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Homework + Project

 Homework 1: due Thursday November 6, 2014.

 Homework 2: available on website

 Homework 2 and 3: only required for UJF students
► Since course has less credits for ENSIMAG students

 Project:
► Select a paper from the website, or find your own.
► Due January 5th 2015.
► Possible to do in teams of 2 students
► Multiple people/groups can pick the same paper.



Summary of previous lecture

 Definition and properties of reproducing kernel Hilbert spaces.



Reproducing kernel Hilbert spaces

 Let X be a set and H a class of functions over X 

forming a Hilbert space with inner product 

 The function         is called a reproducing kernel of H if

► H contains all functions of the form

► For every x in X, and f in H, the reproducing property holds:

 If a reproducing kernel exists, then H is called a reproducing kernel 
Hilbert space.

H⊂RX

∀ x∈X : k x : t→K (x ,t )

K : X 2
→R

f (x)=〈 f , k x〉H

〈 . , .〉H



Reproducing kernel Hilbert spaces: example 1

 Let H be the class of linear functions over a real vector space X 

forming a Hilbert space with inner product 
 The function         is called a reproducing kernel of H if

► H contains all functions of the form

► For every x in X, and f in H, the reproducing property holds:

 If a reproducing kernel exists, then H is called a reproducing kernel 
Hilbert space.
► It this the case ?
► Yes, for the linear kernel:

H={f w : f w(x)=wT x}

∀ x∈X : K x : t→K (x ,t )

K : X 2
→R

f (x)=〈 f , K x 〉H

〈 f w , f v 〉H=wT v

K (x , t)=xT t



Reproducing kernel Hilbert spaces: example 2

 Let H be the class of all real functions over a finite set X of size n

forming a Hilbert space with inner product 
 The function         is called a reproducing kernel of H if

► H contains all functions of the form

► For every x in X, and f in H, the reproducing property holds:

 If a reproducing kernel exists, then H is called a reproducing kernel 
Hilbert space.
► It this the case ?
► Yes, for the identity kernel:

 As before [z]=1 if the expression z is true, zero otherwise.

H={f ∈Rn
}

∀ x∈X : K x : t→K (x ,t )

K : X 2
→R

f (x)=〈 f , K x 〉H

〈 f 1 , f 2〉H=∑x∈X
f 1(x) f 2(x)

K (x , t)=[x=t ]



Reproducing kernel Hilbert spaces: results

 Theorem: If H is an RKHS, then it has a unique reproducing kernel. 
Conversely, a function K can be the reproducing kernel of at most 
one RKHS.

 Therefore, we can talk of “the” kernel of an RKHS, and “the” RKHS 
of a kernel.

 Theorem: A function     is positive definite if and only if it is a 
reproducing kernel.

 Theorem (Aronszajn,1950): K is a positive definite kernel on the set 
X if and only if there exists a Hilbert space H and a mapping

such that for any x and x' in X:

K : X 2
→R

Φ : X→H

K (x , x ')=〈ϕ(x),ϕ(x ')〉H



Proof of Aronzsajn's theorem: first direction

 Suppose K is positive definite over a set X, 

then it is the reproducing kernel of a Hilbert space 

 Define the mapping                  as

 Then by the reproducing property 

we have:

Φ : X→H

〈ϕ(x) ,ϕ( y)〉H=〈k x , k y 〉H=k (x , y).

H⊂RX

∀ x∈X : ϕ(x)=k x=k (x , .)

∀(x , y)∈X 2

f (x)=〈 f , k x〉H



Proof of Aronzsajn's theorem: second direction

 Suppose there exists a Hilbert space             and a mapping

such that for any x and x' in X:

 Then we have that k is positive definite since

Φ : X→H

〈ϕ(x) ,ϕ( y)〉H=k (x , y).

H⊂RX

∑i=1

n

∑ j=1

n

αiα j k (xi , x j)=∑i=1

n

∑ j=1

n

αiα j 〈ϕ(xi) ,ϕ(x j)〉H

=∑i=1

n

αi 〈ϕ(xi) ,∑ j
α jϕ(x j)〉H

=〈∑i=1

n

αiϕ(xi) ,∑ j
α jϕ(x j)〉H

=∥∑i=1

n

αiϕ(xi)∥H≥0



Plan for this lecture

 Kernel trick
► Distance between points.
► Distance between sets and points.
► Data centering.

