hi(x
*)+∑ j=1

r
μ j

* g j(x
*)= f (x*)



Reminder: Structural Risk Minimization

1) Define nested function sets of increasing complexity.
2) Minimize the empirical risk over each family.
3) Choose the solution giving the best generalization guarantees.

 Define a complexity measure over functions, and consider the 
classes

where

 Then in step 2 we solve

 We minimize the empirical risk while restricting ourselves to sets of 
functions of increasing complexity.

 This results in constrained optimization problems. Solving these 
problems for different loss functions and function spaces is an active 
topic of research.

H 1⊆H2⊆... ,

H j={f :Ω(f )≤μ j}, and μ1<μ2<...

minf∈H j
∑i=1

n
L( y i , f (x i)) ,



Equivalence with a penalized estimator

 We will mostly discuss penalized estimators

 The first term favors a good fit to the data, the second one favors 
regularity of f.

 We will show that the constrained and penalized forms are often 
equivalent in some sense.

 The approach will stay the same: we define a regularization function 
Ω which is relevant for our problem and we compare the 
generalization performances of the functions obtained for 
decreasing values of λ.

minf∈H∑i=1

n
L( y i , f (x i))+λΩ(f )



Equivalence with a penalized estimator

 In some cases, the constrained problem

is equivalent in some sense to the penalized problem

 Any solution of the constrained problem is a solution of the 
penalized problem, depending on μ and λ .
► The latter problem is sometimes easier to solve in practice.
► The estimator obtained from the latter problem sometimes corresponds 

to a maximum posterior likelihood problem.

minΩ( f )≤μ ∑i=1

n
L( y i , f (xi)),

minf ∈H∑i=1

n
L( y i , f (x i))+λΩ(f )



Equivalence with a penalized estimator

 Consider the case with
► L convex
► Ω convex
► Assume there exists an f with 

 Let us define

Ω(f )<μ

f λ∈arg minf L(f )+λΩ(f )

L(f )=∑i=1

n
L( y i , f (x i))

f μ∈argminΩ(f )≤μ L( f )



Equivalence with a penalized estimator

 We first show that the solution of the penalized problem

corresponds to a solution of the constrained problem for some mu.

 Let us constrain the maximum complexity to
► Clearly the constraint is satisfied for

 Suppose there exists another function f' with 

then 

which contradicts the optimality of      for the penalized problem.

 Note that we did not rely on convexity here, result is general.

μ=Ω(f λ)

f λ=arg minf L(f )+λΩ(f )

L(f ' )<L(f λ)
Ω(f ' )≤μ

f λ

f λ

L(f ' )+λΩ(f ' )<L(f λ)+λΩ(f λ)



Equivalence with a penalized estimator

 We now show that the solution of the constrained problem 

corresponds to a solution of the penalized problmem.

 Let us define the Lagrangian of the constrained problem as

 The dual of the constrained problem is

 Note that 

 By strong duality we have

L(f ,λ)=L(f )+λ (Ω(f )−μ )

f μ=arg minΩ(f )≤μ L(f )

q(λ)=minf L(f ,λ)

q(λ)=minf L(f ,λ)=L(f λ ,λ)

minΩ(f )≤μ L(f )=maxλ≥0 minf L(f , λ)=maxλ≥0 ( L(f λ)+λ(Ω(f λ)−μ) )



Equivalence with a penalized estimator

 In addition, by Slater's conditions again, there exists λ* such that

 By complementary slackness, it is necessary that 

which implies that         and

► Either λ*=0 and therefore the constrained problem gives the 
solution to the zero penalty case:

► Or        and therefore the constrained problem gives the 
solution to the penalized case

λ* (Ω(f λ*)−μ )=0

L(f μ)+0Ω(f μ)=L(f λ*)+0Ω(f λ*)

minΩ(f )≤μ L(f )=maxλ≥0 minf L(f , λ)=maxλ≥0 ( L(f λ)+λ(Ω(f λ)−μ) )

L(f μ)=minΩ(f )≤μ L(f )=L(f λ*)+λ*(Ω(f λ*)−μ)

L(f μ)=L(f λ*)

Ω(f λ*)=μ

L(f μ)+λ
*Ω(f μ)=L(f λ*)+λ*Ω(f μ)≤L(f λ*)+λ*Ω(f λ*)



Equivalence with a penalized estimator

 In some cases, the constrained problem

is equivalent in some sense to the penalized problem

 Any solution of the constrained problem is a solution of the 
penalized problem, depending on μ and λ .
► The latter problem is sometimes easier to solve in practice.
► The estimator obtained from the latter problem sometimes corresponds 

to a maximum posterior likelihood problem.

minΩ(f )≤μ ∑i=1

n
L( y i , f (x i)) ,

minf∈H∑i=1

n
L( y i , f (x i))+λΩ(f )



An example: the L2 penalty for a linear model

 Let us consider a linear model

 The penalty function 

 One of the most common penalty functions
► In support vector machines for classification.
► In ridge regression.

