Kernel Methods for Statistical Learning

Jakob Verbeek
jakob.verbeek@inria.fr

November 4, 2014
http://lear.inrialpes.fr/people/mairal/teaching/2014-2015/MSIAM

Homework + Project

- Homework 1: due Thursday November 6, 2014.
- Homework 2: available on website
- Homework 2 and 3: only required for UJF students
- Since course has less credits for ENSIMAG students
- Project:
- Select a paper from the website, or find your own.
- Due January $5^{\text {th }} 2015$.
- Possible to do in teams of 2 students
- Multiple people/groups can pick the same paper.

Summary of previous lecture

- Definition and properties of reproducing kernel Hilbert spaces.

Reproducing kernel Hilbert spaces

- Let X be a set and H a class of functions over X

$$
H \subset R^{X}
$$

forming a Hilbert space with inner product $\langle., .\rangle_{H}$

- The function $K: X^{2} \rightarrow R$ is called a reproducing kernel of H if
- H contains all functions of the form

$$
\forall x \in X: k_{x}: t \rightarrow K(x, t)
$$

- For every x in X , and f in H , the reproducing property holds:

$$
f(x)=\left\langle f, k_{x}\right\rangle_{H}
$$

- If a reproducing kernel exists, then H is called a reproducing kernel Hilbert space.

Reproducing kernel Hilbert spaces: example 1

- Let H be the class of linear functions over a real vector space X

$$
H=\left\{f_{w}: f_{w}(x)=w^{T} x\right\}
$$

forming a Hilbert space with inner product $\left\langle f_{w}, f_{v}\right\rangle_{H}=w^{T} v$

- The function $K: X^{2} \rightarrow R$ is called a reproducing kernel of H if
- H contains all functions of the form

$$
\forall x \in X: K_{x}: t \rightarrow K(x, t)
$$

- For every x in X , and f in H , the reproducing property holds:

$$
f(x)=\left\langle f, K_{x}\right\rangle_{H}
$$

- If a reproducing kernel exists, then H is called a reproducing kernel Hilbert space.
- It this the case?
- Yes, for the linear kernel: $K(x, t)=x^{T} t$

Reproducing kernel Hilbert spaces: example 2

- Let H be the class of all real functions over a finite set X of size n

$$
H=\left\{f \in R^{n}\right\}
$$

forming a Hilbert space with inner product $\left\langle f_{1}, f_{2}\right\rangle_{H}=\sum_{x \in X} f_{1}(x) f_{2}(x)$

- The function $K: X^{2} \rightarrow R$ is called a reproducing kernel of H if
- H contains all functions of the form

$$
\forall x \in X: K_{x}: t \rightarrow K(x, t)
$$

- For every x in X , and f in H , the reproducing property holds:

$$
f(x)=\left\langle f, K_{x}\right\rangle_{H}
$$

- If a reproducing kernel exists, then H is called a reproducing kernel Hilbert space.
- It this the case?
- Yes, for the identity kernel: $K(x, t)=[x=t]$

Reproducing kernel Hilbert spaces: results

- Theorem: If H is an RKHS, then it has a unique reproducing kernel. Conversely, a function K can be the reproducing kernel of at most one RKHS.
- Therefore, we can talk of "the" kernel of an RKHS, and "the" RKHS of a kernel.
- Theorem: A function $K: X^{2} \rightarrow R$ is positive definite if and only if it is a reproducing kernel.
- Theorem (Aronszajn,1950): K is a positive definite kernel on the set X if and only if there exists a Hilbert space H and a mapping $\Phi: X \rightarrow H$ such that for any x and x^{\prime} in $\mathrm{X}: \quad K\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{H}$

Proof of Aronzsajn's theorem: first direction

- Suppose K is positive definite over a set X, then it is the reproducing kernel of a Hilbert space $H \subset R^{X}$
- Define the mapping $\Phi: X \rightarrow H$ as $\forall x \in X: \varphi(x)=k_{x}=k(x,$.
- Then by the reproducing property $f(x)=\left\langle f, k_{x}\right\rangle_{H}$ we have:

$$
\begin{aligned}
& \forall(x, y) \in X^{2} \\
& \langle\varphi(x), \varphi(y)\rangle_{H}=\left\langle k_{x}, k_{y}\right\rangle_{H}=k(x, y) .
\end{aligned}
$$