 Considerations on the RKHS norm
► Rademacher complexity for RKHS balls. 
► Function smoothness in RKHS.
► Representer theorem.

 Supervised kernel methods
► Ridge regression.
► SVM.
► Logistic discriminant.

 Fisher kernels



The kernel trick

 Choosing a p.d. kernel K on a set X amounts to embedding the data 
in a Hilbert space: there exists a Hilbert space H and a mapping

such that for all x and x' in X

 This mapping might not be explicitly given, nor convenient to work 
with in practice, e.g. for very large or even infinite dimensions.

 The “trick” is to work implicitly in the feature space H by means of 
kernel evaluations.

k (x , x ' )=〈ϕ(x) ,ϕ(x ')〉H.

Φ : X→H



The kernel trick

 Any algorithm to process finite dimensional vectors that can be 
expressed only in terms of pairwise inner products can be applied to 
potentially infinite-dimensional vectors in the feature space of a p.d. 
kernel by replacing each inner product evaluation by a kernel 
evaluation.

 This statement is trivially true, since the kernel computes the inner 
product in the associated RKHS.

 The practical implications of this “trick” are important.

 Vectors in the feature space are only manipulated implicitly, through 
pairwise inner products, there is no need to explicitly represent any 
data in the feature space.



Example 1: computing distances in the feature space

 
d k (x , x ')=∥ϕ(x)−ϕ(x ' )∥H

2

=〈ϕ(x)−ϕ(x ' ) ,ϕ(x)−ϕ(x ' )〉H

=〈ϕ(x) ,ϕ(x)〉H+〈ϕ(x ') ,ϕ(x ' )〉H−2 〈ϕ(x) ,ϕ(x ')〉H

=k (x , x)+k (x ' , x ' )−2k (x , x ' )



Distance for the Gaussian kernel

 
 The Gaussian kernel with bandwidth 

sigma is given by

 In the feature space, all points are 
embedded on the unit sphere since

 The distance in the feature space 
between x and x' is given by

k (x , x ' )=exp (−∥x−x '∥2 /(2σ
2
))

d k (x , x ')=√2 [1−exp (−∥x−x '∥2
/(2σ2

))]

k (x , x)=∥ϕ(x)∥H
2
=1



Example 2: distance between a point and a set

 
 Let S be a finite set of points in X: 

 How to define and compute the similarity between any point x in X and 
the set S?

 The following is a simple approach:

► Map all points to the feature space 

► Summarize S by the barycenter of the points

► Define the distance between x and S as

d k (x ,S)=∥ϕ(x)−m∥H

m=
1
n
∑i=1

n
ϕ(x i)

S=(x1, ... , xn)



Example 2: distance between a point and a set

=∥ϕ(x)−
1
n
∑i=1

n
ϕ(x i)∥H

=√k (x , x)−2
n∑i=1

n

k (x , x i)+
1
n2∑i , j=1

n

k (xi , x j)

d k (x ,S)=∥ϕ(x)−m∥H



Uni-dimensional illustration

 
 Let S = {2,3}, plot f(x) = d(x,S).

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2



2D illustration

 
 Let S = { (1,1)', (1,2)', (2,2)' }, plot f(x) = d(x,S).

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2



Application to discrimination

 
 Consider a set of points from positive class P = { (1,1)', (1,2)' }
 And a set of points from the negative class N={ (1,3)', (2,2)' }
 Plot 

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2

=∥ϕ(x)−mP∥H
2
−∥ϕ(x)−mN∥H

2

=
2
n∑xi∈N

k (x , xi)−
2
n∑xi∈P

k (x , x i)+constant

f (x)=dk (x , P)
2
−d k (x , N )

2



Example 3: centering data in feature space

 
 Let S be a set of n points in X.
 Let K be the kernel matrix generated by the p.d. kernel k(.,.).
 Let m be the barycenter in the feature space of the points in S.
 How to compute the kernel matrix when the points are centered on m?