 Leads to functions with the following type of regularity:
► Two points that are close in terms of the Euclidean norm have 

similar function evaluations.
► Direct consequence of the Cauchy-Schwarz inequality:

f θ(x)=θ
T x , x∈R p

Ω(f θ)=∥θ∥2
2

∣f (x)−f (x ')∣=∣θT x−θT x '∣=∣θT (x−x ' )∣≤∥θ∥2∥x−x '∥2



An example: the L2 penalty for a linear model

 Let us consider a linear model

 The penalty function 

 Leads to functions with the following type of regularity:
► Two points that are close in terms of the Euclidean norm have 

similar function evaluations.

 This property can limit overfitting, and improve generalization: it 
makes functions behave similarly over similar, potentially 
unobserved, data.

 Of course, if there is no good predictor with this kind of regularity, 
the risk can be high because of the approximation error term.

f θ(x)=θ
T x , x∈R p

Ω(f θ)=∥θ∥2
2

∣f (x)−f (x ')∣≤∥θ∥2∥x−x '∥2



Common loss functions for regression

 L2 loss (considered before):

 L1 loss:  
► more robust against large errors
► Bayes estimator gives median instead of mean

L( y , f (x))=( y−f (x))2

L( y , f (x))=∣y−f (x )∣



Common loss functions for classification

 Assign class label using
► Zero-One loss:
► Hinge loss:
► Logistic loss:

L( y i , f (x i))=[ y i f (xi)≥0 ]
L( y i , f (x i))=max (0,1− y i f (xi))
L( y i , f (x i))=log2 (1+e−yi f ( xi))

y=sign (f (x))



Common loss functions for classification

 Assign class label using
► Zero-One loss:
► Hinge loss:
► Logistic loss:

 The zero-one loss counts the number of misclassifications, which is 
the “ideal” empirical loss.
► Discontinuity at zero makes optimization intractable.

 Hinge and logistic loss provide continuous and convex upperbounds

 Combined with convex penalties this leads to convex objective 
functions, for which global optima can be found.

 Methods based on convex objectives are also simpler to analyze.

 Convexity does, however, not guarantee better performance than 
non-convex counterparts in practice!

L( y i , f (x i))=[ y i f (xi)≥0 ]
L( y i , f (x i))=max (0,1− y i f (xi))
L( y i , f (x i))=log2 (1+e

−yi f ( xi))

y=sign (f (x))



Binary linear classifier

 Decision function is linear in the features:
 Classification based on the sign of f(x)

 Decision surface is (d-1) dimensional 

hyper-plane orthogonal to w 
 Offset from origin is determined by b

 We drop offset b, absorb it in x and w

 We will now consider the two most commonly used linear classifiers
► Logistic discriminant
► Support vector machines

f(x)=0

w

f (x)=wT x+b

x←(xT 1)T

w←(wT b)T



Logistic discriminant classifier

 Map linear score function to class probabilities with sigmoid 

 For binary classification problem, we have by definition

► Exercise: show that 

σ(z)= 1
1+ exp(−z)

p( y=+1∣x)=σ (wT x)

p( y=−1∣x)=1−p ( y=+ 1∣x)

p( y=−1∣x)=σ(−wT x)



Logistic discriminant classifier

 Map linear score function to class probabilities with sigmoid.
 The class boundary at f(x)=0, or equivalently p(y|x)=1/2.
 Soft transition between class assignment along decision boundary.

w

p(y|x)=1/2

f(x)=-5

f(x)=+5



Logistic discriminant classifier

 Probability of class y given by sigmoid of score function times label

 Log-likelihood of correct classification of i.i.d. data in training set

 We have obtained the logistic loss as negative log-likelihood 

p( y∣x)=σ( ywT x)

log∏i=1

n
p( y i∣x i)=∑i=1

n
log p( yi∣x i)

=∑i=1

n
log σ( yiw

T xi)

=−∑i=1

n
log (1+exp (− yiw

T xi))