Proof of Aronzsajn's theorem: second direction

- Suppose there exists a Hilbert space $H \subset R^{X}$ and a mapping $\Phi: X \rightarrow H$ such that for any x and x^{\prime} in $\mathrm{X}:\langle\varphi(x), \varphi(y)\rangle_{H}=k(x, y)$.
- Then we have that k is positive definite since

$$
\begin{aligned}
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right) & =\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j}\left\langle\varphi\left(x_{i}\right), \varphi\left(x_{j}\right)\right\rangle_{H} \\
& =\sum_{i=1}^{n} \alpha_{i}\left\langle\varphi\left(x_{i}\right), \sum_{j} \alpha_{j} \varphi\left(x_{j}\right)\right\rangle_{H} \\
& =\left\langle\sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right), \sum_{j} \alpha_{j} \varphi\left(x_{j}\right)\right\rangle_{H} \\
& =\left\|\sum_{i=1}^{n} \alpha_{i} \varphi\left(x_{i}\right)\right\|_{H} \geq 0
\end{aligned}
$$

Plan for this lecture

- Kernel trick
- Distance between points.
- Distance between sets and points.
- Data centering.
- Considerations on the RKHS norm
- Rademacher complexity for RKHS balls.
- Function smoothness in RKHS.
- Representer theorem.
- Supervised kernel methods
- Ridge regression.
- SVM.
- Logistic discriminant.
- Fisher kernels

The kernel trick

- Choosing a p.d. kernel K on a set X amounts to embedding the data in a Hilbert space: there exists a Hilbert space H and a mapping $\Phi: X \rightarrow H$
such that for all x and x^{\prime} in X

$$
k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{H} .
$$

- This mapping might not be explicitly given, nor convenient to work with in practice, e.g. for very large or even infinite dimensions.
- The "trick" is to work implicitly in the feature space H by means of kernel evaluations.

The kernel trick

- Any algorithm to process finite dimensional vectors that can be expressed only in terms of pairwise inner products can be applied to potentially infinite-dimensional vectors in the feature space of a p.d. kernel by replacing each inner product evaluation by a kernel evaluation.
- This statement is trivially true, since the kernel computes the inner product in the associated RKHS.
- The practical implications of this "trick" are important.
- Vectors in the feature space are only manipulated implicitly, through pairwise inner products, there is no need to explicitly represent any data in the feature space.

Example 1: computing distances in the feature space

$$
\begin{aligned}
d_{k}\left(x, x^{\prime}\right) & =\left\|\varphi(x)-\varphi\left(x^{\prime}\right)\right\|_{H}^{2} \\
& =\left\langle\varphi(x)-\varphi\left(x^{\prime}\right), \varphi(x)-\varphi\left(x^{\prime}\right)\right\rangle_{H} \\
& =\langle\varphi(x), \varphi(x)\rangle_{H}+\left\langle\varphi\left(x^{\prime}\right), \varphi\left(x^{\prime}\right)\right\rangle_{H}-2\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{H} \\
& =k(x, x)+k\left(x^{\prime}, x^{\prime}\right)-2 \mathrm{k}\left(x, x^{\prime}\right)
\end{aligned}
$$

Distance for the Gaussian kernel

- The Gaussian kernel with bandwidth sigma is given by

$$
k\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|_{2} /\left(2 \sigma^{2}\right)\right)
$$

- In the feature space, all points are embedded on the unit sphere since

$$
k(x, x)=\|\varphi(x)\|_{H}^{2}=1
$$

- The distance in the feature space between x and x ' is given by
$d_{k}\left(x, x^{\prime}\right)=\sqrt{2\left[1-\exp \left(-\left\|x-x^{\prime}\right\|^{2} /\left(2 \sigma^{2}\right)\right)\right]}$