h(x , x ' )=〈ϕ(x)−m,ϕ(x ' )−m〉H



Example 3: centering data in feature space

 
 Substitution of the barycenter gives

 Or, in matrix notation we get

where for all i,j: 

h(x i , x j)=〈ϕ(x i)−m ,ϕ(x j)−m〉H
=〈ϕ(x i) ,ϕ(x j)〉H−〈m,ϕ(x i)+ϕ(x j)〉H+〈m,m〉H

=k (x i , x j)−
1
n
∑k=1

n

(k (xi , xk )+k (xk , x j))+
1

n2∑k ,l=1

n
k (xk , x l)

H=K−KU−UK+UKU=(I−U )K ( I−U )

U i , j=1 /n



Plan for this lecture

 Kernel trick
► Distance between points.
► Distance between sets and points.
► Data centering.

 Considerations on the RKHS norm
► Rademacher complexity for RKHS balls. 
► Function smoothness in RKHS.
► Representer theorem.

 Supervised kernel methods
► Ridge regression.
► SVM.
► Logistic discriminant.

 Fisher kernels



Recap of Rademacher complexity

 Definition of Rademacher complexity of a function class H over X
► Let be i.i.d. variables with

► Let          be i.i.d. variables

 Intuitively measures how well functions in H can align to noise.

 Rademacher complexity bounds the expected estimation error in the 
expected risk

► Average taken over training sets that generate our estimator

σ i , i=1,... , n

Radn(H )=EX ,σ [supf∈F B
∣
2
n∑i=1

n
σi f (x i)∣]

p(σi=+1)=p(σi=−1)=1 /2

x i∈X , i=1,... , n

E(xi , yi )1=1,. ..,n
[R( f̂ )−R* ]=(ming∈H R (g)−R*)+(R (f̂ )−ming∈H R (g))

≤(ming∈H R(g)−R*)+4 Radn(H )



Rademacher Complexity in RKHS balls

 Suppose X is endowed with a positive definite kernel k, and 
associated RKHS H.

 Consider the class of functions f in H in a ball of radius B in H.

 Rademacher complexity of this class can be upper bounded as

 Therefore, by plugging this into the general Rademacher risk bound, 
the Bayes regret of an estimator in this class can be bounded by

► First term is the bias term that decreases with B
► Second term is variance term that increases (linearly) with B.

Radn(FB)≤
2B√Ek (x , x)

√n

FB={f ∈H : ∥f∥H≤B}

E(xi , yi ), i=1,. .. , n [R( f̂ )−R* ]≤(ming∈FB
R(g)−R* )+4

2B√Ek (x , x)

√n



Rademacher Complexity in RKHS balls, proof (1/2)

Radn(FB)=EX ,σ [supf∈FB
∣
2
n∑i=1

n
σ i f (x i)∣]

=EX ,σ [supf∈FB
∣〈 f , 2

n∑i=1

n
σi k xi〉∣]

=EX ,σ [B∥2
n∑i=1

n
σ i k xi

∥]

≤EX ,σ [supf∈FB
∥f∥×∥

2
n∑i=1

n
σi k xi

∥]

=
2B
n

EX ,σ [√∥∑i=1

n
σi k xi

∥H
2 ]

≤
2B
n √EX ,σ [∥∑i=1

n

σ ik xi
∥H

2 ]
=

2B
n √EX ,σ [∑i , j=1

n

σiσ j k (x i , x j)]

By RKHS

By Cauchy-Schwarz

By Jensen's inquality



Rademacher Complexity in RKHS balls, proof (2/2)

 But for i.i.d. and uniform 

we have that   is one if i=j and zero otherwise. Therefore:

Radn(FB)≤
2B
n √EX ,σ [∑i , j=1

n

σ iσ j k (x i , x j)]

σ i∈{−1,+1}

E [σ iσ j ]

=
2B
n √EX [∑i , j=1

n

Eσ [σiσ j ] k (x i , x j)]

=
2B
n √EX [∑i=1

n

k (x i , x i)]

=
2B√EX [k (x , x)]

√n



Rademacher Complexity in RKHS balls

 Consider the class of functions f in H in a ball of radius B in H.