=−Llogistic( yi ,w
T xi)



Logistic discriminant estimation

 Estimate classifier from data by minimizing, e.g. L2, penalized loss:

 Exercise 1: derive the gradient

 Exercise 2: Show that this is a convex optimization problem

minw∑i=1

n
L( y i ,w

T x i)+λ
1
2
wT w

=minw∑i=1

n
log (1+exp(−y iw

T xi))+λ
1
2
wTw

∂ L( y i ,w
T xi)

∂w
=−y i(1−p( y i∣xi))x i



Logistic discriminant estimation

 Solve objective function using first or second order methods

► E.g. using gradient descent, conjugate gradient descent,...
► Stochastic gradient descent for large-scale problems

 Recall the gradient

 Consider gradient descent, starting from w=0
► Each step we add to w a linear combination of the data points
► Magnitude of weight given by probability of misclassification
► Sign of weight given by the label

 The optimal w is a linear combination of the data samples
► L2 regularization term does not change this property

minw∑i=1

n
log (1+exp(−y iw

T x i))+λ
1
2
wTw

∂ L( y i ,w
T xi)

∂w
=−y i(1−p( y i∣xi))x i



Support Vector Machines

 Find linear function to separate positive and negative examples
 Which function best separates the samples ?

► Function inducing the largest margin

y i=+1 : wT x i+b>0

y i=−1 : wT xi+b<0



Support vector machines

 Witout loss of generality, define function value at the margin as +/- 1 
 Now constrain w to that all points fall on correct side of the margin:

 By construction we have that the “support vectors”, the ones that define the 
margin, have function values

 Express the size of the margin

in terms of w.

Margin
Support vectors

y i(w
T x i+b)≥1

wT x i+b=y i

f(x)=+1

f(x)=0
f(x)=-1



Support vector machines

 Let's consider a support vector x from the positive class

 Let z be its projection on the decision plane
► Since w is normal vector to the decision plane, we have
► and since z is on the decision plane

 Solve for alpha

 Margin is twice distance from x to z

MarginSupport vectors

f ( x)=wT x+ b=1

z=x−αw
f (z)=wT (x−αw)+b=0

∥x−z∥2=∥x−(x−αw)∥2

∥αw∥2=α∥w∥2

∥w∥2

∥w∥2
2=

1
∥w∥2

wT (x−αw)+b=0
wT x+b−αwTw=0

αwTw=1

α= 1

∥w∥2
2



Support vector machines

 To find the maximum-margin separating hyperplane, we 
► Maximize the margin, while ensuring correct classification
► Minimize the norm of w, s.t.

 Solve using quadratic program with linear inequality constraints over 
p+1 variables

Margin
Support vectors

∀ i : y i(w
T x i+b)≥1

f(x)=+1

f(x)=0
f(x)=-1

argminw ,b
1
2
wTw

subject to y i(w
T xi+b)≥1



Support vector machines: optimization

 The primal version of the optimization problem:

 For each constraint, i.e. for each data point, we introduce a 
corresponding dual variable alpha, which leads to the Lagrangian:

► Note sign-swap of constraint terms, since here we have larger-
equal, rather than smaller equal as in the general presentation.

argminw
1
2
wTw

subject to yi(w
T xi+b)≥1

L(w ,b ,α)=1
2
wTw−∑i=1

n
αi ( yi(wT xi+b)−1)



Support vector machines: optimization

 The Lagrangian is convex and quadratic in w.
 It is minimized w.r.t. w for:

 The Lagrangian is affine in b.
 It has minimum minus infinity, except when:

∇w L=w−∑i=1

n
αi y i xi=0

L(w ,b ,α)=1
2
wTw−∑i=1

n
αi ( yi(wT xi+b)−1)

w=∑i=1

n
αi yi xi

∇b L=∑i=1

n
αi yi=0



Support vector machines: optimization

 We therefore obtain the Lagrange dual function:

 The dual problem is: 

q (α)=inf w ,b L(w ,b ,α)

maximize   q(α)
subject to α≥0

={if ∑i=1

n
αi yi=0: ∑i=1

n
αi−

1
2
∑i , j=1

n
yi y jαiα j xi

T x j

otherwise : −∞ }

=inf w ,b
1
2
wTw−∑i=1

n
αi ( yi(wT xi+b)−1)

=inf w ,b
1
2
wTw−wT∑i=1

n
αi yi xi−b∑i=1

n
αi yi+∑i=1

n
αi



Support vector machines: optimization

 The dual problem is therefore equal to 

subject to

 This is a quadratic program with n variables, with simple linear 
constraints.