Example 2: distance between a point and a set

- Let S be a finite set of points in $X: S=\left(x_{1}, \ldots, x_{n}\right)$
- How to define and compute the similarity between any point x in X and the set S ?
- The following is a simple approach:
- Map all points to the feature space
- Summarize S by the barycenter of the points $m=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)$
- Define the distance between x and S as

$$
d_{k}(x, S)=\|\varphi(x)-m\|_{H}
$$

Example 2: distance between a point and a set

$$
\begin{aligned}
d_{k}(x, S) & =\|\varphi(x)-m\|_{H} \\
& =\left\|\varphi(x)-\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)\right\|_{H} \\
& =\sqrt{k(x, x)-\frac{2}{n} \sum_{i=1}^{n} k\left(x, x_{i}\right)+\frac{1}{n^{2}} \sum_{i, j=1}^{n} k\left(x_{i}, x_{j}\right)}
\end{aligned}
$$

Uni-dimensional illustration

- Let $S=\{2,3\}$, plot $f(x)=d(x, S)$.

Gaussian kernel, with $\sigma=1$

Gaussian kernel, with $\sigma=0.2$

2D illustration

- Let $S=\left\{(1,1)^{\prime},(1,2)^{\prime},(2,2)^{\prime}\right\}$, plot $f(x)=d(x, S)$.

Linear kernel

Gaussian kernel, with $\sigma=1$

Gaussian kernel, with $\sigma=0.2$

Application to discrimination

- Consider a set of points from positive class $P=\left\{(1,1)^{\prime},(1,2)^{\prime}\right\}$
- And a set of points from the negative class $\mathrm{N}=\left\{(1,3)^{\prime},(2,2)^{\prime}\right\}$
- Plot $f(x)=d_{k}(x, P)^{2}-d_{k}(x, N)^{2}$

$$
\begin{aligned}
& =\left\|\varphi(x)-m_{P}\right\|_{H}^{k}-\left\|\varphi(x)-m_{N}\right\|_{H}^{2} \\
& =\frac{2}{n} \sum_{x_{i} \in N} k\left(x, x_{i}\right)-\frac{2}{n} \sum_{x_{i} \in P} k\left(x, x_{i}\right)+\mathrm{constant}
\end{aligned}
$$

Linear kernel

Gaussian kernel,

Gaussian kernel,

Example 3: centering data in feature space

- Let S be a set of n points in X.
- Let K be the kernel matrix generated by the p.d. kernel k(.,.).
- Let m be the barycenter in the feature space of the points in S.
- How to compute the kernel matrix when the points are centered on m ?

Example 3: centering data in feature space

- Substitution of the barycenter gives

$$
\begin{aligned}
h\left(x_{i}, x_{j}\right) & =\left\langle\varphi\left(x_{i}\right)-m, \varphi\left(x_{j}\right)-m\right\rangle_{H} \\
& =\left\langle\varphi\left(x_{i}\right), \varphi\left(x_{j}\right)\right\rangle_{H}-\left\langle m, \varphi\left(x_{i}\right)+\varphi\left(x_{j}\right)\right\rangle_{H}+\langle m, m\rangle_{H} \\
& =k\left(x_{i}, x_{j}\right)-\frac{1}{n} \sum_{k=1}^{n}\left(k\left(x_{i}, x_{k}\right)+k\left(x_{k}, x_{j}\right)\right)+\frac{1}{n^{2}} \sum_{k, l=1}^{n} k\left(x_{k}, x_{l}\right)
\end{aligned}
$$

- Or, in matrix notation we get

$$
H=K-K U-U K+U K U=(I-U) K(I-U)
$$

where for all i, j :

$$
U_{i, j}=1 / n
$$

Plan for this lecture

- Kernel trick
- Distance between points.
- Distance between sets and points.
- Data centering.
- Considerations on the RKHS norm
- Rademacher complexity for RKHS balls.
- Function smoothness in RKHS.
- Representer theorem.
- Supervised kernel methods
- Ridge regression.
- SVM.
- Logistic discriminant.
- Fisher kernels