 The Rademacher complexity of this class can be upper bounded as

 Therefore, by plugging this into the general Rademacher risk bound, 
the Bayes regret of an estimator in this class can be bounded by

 For different choices of B find estimator by minimizing empirical risk

► Or equivalently for different lambda

Radn(FB)≤
2B√Ek (x , x)

√n

FB={f ∈H : ∥f∥H≤B}

E(xi , yi ), i=1,. .. , n [R( f̂ )−R* ]≤(ming∈FB
R(g)−R* )+4

2B√Ek (x , x)

√n

f̂=argminf∈FB

1
n
∑i=1

n
L( y , f (x i))

f̂=argminf∈H λ
1
2
∥f∥H

2
+

1
n
∑i=1

n
L( y , f (x i))



Smoothness of functions in RKHS

 Let f be a function in a RKHS H with associated kernel k over X

 Consider the difference in function evaluations for two points x and 
x' in X

 The RKHS norm of f gives the Lipschitz constant of f, for the metric 

 In particular for we have

∣f (x)−f (x ')∣=∣〈f ,ϕ(x )〉−〈 f ,ϕ(x ')〉∣

=∣〈f ,ϕ(x)−ϕ(x ' )〉∣

≤∥f∥H×∥ϕ(x)−ϕ(x ' )∥H

d k (x , x ')=∥ϕ(x)−ϕ(x ' )∥H

f=∑i=1

n
αik (x i , .)

∥f∥H
2
=〈∑i=1

n
αi k(x i , .) ,∑i=1

n
αik (xi , .)〉H=∑i , j

αiα jk (x i , x j)=α
T K α



Representer Theorem

 Let k be a positive definite kernel over X, and let H be the RKHS 
associated with k. Let 
►                       with 
►                           Be a function that is strictly increasing in its last 

variable

 Then the solution f* of the problem

has the form

x1, ... , xn∈X

Ψ : Rn+1 → R

min f∈H Ψ(f (x1) , ... , f (xn) ,∥f∥H)

f *
=∑i=1

n
αik (x i , .)

S={x1, ... , xn}



Proof Representer Theorem (1/2)

 Let       be the subspace of H spanned by 

 Since        is a finite dimensional subspace of H we can decompose 
any function in H with respect to this subspace by orthogonal 
projection

with                 and 

f=f S+f ⊥

f ⊥⊥H S

H S

H S
={f∈H : f (x)=∑i=1

N
αik (x , x i) ,(α1, ... ,αn)∈R

n
}

k ( . , x i) , x i∈S

H S

f S∈H
S



Proof Representer Theorem (2/2)

 Since H is a RKHS it holds that
and therefore

 By Pythagoras theorem in H we have that

 Therefore, we have that 

with equality if and only if 

 Hence f* is necessarily in 

∥f∥H
2
=∥f S∥H

2
+∥f ⊥∥H

2

∀ i=1,. .. ,n : f ⊥ (xi)=〈 f ⊥ , k ( . , x i)〉=0

H S

∀ i=1,. .. ,n : f (x i)=f S(xi)

Ψ(f (x1) , ... , f (xn) ,∥f∥)≥Ψ(f S(x1) , ... , f S(xn) ,∥f S∥)

∥f ⊥∥H=0



Representer Theorem

 The representer theorem has an important consequence for us.

 Consider any penalized empirical risk minimization method,
where the penalty is in terms of the RKHS norm of f:

 Then the solution has the form

f̂=argminf∈H ∑i=1

n
L( y i , f (x i))+λΩ(∥f∥H )

f̂=∑i=1

n
αik (x i , .)



Plan for this lecture

 Kernel trick
► Distance between points.
► Distance between sets and points.
► Data centering.

 Considerations on the RKHS norm
► Rademacher complexity for RKHS balls. 
► Function smoothness in RKHS.
► Representer theorem.

 Supervised kernel methods
► Ridge regression.
► SVM.
► Logistic discriminant.