 Note that the data is accessed only in terms of pairwise dot-
products.

 Less variables to solve with respect to primal problem, if we have 
less data points than dimensions.

α≥0, ∑i=1

n
αi yi=0

maximize ∑i=1

n
αi−

1
2∑i , j=1

n
yi y jαiα j xi

T x j



Support vector machines: inseperable classes

 For non-separable classes we incorporate hinge-loss 

 Recall: convex and piecewise linear upper bound on zero/one loss.
► Zero if point on the correct side of the margin
► Otherwise given by absolute difference from score at margin

L( y i , f (x i))=max (0,1− y i f (xi))



Support vector machines: inseperable classes

 Minimize penalized loss function

► Quadratic function, plus piecewise linear functions.

 Transformation into a quadratic program
► Define “slack variables” that measure the loss for each data point
► Should be non-negative, and at least as large as the loss

 Solution of the quadratic program has again the property that w is a 
linear combination of the data points.

minw ,b λ 1
2
wTw + ∑i

max (0,1− yi(w
T xi+b))

minw ,b , {ξi} λ 1
2
wTw + ∑i

ξi

subject to∀i : ξi≥0  and ξi≥1− yi(w
T x i+b)



Dealing with more than two classes

 So far, we have only considered the, useful, case for two classes
► E.g., is this email spam or not ?

 Many practical problems have more classes
► E.g., which fruit is placed on the supermarket weight scale: apple, 

orange, or banana ?
 First idea: construction from multiple binary classifiers

► Learn binary “base” classifiers independently

 One vs rest approach:
► Train: 1 vs (2 & 3),  2 vs (1 & 3), 3 vs (1 & 2)

 Issue: regions claimed by several classes



Dealing with more than two classes

 One vs one approach: 
► Train:  1 vs 2, and 1 vs 3, and 2 vs 3

 Issue: conflicts in some regions



Dealing with more than two classes

 Instead: define a separate linear score function for each class

 Assign sample to the class of the function with maximum value 

 Exercise 1: give the expression for points

where two classes have equal score

 Exercise 2: show that the set of points 

assigned to a class is convex
► If two points are assigned to a class, then all points on connecting line 

are also assgined to that class.

f k (x)=wk
T x

y=argmaxk f k (x )



Multi-class logistic discriminant classifier

 Map score functions to class probabilities with “soft-max” 

► The class probability estimates are non-negative, and sum to one.

 Relative probability of classes changes exponentially with the 
difference in the linear score functions

 For any given pair of classes, they are equally 

likely on a hyperplane in the feature space

p( y=c∣x)=
exp( f c (x))

∑k=1

K
exp( f k( x))

f k (x)=wk
T x

p( y=c∣x)
p ( y=k∣x)

=
exp( f c (x))
exp ( f k (x))

=exp( f c( x)−f k (x ))



Multi-class logistic discriminant: estimation

 Consider the likelihood of correct classification of i.i.d. data in training set

 As before, we define loss function as negative log-likelihood

 Estimate model by means of penalized empirical risk

 This objective function is also convex in the w vectors 

minw∑i=1

n
L( y i , {f k (x i)})+λ

1
2
∑k=1

K
wk
Tw k

log∏i=1

n
p( y i∣x i)=∑i=1

n
log p( y i∣x i)

=∑i=1

n ( f yi(xi)−log∑k=1

K
exp(f k (xi)))

L( y , {f k (x)})=−f y(x)+ log∑k=1

K
exp(f k (x))



Multi-class logistic discriminant: estimation

 Derivative of loss function has an intuitive interpretation
► Focus on points with poor classification, w is linear combination of x's

 Gradient is zero when 

► If x also contains the constant 1 as last element then empirical count of each 
class matches expected count.

► Therefore, for each class 1st order moment matches for empirical distribution 
and the model's class conditional distribution.

∂ L
∂wk

=∑i=1

n

([ yi=k ]−p( yi=k∣xi)) xi

L=∑i=1

n
L( y i ,{f k (xi)})

∑i=1

n
[ yi=k ]xi

∑i=1

n
[ yi=k ]

=
∑i=1

n
p( y i=k∣xi)xi

∑i=1

n
p( yi=k∣xi)

∑i=1

n
[ y i=k ]=∑i=1

n
p( yi=k∣xi)

∑i=1

n
[ y i=k ]xi=∑i=1

n
p( yi=k∣xi) xi



Summary of linear classifiers

 Two most widely used binary linear classifiers:
► Logistic discriminant, also considered the extension to >2 classes.
► Support vector machines, similar multi-class extensions exist.