Recap of Rademacher complexity

- Definition of Rademacher complexity of a function class H over X
- Let $\sigma_{i}, i=1, \ldots, n$ be i.i.d. variables with $p\left(\sigma_{i}=+1\right)=p\left(\sigma_{i}=-1\right)=1 / 2$
- Let $x_{i} \in X, i=1, \ldots, n$ be i.i.d. variables

$$
\operatorname{Rad}_{n}(H)=\boldsymbol{E}_{X, \sigma}\left[\sup _{f \in F_{B}}\left|\frac{2}{n} \sum_{i=1}^{n} \sigma_{i} f\left(x_{i}\right)\right|\right]
$$

- Intuitively measures how well functions in H can align to noise.
- Rademacher complexity bounds the expected estimation error in the expected risk

$$
\begin{aligned}
\boldsymbol{E}_{\left(x_{i}, y_{i}\right)=1 \ldots \ldots n}\left[R(\hat{f})-R^{*}\right] & =\left(\min _{g \in H} R(g)-R^{*}\right)+\left(R(\hat{f})-\min _{g \in H} R(g)\right) \\
& \leq\left(\min _{g \in H} R(g)-R^{*}\right)+4 \operatorname{Rad}_{n}(H)
\end{aligned}
$$

- Average taken over training sets that generate our estimator

Rademacher Complexity in RKHS balls

- Suppose X is endowed with a positive definite kernel k, and associated RKHS H.
- Consider the class of functions f in H in a ball of radius B in H.

$$
F_{B}=\left\{f \in H:\|f\|_{H} \leq B\right\}
$$

- Rademacher complexity of this class can be upper bounded as

$$
\operatorname{Rad}_{n}\left(F_{B}\right) \leq \frac{2 \mathrm{~B} \sqrt{\boldsymbol{E} k(x, x)}}{\sqrt{n}}
$$

- Therefore, by plugging this into the general Rademacher risk bound, the Bayes regret of an estimator in this class can be bounded by

$$
\boldsymbol{E}_{\left(x_{i}, y_{i}\right), i=1, \ldots, n}\left[R(\hat{f})-R^{*}\right] \leq\left(\min _{g \in F_{B}} R(g)-R^{*}\right)+4 \frac{2 B \sqrt{\boldsymbol{E} k(x, x)}}{\sqrt{n}}
$$

- First term is the bias term that decreases with B
- Second term is variance term that increases (linearly) with B.

Rademacher Complexity in RKHS balls, proof (1/2)

$$
\begin{array}{rlrl}
\operatorname{Rad}_{n}\left(F_{B}\right) & \left.=\boldsymbol{E}_{X, \sigma}\left[\sup _{f \in F_{s}} \frac{2}{n} \sum_{i=1}^{n} \sigma_{i} f\left(x_{i}\right)\right)\right] \\
& =\boldsymbol{E}_{X, \sigma}\left[\sup _{f \in F_{B}} \left\lvert\,\left(f, \frac{2}{n} \sum_{i=1}^{n} \sigma_{i} k_{x_{i}}\right)\right.\right] \quad \text { By RKHS } \\
& \leq \boldsymbol{E}_{X, \sigma}\left[\sup _{f \in F_{B}}\|f\| \times\left\|\frac{2}{n} \sum_{i=1}^{n} \sigma_{i} k_{x_{i}}\right\|\right] & \text { By Cauchy-Schwarz } \\
& =\boldsymbol{E}_{X, \sigma}\left[B\left\|\frac{2}{n} \sum_{i=1}^{n} \sigma_{i} k_{x_{i}}\right\|\right] & \\
& =\frac{2 \mathrm{~B}}{n} \boldsymbol{E}_{X, \sigma}\left[\sqrt{\left\|\sum_{i=1}^{n} \sigma_{i} k_{x_{i}}\right\|_{H}^{2}}\right] & & \\
& \leq \frac{2 \mathrm{~B}}{n} \sqrt{\boldsymbol{E}_{X, \sigma}\left[\left\|\sum_{i=1}^{n} \sigma_{i} k_{x_{1}}\right\|_{H}^{2}\right]} & \text { By Jensen's inquality } \\
& =\frac{2 \mathrm{~B}}{n} \sqrt{\boldsymbol{E}_{X, \sigma}\left[\sum_{i, j=1}^{n} \sigma_{i} \sigma_{j} k\left(x_{i}, x_{j}\right)\right]} &
\end{array}
$$