 Fisher kernels



Regression

 
 Let S be a set of n points in X:

 With each element we have an associated target value in R

 Our goal is to find a function f to predict y by f(x), 

S=(x1, ... , xn)

( y1, ... , y n)

f : X→R



Penalized least-squares regression

 Let us use the L2 loss to quantify the error of f with respect to y:

 Fix a set of functions H that is the RKHS of a p.d. kernel k on X.
 We estimate f by minimizing the penalized empirical risk:

 This regularization has two effects: 
► It prevents overfitting by penalizing non-smooth f, and bounds the 

Rademacher complexity
► By the representer theorem, it simplifies the solution to functions 

that are given by a linear combination of kernel evaluations:

L(f (x) , y)=( y−f (x))2

f̂=argmin f∈H {1n∑i=1

n
L(f (x i) , y i)+λ∥f∥H

2 }

f̂ (x)=∑i=1

n
αiK (x i , x)



Dual formulation

 Let us now redefine the minimization problem in terms of the alpha's.
 Let K be the kernel matrix for the points in S, and 
 Then we can write 

 Moreover, the squared norm of f can be expressed as 

 Therefore, the problem is equivalent to

α=(α1, ... ,αn)∈R
n

argmin
α∈Rn {1n (K α−y)T (K α− y)+λαT K α}

( f̂ (x1) , ... , f̂ (xn))
T
=K α

∥f̂∥H
2
=α

T K α

f̂ (x)=∑i=1

n
αiK (x i , x)



Dual formulation

 Since this is a convex and differentiable function of alpha, its minimum 
can be found by setting the gradient w.r.t. alpha to zero.

 Thus, the kernel (in the sense of zero projection) of K should contain 

argmin
α∈Rn {1n (K α−y)T (K α− y)+λαT K α}

2
n
K (K α− y)+2λK α=0

K (K α− y+n λα)=0

K ((K+nλ I )α− y )=0

(K+n λ I )α− y



Dual formulation

 Since K is symmetric, it can be diagonalized in an orthonormal basis,

and the kernel Ker(K) corresponds to the subspace with zero on the 
diagonal in D, and 

 This basis remains the same for 

since

which has diagonal elements of 

 The problem is thus equivalent to 

Ker (K )⊥Im(K )

(K+n λ I )α− y∈Ker (K )

K (K+λ n I )−1

K=VDV T

VDV T (VDV T+λ n I )
−1
=VD (D+λ n I )−1V T

dii

dii+nλ

α−(K+n λ I )−1 y∈Ker (K )

α=(K+n λ I )−1 y+ϵ , with K ϵ=0



Dual formulation

 However, if 

then

and therefore, f=f'.

 Therefore, the solution to the original problem is therefore given by

with 

 Note that when lambda goes to zero, the method converges to the 
classical unregularized least-squares solution. When lambda goes to 
infinity then the solution converges to f=0.

α '=α+ϵ , with K ϵ=0

∥f−f '∥H
2 =(α−α ')T K (α−α ')=0

α=(K+n λ I )−1 y

f̂ (x)=∑i=1

n
αiK (x i , x)



Example solutions for different regularization values



Plan for this lecture

 Kernel trick
► Distance between points.
► Distance between sets and points.
► Data centering.

 Considerations on the RKHS norm
► Rademacher complexity for RKHS balls. 
► Function smoothness in RKHS.
► Representer theorem.

 Supervised kernel methods
► Ridge regression.
► SVM.
► Logistic discriminant.

 Fisher kernels



Support vector machines revisited

 Quality of classification function measured using hinge-loss 

 Recall: convex and piecewise linear upper bound on zero/one loss.
► Zero if point on the correct side of the margin
► Otherwise given by absolute difference from score at margin

L( y i , f (x i))=max (0,1− y i f (xi))



Support vector machines: optimization problem

 Quality of classification function measured using hinge-loss 

 Regularization with the norm of f in RKHS associated with kernel k.

 Estimator given by minimizing penalized empirical risk over f in H

 This is a convex, but not differentiable objective function. 