 Both minimize convex upper bounds on the 0/1 loss
 In both cases the optimal weight vector w is a linear combination of 

the data points

 Therefore, we only need the inner-products between data points to 
use the classifier. This also holds for the optimization of w.

w=∑i=1

n
αi xi

f (x)=wT x+b

=∑i=1

n
αi (xiT x )+b



Nonlinear Classification

 So far we just considered linear classifiers.
 Obviously limits the problems that can be addressed.
 What to do it the data is not linearly separable?

 Similar to what we considered last week for regression with higher-
order polynomials, we can do linear classification on non-linear 
features. For example augment map the data to R2 by adding x2.

0 x

x2

0 x
Slide credit: Andrew Moore



Φ:  x → φ(x)

Non-linear feature mappings for classification

 Map the original input space to some higher-dimensional feature 
space where the training set is separable

 Data occupies a (non-linear) subspace of dimension equal to the 
original space.

 Which features could separate this 2dimensional data linearly ?

Slide credit: Andrew Moore



Non-linear feature mappings for classification

 Remember that for classification we only need dot-products.
 Let's calculate the dot-product explicitly for our example.

► New dot-product easily computed from the original one.

Φ:  x → φ(x)

ϕ(x)=( x1
2

x2
2

√2 x1 x2
)

k (x , z)=ϕ(x)T ϕ(z)=?
=x1

2 z1
2+x2

2 z2
2+2x1 x2 z1 z2

=( x1 z1+x2 z2)
2

=( xT z )2



Non-linear feature mappings for classification

 Suppose we also want to keep the original features to still be able to 
implement linear functions
► Again efficient computation in 6d, roughly at cost of 2d dot-product

Φ:  x → φ(x)

ϕ(x )=(
1

√2 x1

√2 x2

x1
2

x2
2

√2 x1 x2

)
k ( x , y)=ϕ( x)T ϕ( y )=?

=1+ 2xT y+ (xT y )2

=(xT y+ 1)2

0 x
Slide credit: Andrew Moore

0 x
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Non-linear feature mappings for classification

 What happens if we do the same for higher dimensional data
► Which feature vector            corresponds to it ?

► First term, encodes an additional 1 in each feature vector
► Second term, encodes scaling of the original features by sqrt(2)
► Let's consider the third term

► In total we have 1 + 2D + D(D-1)/2 features ! 
► But computed as efficiently as dot-product in original space

( xT y )2=( x1 y1+ ...+ xD yD)
2

k ( x , y)=( xT y+ 1 )2=1+ 2xT y+ (xT y )2

=∑d=1

D
(xd yd)

2+2∑d=1

D−1

∑i=d+1

D
(xd yd)(xi y i)

=∑d=1

D
xd

2 yd
2+2∑d=1

D−1

∑i=d+1

D
(xd x i)( yd yi)

ϕ(x )=(1 ,√2 x1 ,√2 x2, ... ,√2 xD , x1
2 , x2

2 , ... , xD
2 ,√2 x1 x2 , ... ,√2 x1 xD , ... ,√2 xD−1 xD )

T

Original features Squares Products of two distinct elements

ϕ(x )



Nonlinear classification with kernels

 The kernel trick: instead of explicitly computing the feature 
transformation φ(x), define a kernel function K such that

       K(xi , xj) = φ(xi ) · φ(xj)

 We will see that conversely, if a kernel is positive definite then it 
computes an inner product in some feature space, possibly with 
large number or infinite number of dimensions.

 This allows us to obtain nonlinear classification in the original space:
f (x) = b+wTϕ(x)

= b+∑i
αiϕ(xi)

Tϕ(x)

= b+∑i
αi k (xi , x)



Summary linear classification

 Linear classifiers learned by minimizing convex cost functions
► Logistic loss: smooth objective, minimized using gradient descent, etc.
► Hinge loss: piecewise linear objective, quadratic programming
► Both require only computing inner product between data points

 Non-linear classification can be done with linear classifiers over new 
features that are non-linear functions of the original features
► Kernel functions efficiently compute inner products in (very) high-

dimensional spaces, can even be infinite dimensional.