Rademacher Complexity in RKHS balls, proof (2/2)

- But for i.i.d. and uniform $\sigma_{i} \in\{-1,+1\}$
we have that $\boldsymbol{E}\left[\sigma_{i} \sigma_{j}\right]$ is one if $\mathrm{i}=\mathrm{j}$ and zero otherwise. Therefore:

$$
\begin{aligned}
\operatorname{Rad}_{n}\left(F_{B}\right) & \leq \frac{2 \mathrm{~B}}{n} \sqrt{\boldsymbol{E}_{X, \sigma}\left[\sum_{i, j=1}^{n} \sigma_{i} \sigma_{j} k\left(x_{i}, x_{j}\right)\right]} \\
& =\frac{2 \mathrm{~B}}{n} \sqrt{\boldsymbol{E}_{X}\left[\sum_{i, j=1}^{n} \boldsymbol{E}_{\sigma}\left[\sigma_{i} \sigma_{j}\right] k\left(x_{i}, x_{j}\right)\right]} \\
& =\frac{2 \mathrm{~B}}{n} \sqrt{\boldsymbol{E}_{X}\left[\sum_{i=1}^{n} k\left(x_{i}, x_{i}\right)\right]} \\
& =\frac{2 \mathrm{~B} \sqrt{\boldsymbol{E}_{X}[k(x, x)]}}{\sqrt{n}}
\end{aligned}
$$

Rademacher Complexity in RKHS balls

- Consider the class of functions f in H in a ball of radius B in H.

$$
F_{B}=\left\{f \in H:\|f\|_{H} \leq B\right\}
$$

- The Rademacher complexity of this class can be upper bounded as

$$
\operatorname{Rad}_{n}\left(F_{B}\right) \leq \frac{2 B \sqrt{\boldsymbol{E} k(x, x)}}{\sqrt{n}}
$$

- Therefore, by plugging this into the general Rademacher risk bound, the Bayes regret of an estimator in this class can be bounded by

$$
\boldsymbol{E}_{\left(x_{i}, y_{i}\right), i=1, \ldots, n}\left[R(\hat{f})-R^{*}\right] \leq\left(\min _{g \in F_{B}} R(g)-R^{*}\right)+4 \frac{2 \mathrm{~B} \sqrt{\boldsymbol{E} k(x, x)}}{\sqrt{n}}
$$

- For different choices of B find estimator by minimizing empirical risk

$$
\hat{f}=\operatorname{argmin}_{f \in F_{B}} \frac{1}{n} \sum_{i=1}^{n} L\left(y, f\left(x_{i}\right)\right)
$$

- Or equivalently for different lambda

$$
\hat{f}=\operatorname{argmin}_{f \in H} \lambda \frac{1}{2}\|f\|_{H}^{2}+\frac{1}{n} \sum_{i=1}^{n} L\left(y, f\left(x_{i}\right)\right)
$$

Smoothness of functions in RKHS

- Let f be a function in a RKHS H with associated kernel k over X
- Consider the difference in function evaluations for two points x and x^{\prime} in X

$$
\begin{aligned}
\left|f(x)-f\left(x^{\prime}\right)\right| & =\left|\langle f, \varphi(x)\rangle-\left\langle f, \varphi\left(x^{\prime}\right)\right\rangle\right| \\
& =\left|\left\langle f, \varphi(x)-\varphi\left(x^{\prime}\right)\right\rangle\right| \\
& \leq\|f\|_{H} x\left\|\varphi(x)-\varphi\left(x^{\prime}\right)\right\|_{H}
\end{aligned}
$$

- The RKHS norm of f gives the Lipschitz constant of f , for the metric

$$
d_{k}\left(x, x^{\prime}\right)=\left\|\varphi(x)-\varphi\left(x^{\prime}\right)\right\|_{H}
$$

- In particular for $f=\sum_{i=1}^{n} \alpha_{i} k\left(x_{i},.\right)$ we have

$$
\|f\|_{H}^{2}=\left\langle\sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, .\right), \sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, .\right)\right\rangle_{H}=\sum_{i, j} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right)=\alpha^{T} K \alpha
$$