L( y i , f (x i))=max (0,1− y i f (xi))

f̂=argminf∈H {1n∑i=1

n
L(f (x i) , y i)+λ∥f∥H

2 }



Support vector machines: reformulated optimization 

 Re-formulate as a constrained problem using slack variables 

 Rewrite the constraints as a conjunction of linear constraints:

f̂=argmin f∈H ,ξ∈Rn {1n∑i=1

n
ξi+λ∥f∥H

2 }
subject to: ξi≥L(f (x i) , y i)

f̂=argmin f∈H ,ξ∈Rn {1n∑i=1

n
ξi+λ∥f∥H

2 }
subject to: ξi≥0 and ξi≥1− y i f (xi)

L( y i , f (x i))=max (0,1− y i f (xi))



Support vector machines: reformulated optimization 

 By the representer theorem we have that

 Rewrite problem in terms of alpha's

 This is a standard quadratic program, with 2n variables and 
constraints. Standard QP solvers are suitable for n < 10^4 roughly.

 Highly efficient specific SVM solvers available for much larger 
problems, in particular for linear SVM case.

f̂ (x)=∑i=1

n
αiK (x i , x)

f̂=argmin
α∈Rn ,ξ∈Rn {1n∑i=1

n
ξi+λα

T K α}
subject to: ξi≥0 and y i∑ j

α j k (x i , x j)+ξi−1≥0



Support vector machines: reformulated optimization 

 Finally, let us change the notation slightly, from 

 To the form

 The “cost parameter” C has a natural interpretation in the final 
solution of the optimization problem.

f̂=argmin
α∈Rn ,ξ∈Rn {1n∑i=1

n
ξi+λα

T K α}
subject to: ξi≥0 and y i∑ j

α j k (x i , x j)+ξi−1≥0

f̂=argmin
α∈Rn ,ξ∈R n {C∑i=1

n
ξi+

1
2
α

T K α}
subject to: ξi≥0 and y i∑ j

α j k (x i , x j)+ξi−1≥0

C=1 /(2n λ)



Support vector machines: Lagrangian

 We introduce Langrange multipliers for the inequality constraints.
 Define the Langrangian of the problem as

 The Lagrangian can be written in matrix-vector notation as

 Where Y is the diagonal matrix with 

L(α ,ξ ,μ , ν)=C∑i=1

n
ξi+

1
2
αT K α

−∑i=1

n
μi ( y i∑ j

α jk (x i , x j)+ξi−1)−∑i=1

n
νiξi

L(α ,ξ ,μ , ν)=C ξT 1+
1
2
α

T K α−μTY K α−μT
ξ+μ

T 1−νT ξ

=ξ
T
(C1−μ−ν)+μT 1+

1
2
α

T K α−μTY K α

Y ii= y i



Support vector machines: Lagrangian

 The Lagrangian is convex quadratic in alpha, and is therefore 
minimized when gradient is zero, similar to regression case

 Lagrangian is linear in xi. Minimum equal to minus infinity, except 
when gradient with respect to xi is zero:

∇ ξL=CI−μ−ν=0

μ+ν=C I

L(α ,ξ ,μ , ν)=ξT (C1−μ−ν)+μT 1+
1
2
αT K α−μTY K α

∇αL=K α−KY μ=K (α−Y μ)=0

α=Y μ



Support vector machines: Lagrangian

 We obtain the Lagrange dual function as

 Plugging in the optimal alpha we get 

 Adding the minimization over xi we get

q(μ , ν)=infα ,ξL(α ,ξ ,μ , ν)

q(μ ,ν)=infα L(α ,ξ ,μ , ν)={μ
T 1−

1
2
μTYKY μ : if ν+μ=1C

−∞ : otherwise }

L(α ,ξ ,μ , ν)=ξT (C1−μ−ν)+μT 1+
1
2
αT K α−μTY K α

infα L(α ,ξ ,μ ,ν)=ξ
T (C1−μ−ν)+μT 1−

1
2
μTY K Y μ

α=Y μ



Support vector machines: dual problem

 The dual problem consists in maximizing the dual function q, for 
non-negative Lagrange multipliers:

 

 Clearly, for the solution we have
 And thus:
 Therefore, the dual problem is equivalent to 

maxμ , νq(μ , ν)
subject to: μ≥0, ν≥0

q(μ ,ν)=infα L(α ,ξ ,μ , ν)={μ
T 1−

1
2
μTYKY μ : if ν+μ=1C

−∞ : otherwise }

ν=1C−μ≥0

μ≤1C

max0≤μ≤1C {μT 1−
1
2
μT YKY μ}



Support vector machines: dual problem

 Once the dual problem is solved, we can use it to obtain the 
corresponding alpha vector by     and equivalently