 Using kernel functions non-linear classification has drawbacks
► Requires storing the support vectors, may cost lots of memory.
► Computing kernel between new data point and support vectors may be 

computationally expensive 

 Kernel functions can also be used for other linear data analysis 
► Principle component analysis, k-means, CCA, regression, ...



Representation by pairwise comparisons

 We can think of a kernel function as a pairwise comparison function

 Represent a set of n data points by the n x n matrix

 Always an n x n matrix, whatever the nature of the data
► Same algorithms will work for any type of data: images, text...

 Modularity between the choice of K and the choice of algorithms.

 Poor scalability with respect to the data size (squared in n).

 We will restrict attention to a specific class of kernels.

K : X×X→R

[K ]ij=K (xi , x j)



Positive definite kernels

 Definition: A positive definite kernel on the set X is a function 

which is symmetric: 

and which satisfies

 Equivalently, a kernel K is positive definite if and only if, for any n 
and any set of n points, the similarity matrix K is positive 
semidefinite:

K : X×X→R

∀(x , x ')∈X 2: K (x , x ' )=K (x ' , x)

∀n∈N
∀(x1, ... , xn)∈R

n  and (a1, ... , an)∈R
n

∑i=1

n

∑ j=1

n
ai a jK (xi , x j)≥0

aT K a≥0



The simplest positive definite kernel

 Lemma: The kernel function defined by the inner product over 
vectors is a positive definite kernel.
► This kernel is known as the “linear kernel”

 Proof
► Symmetry: 

► Positive definiteness:

K : X×X→R
∀(x , x ')∈X 2: K (x , x ' )=xT x '

∑i=1

n

∑ j=1

n

aia jK (xi , x j)=∑i=1

n

∑ j=1

n

aia j xi
T x j=∥∑i=1

n

ai xi∥2
2≥0

K (x , x ')=xT x '=(x ')T x=K (x ' , x)



More generally: for any embedding function

 Lemma: The kernel function defined by the inner product over data 
points embedded in a vector space by a function φ is a positive 
definite kernel.

 Proof
► Symmetry: 

► Positive definiteness:

K : X×X→R
∀(x , x ' )∈X 2 : K (x , x ')=⟨ϕ(x)ϕ(x ')⟩H

∑i=1

n

∑ j=1

n
aia jK (xi , x j)=∑i=1

n

∑ j=1

n
aia j ⟨ϕ(xi) ,ϕ(x j)⟩H=∥∑i=1

n
aiϕ(xi)∥H

2 ≥0

K (x , x ' )=⟨ϕ(x) ,ϕ(x ')⟩H=⟨ϕ(x ') ,ϕ(x)⟩H=K (x ' , x)



Conversely: Kernels as inner products

 Theorem (Aronszajn,1950)

K is a positive definite kernel on the set X if and only if there exists a 
Hilbert space H and a mapping

such that for any x and x' in X

 Establishes the correspondence between kernels and 
representations.

Φ : X→H

K (x , x ' )=⟨ϕ(x) ,ϕ(x ')⟩H



Some definitions

 An inner product on an R-vector space H is a mapping

that is bilinear, symmetric, and such that

 A vector space endowed with an inner product is called pre-Hilbert. 
It is endowed with a norm defined by the inner product as

 A Hilbert space is a pre-Hilbert space complete for the norm 
defined by the inner product.
► In other words: any Cauchy series of points in H, has a limit in H.
► A series is Cauchy if for any          there exists some N, such 

that for any   we have that

H×H→R
(f , g) →〈 f , g〉H

⟨ f , f ⟩H>0 for all f ∈H ∖0

∥f∥H=〈 f , f 〉H
2

f 1, f 2, f 3, ...
∥f n−f m∥H<ϵ

ϵ>0
m,n>N



Proof, for the case of finite sets X

 Suppose X is a finite set of size n:

 Any positive definite kernel           is entirely defined by the 
n x n symmetric positive semidefinite matrix 

 The kernel matrix can therefore be diagonalized on an orthonormal 
basis of eigenvectors with non-negative eigenvalues

► Eigenvectors are the columns of U.
► Eigenvalues in the diagonal matrix lambda.

 Therefore

with

X={x1, x2, ... , xn}

K : X×X→R

K=U ΛU T

[K ]ij=K (xi , x j)

K (xi , x j)=[U ΛU T ]ij=∑l=1

N

λ lul(i)ul( j)

=〈ϕ(xi),ϕ(x j)〉

ϕ(xi)=(√λ1u1(i) ,√λ2u2(i) ... ,√λnun(i))
T
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