Representer Theorem

- Let k be a positive definite kernel over X , and let H be the RKHS associated with k . Let
- $S=\left\{x_{1}, \ldots, x_{n}\right\}$ with $x_{1}, \ldots, x_{n} \in X$
- $\Psi: R^{n+1} \rightarrow R$ Be a function that is strictly increasing in its last variable
- Then the solution $\mathrm{f}^{\mathrm{*}}$ of the problem

$$
\min _{f \in H} \Psi\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right),\|f\|_{H}\right)
$$

has the form

$$
f^{*}=\sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, .\right)
$$

Proof Representer Theorem (1/2)

- Let H^{S} be the subspace of H spanned by $k\left(., x_{i}\right), x_{i} \in S$

$$
H^{S}=\left\{f \in H: f(x)=\sum_{i=1}^{N} \alpha_{i} k\left(x, x_{i}\right),\left(\alpha_{1}, \cdots, \alpha_{n}\right) \in R^{n}\right\}
$$

- Since H^{S} is a finite dimensional subspace of H we can decompose any function in H with respect to this subspace by orthogonal projection

$$
f=f_{s}+f_{\perp}
$$

with $f_{S} \in H^{S} \quad$ and $f_{\perp} \perp H^{S}$

Proof Representer Theorem (2/2)

- Since H is a RKHS it holds that $\forall_{i=1, \ldots, n}: f_{\perp}\left(x_{i}\right)=\left\langle f_{\perp}, k\left(., x_{i}\right)\right\rangle=0$ and therefore

$$
\forall_{i=1, \ldots, n}: f\left(x_{i}\right)=f_{s}\left(x_{i}\right)
$$

- By Pythagoras theorem in H we have that $\|f\|_{H}^{2}=\left\|f_{S}\right\|_{H}^{2}+\left\|f_{\perp}\right\|_{H}^{2}$
- Therefore, we have that

$$
\Psi\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right),\|f\|\right) \geq \Psi\left(f_{s}\left(x_{1}\right), \ldots, f_{s}\left(x_{n}\right),\left\|f_{s}\right\|\right)
$$

with equality if and only if $\left\|f_{\perp}\right\|_{H}=0$

- Hence f* is necessarily in H^{S}

Representer Theorem

- The representer theorem has an important consequence for us.
- Consider any penalized empirical risk minimization method, where the penalty is in terms of the RKHS norm of f :

$$
\hat{f}=\operatorname{argmin}_{f \in H} \sum_{i=1}^{n} L\left(y_{i}, f\left(x_{i}\right)\right)+\lambda \Omega\left(\|f\|_{H}\right)
$$

- Then the solution has the form

$$
\hat{f}=\sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, .\right)
$$

Plan for this lecture

- Kernel trick
- Distance between points.
- Distance between sets and points.
- Data centering.
- Considerations on the RKHS norm
- Rademacher complexity for RKHS balls.
- Function smoothness in RKHS.
- Representer theorem.
- Supervised kernel methods
- Ridge regression.
- SVM.
- Logistic discriminant.
- Fisher kernels

Regression

- Let S be a set of n points in $\mathrm{X}: S=\left(x_{1}, \ldots, x_{n}\right)$
- With each element we have an associated target value in $\mathrm{R}\left(y_{1}, \ldots, y_{n}\right)$
- Our goal is to find a function f to predict y by $\mathrm{f}(\mathrm{x}), f: X \rightarrow R$

Penalized least-squares regression

- Let us use the L2 loss to quantify the error of f with respect to y :

$$
L(f(x), y)=(y-f(x))^{2}
$$

- Fix a set of functions H that is the RKHS of a p.d. kernel k on X .
- We estimate f by minimizing the penalized empirical risk:

$$
\hat{f}=\operatorname{argmin}_{f \in H}\left\{\frac{1}{n} \sum_{i=1}^{n} L\left(f\left(x_{i}\right), y_{i}\right)+\lambda\|f\|_{H}^{2}\right\}
$$