 Therefore, we conclude that 
 By complementary slackness, for the solution we have 

 Equivalently, in terms of alpha we have

μ(YK α+ξ−1)=0
νξ=0

max0≤μ≤1C {μT 1−
1
2
μT YKY μ}

α=Y μ μ=Y α

0≤ y iαi≤C

α(YK α+ξ−1)=0
(C1−Y α)ξ=0



Support vector machines: dual problem

 If        then by the second constraint   , and by feasibility we 
therefore conclude that 

► Thus, points with            are on the correct side of the margin.

 If     then both constraints are active for the i-th point. 
Which means that         and thus that
► Thus these points are on the margin.

 If           then the second constraint is not active,               while 
the first one is:
► Thus these points are on the wrong side of the margin

αi=0

y i∑ j=1

n
α j K ij= y i f (x i)≥1

α(YK α+ξ−1)=0
(C1−Y α)ξ=0

ξ i=0

0< y iαi<C
ξ i=0 y i∑ j=1

n
α j K ij= y i f (x i)=1

αi=C

αi=0

ξ i≥0
y i f (xi)=1−ξ≤1



Support vector machines: geometric interpretation



Support vector machines: geometric interpretation

αi=0

αi=0

αi=0

αi=0

αi=0

αi=0

αi=0

y iαi=C

y iαi=C

y iαi=C

0< y iαi<C

0< y iαi<C

0< y iαi<C

0< y iαi<C



Support vector machines

 The data points with non-zero alpha are called the support vectors.

 Only support vectors are relevant for the classification of new data:

► SV is the set of support vectors

 Depending on the problem, the solution can be sparse in alpha.
► Leads to fast algorithms to identify the subset of non-zero alphas.
► Makes classification of new points fast, since only a small 

number of kernel evaluations is needed.

f (x )=∑i=1

n
αik (x i , x)=∑i∈SV

αi k (x i , x)



Plan for this lecture

 Kernel trick
► Distance between points.
► Distance between sets and points.
► Data centering.

 Considerations on the RKHS norm
► Rademacher complexity for RKHS balls. 
► Function smoothness in RKHS.
► Representer theorem.

 Supervised kernel methods
► Ridge regression.
► SVM.
► Logistic discriminant.

 Fisher kernels



Kernel multi-class logistic discriminant

 Map score functions to class probabilities with soft-max

 Loss function given by negative log-likelihood

 Consider class of functions in H which is the RKHS of a p.d. kernel k.

 Estimate the score functions by penalized empirical risk minimization

 By trivial extension of the representer theorem, we have that for the 
optimal score functions

p( y=c∣x)=
exp(f c(x))

∑c '=1

C
exp(f c '(x))

L( y , {f c(x)})=−ln p( y∣x)=−f y (x)+ ln∑c=1

C
exp(f c(x))

min{f c∈H } λ
1
2
∑c=1

C
∥f c∥H

2 +∑i=1

n
L( y i , {f k (x i)})

f c(x)=∑i=1

n
αic k (xi , x)



Kernel multi-class logistic discriminant

 We can now rewrite the optimization problem in terms of the alphas.
 Let us define

and 

 Now consider the score function of class c for a training point

 Now consider the optimization problem w.r.t. alpha 

► Where we expanded the loss function as

min
{αc∈Rn }

λ
1
2
∑c=1

C
αc

T K αc+∑i=1

n
ln∑c '=1

C
exp(αc '

T k i)−∑i=1

n
α yi

T k i

αc=(α1c , ... ,αnc)
T∈Rn

min{f c∈H } λ
1
2
∑c=1

C
∥f c∥H

2 +∑i=1

n
L( y i , {f c(x i)})

f c(xi)=∑ j=1

n
α jc k (x j , x i)=αc

T k i

k i=(k (x i , x1) , ... , k (x i , xn))
T
∈Rn

L( y i ,{f c (x i)})=−f yi
(x i)+ln∑c=1

C
exp(f c(xi))



Kernel multi-class logistic discriminant

 Consider the gradient w.r.t. the alphas

 Let us define the n x C matrix that collects all alphas 

► Where 

and
► Note that P depends on A ! 