- This regularization has two effects:
- It prevents overfitting by penalizing non-smooth f , and bounds the Rademacher complexity
- By the representer theorem, it simplifies the solution to functions that are given by a linear combination of kernel evaluations:

$$
\hat{f}(x)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x\right)
$$

Dual formulation

$$
\hat{f}(x)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x\right)
$$

- Let us now redefine the minimization problem in terms of the alpha's.
- Let K be the kernel matrix for the points in S , and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in R^{n}$
- Then we can write

$$
\left(\hat{f}\left(x_{1}\right), \ldots, \hat{f}\left(x_{n}\right)\right)^{T}=K \alpha
$$

- Moreover, the squared norm of f can be expressed as

$$
\|\hat{f}\|_{H}^{2}=\alpha^{T} K \alpha
$$

- Therefore, the problem is equivalent to

$$
\operatorname{argmin}_{\alpha \in R^{n}}\left\{\frac{1}{n}(K \alpha-y)^{T}(K \alpha-y)+\lambda \alpha^{T} K \alpha\right\}
$$

Dual formulation

$$
\operatorname{argmin}_{\alpha \in R^{n}}\left\{\frac{1}{n}(K \alpha-y)^{T}(K \alpha-y)+\lambda \alpha^{T} K \alpha\right\}
$$

- Since this is a convex and differentiable function of alpha, its minimum can be found by setting the gradient w.r.t. alpha to zero.

$$
\begin{gathered}
\frac{2}{n} K(K \alpha-y)+2 \lambda K \alpha=0 \\
K(K \alpha-y+n \lambda \alpha)=0 \\
K((K+n \lambda I) \alpha-y)=0
\end{gathered}
$$

- Thus, the kernel (in the sense of zero projection) of K should contain

$$
(K+n \lambda I) \alpha-y
$$

Dual formulation

- Since K is symmetric, it can be diagonalized in an orthonormal basis,

$$
K=V D V^{T}
$$

and the kernel $\operatorname{Ker}(\mathrm{K})$ corresponds to the subspace with zero on the diagonal in D, and

$$
\operatorname{Ker}(K) \perp \operatorname{Im}(K)
$$

- This basis remains the same for $K(K+\lambda n I)^{-1}$
since $\quad V D V^{T}\left(V D V^{T}+\lambda n I\right)^{-1}=V D(D+\lambda n I)^{-1} V^{T}$
which has diagonal elements of

$$
\frac{d_{i i}}{d_{i i}+n \lambda}
$$

- The problem is thus equivalent to

$$
\begin{aligned}
&(K+n \lambda I) \alpha-y \in \operatorname{Ker}(K) \\
& \alpha-(K+n \lambda I)^{-1} y \in \operatorname{Ker}(K) \\
& \alpha=(K+n \lambda I)^{-1} y+\epsilon, \text { with } K \epsilon=0
\end{aligned}
$$

Dual formulation

- However, if $\alpha^{\prime}=\alpha+\epsilon$, with $K \epsilon=0$
then

$$
\left\|f-f^{\prime}\right\|_{H}^{2}=\left(\alpha-\alpha^{\prime}\right)^{T} K\left(\alpha-\alpha^{\prime}\right)=0
$$

and therefore, $\mathrm{f}=\mathrm{f}$ '.

- Therefore, the solution to the original problem is therefore given by

$$
\hat{f}(x)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x\right)
$$

with

$$
\alpha=(K+n \lambda I)^{-1} y
$$

- Note that when lambda goes to zero, the method converges to the classical unregularized least-squares solution. When lambda goes to infinity then the solution converges to $\mathrm{f}=0$.

Example solutions for different regularization values

informatics mathematics
rua

Plan for this lecture

- Kernel trick
- Distance between points.
- Distance between sets and points.
- Data centering.
- Considerations on the RKHS norm
- Rademacher complexity for RKHS balls.
- Function smoothness in RKHS.
- Representer theorem.
- Supervised kernel methods
- Ridge regression.
- SVM.
- Logistic discriminant.
- Fisher kernels

Support vector machines revisited

- Quality of classification function measured using hinge-loss

$$
L\left(y_{i}, f\left(x_{i}\right)\right)=\max \left(0,1-y_{i} f\left(x_{i}\right)\right)
$$

- Recall: convex and piecewise linear upper bound on zero/one loss.
- Zero if point on the correct side of the margin
- Otherwise given by absolute difference from score at margin