∇αc
=λ K αc+∑i=1

n
p( y=c∣x i)k i−∑i : yi=c

k i

min
{αc∈Rn }

λ
1
2
∑c=1

C
αc

T K αc+∑i=1

n
ln∑c '=1

C
exp(αc '

T k i)−∑i=1

n
α yi

T k i

=λ K αc+∑i=1

n

( p( y=c∣x i)−[ y i=c ])k i

A=(α1 , ... ,αc)

∇ A=λ K A+K (Ỹ−P)=K (λ A+Ỹ−P)

Ỹ ic=[ y i=c ]
P ic=p( y=c∣x i)



Plan for this lecture

 Kernel trick
► Distance between points.
► Distance between sets and points.
► Data centering.

 Considerations on the RKHS norm
► Rademacher complexity for RKHS balls. 
► Function smoothness in RKHS.
► Representer theorem.

 Supervised kernel methods
► Ridge regression.
► SVM.
► Logistic discriminant.

 Fisher kernels



Fisher kernels

 Proposed by Jaakkola & Haussler, “Exploiting generative models in 
discriminative classifiers”,In Advances in Neural Information Processing 
Systems 11, 1998.

 Motivated by the need to represent variably sized objects in a vector space, 
such as sequences, sets, trees, graphs, etc., such that they become 
amenable to be used with linear classifiers, and other data analysis tools 

 A generic method to define kernels over arbitrary data types based on 
generative statistical models.

p( x ;θ) , x∈X , θ∈RD



Fisher kernels

 Given a generative data model 

 Represent data x in X by means of the gradient of the data log-likelihood, or 
“Fisher score”:

 Define a kernel over X by taking the scaled inner product between the Fisher 
score vectors: 

 Where F is the Fisher information matrix F:

 Note 1: The Fisher kernel is a positive definite kernel.

 Note 2: The Fisher kernel is invariant for reparametrization of the model.

g ( x)=∇θ ln p( x) ,

g (x)∈RD

p( x ;θ) , x∈X , θ∈RD

k (x , y)=g ( x)T F−1 g ( y)

F=E X [g (x)g (x)
T ]



Fisher kernels – relation to generative classification

 Suppose we make use of generative model for classification via Bayes' rule
► Where x is the data to be classified, and y is the discrete class label

and

 Classification with the Fisher kernel is at least as powerful as using the Fisher 
kernel obtained using the marginal distribution p(x) on X.

 This becomes useful when the class conditional models are poorly estimated, 
either due to bias or variance type of errors.

 In practice often used without class-conditional models, but direct generative 
model for the marginal distribution on X.

p( y∣x)= p( x∣y) p( y)/ p( x) ,

p( x)=∑k=1

K
p( y=k ) p(x∣y=k )

p( x∣y)= p(x ;θy) ,

p( y=k )=πk=
exp(αk )

∑k '=1

K
exp(αk ' )



Fisher kernels – relation to generative classification

 Consider the Fisher score vector with respect to the marginal distribution on X

 In particular for the alpha that model the class prior probabilities we have

∇θ ln p(x)=
1

p( x)
∇θ∑k=1

K
p(x , y=k )

=
1

p( x)
∑k=1

K
p( x , y=k )∇θ ln p(x , y=k )

=∑k=1

K
p( y=k∣x) [∇θ ln p( y=k )+∇θ ln p(x∣y=k ) ]

∂ ln p( x)
∂αk

= p( y=k∣x)−πk



Fisher kernels – relation to generative classification

 Let the weight vector for the k-th class to be zero, except for the position that 
corresponds to  the alpha of the k-th class where it is one. And let the bias 
term for the k-th class be equal to the prior probability of that class, then

 Thus the Fisher kernel based classifier can implement classification via 
Bayes' rule, and generalizes it to other functions.

∂ ln p( x)
∂αk

= p( y=k∣x)−πk

f k ( x)=wk
T g ( x)+bk= p( y=k∣x)