Support vector machines: optimization problem

- Quality of classification function measured using hinge-loss

$$
L\left(y_{i}, f\left(x_{i}\right)\right)=\max \left(0,1-y_{i} f\left(x_{i}\right)\right)
$$

- Regularization with the norm of f in RKHS associated with kernel k.
- Estimator given by minimizing penalized empirical risk over fin H

$$
\hat{f}=\operatorname{argmin}_{f \in H}\left\{\frac{1}{n} \sum_{i=1}^{n} L\left(f\left(x_{i}\right), y_{i}\right)+\lambda\|f\|_{H}^{2}\right\}
$$

- This is a convex, but not differentiable objective function.

Support vector machines: reformulated optimization

- Re-formulate as a constrained problem using slack variables

$$
\begin{aligned}
& \hat{f}=\operatorname{argmin}_{f \in H, \xi \in R^{n}}\left\{\frac{1}{n} \sum_{i=1}^{n} \xi_{i}+\lambda\|f\|_{H}^{2}\right\} \\
& \text { subject to: } \xi_{i} \geq L\left(f\left(x_{i}\right), y_{i}\right)
\end{aligned}
$$

- Rewrite the constraints as a conjunction of linear constraints:

$$
\begin{aligned}
& \hat{f}=\operatorname{argmin}_{f \in H, \xi \in R^{n}}\left\{\frac{1}{n} \sum_{i=1}^{n} \xi_{i}+\lambda\|f\|_{H}^{2}\right\} \\
& \text { subject to: } \xi_{i} \geq 0 \text { and } \xi_{i} \geq 1-y_{i} f\left(x_{i}\right) \\
& L\left(y_{i}, f\left(x_{i}\right)\right)=\max \left(0,1-y_{i} f\left(x_{i}\right)\right)_{0}^{0.5}
\end{aligned}
$$

Support vector machines: reformulated optimization

- By the representer theorem we have that

$$
\hat{f}(x)=\sum_{i=1}^{n} \alpha_{i} K\left(x_{i}, x\right)
$$

- Rewrite problem in terms of alpha's

$$
\begin{aligned}
& \hat{f}=\operatorname{argmin}_{\alpha \in R^{n}, \xi \in R^{n}}\left\{\frac{1}{n} \sum_{i=1}^{n} \xi_{i}+\lambda \alpha^{T} K \alpha\right\} \\
& \text { subject to: } \xi_{i} \geq 0 \text { and } y_{i} \sum_{j} \alpha_{j} k\left(x_{i}, x_{j}\right)+\xi_{i}-1 \geq 0
\end{aligned}
$$

- This is a standard quadratic program, with $2 n$ variables and constraints. Standard QP solvers are suitable for $n<10^{\wedge} 4$ roughly.
- Highly efficient specific SVM solvers available for much larger problems, in particular for linear SVM case.

Support vector machines: reformulated optimization

- Finally, let us change the notation slightly, from

$$
\begin{aligned}
& \qquad \hat{f}=\operatorname{argmin}_{\alpha \in R^{n}, \xi \in R^{n}}\left\{\frac{1}{n} \sum_{i=1}^{n} \xi_{i}+\lambda \alpha^{T} K \alpha\right\} \\
& \text { subject to: } \xi_{i} \geq 0 \text { and } y_{i} \sum_{j} \alpha_{j} k\left(x_{i}, x_{j}\right)+\xi_{i}-1 \geq 0
\end{aligned}
$$

- To the form

$$
\begin{aligned}
& \hat{f}=\operatorname{argmin}_{\alpha \in R^{n}, \xi \in R^{n}}\left\{C \sum_{i=1}^{n} \xi_{i}+\frac{1}{2} \alpha^{T} K \alpha\right\} \\
& \text { subject to: } \xi_{i} \geq 0 \text { and } y_{i} \sum_{j} \alpha_{j} k\left(x_{i}, x_{j}\right)+\xi_{i}-1 \geq 0
\end{aligned}
$$

- The "cost parameter" C has a natural interpretation in the final solution of the optimization problem.

$$
C=1 /(2 \mathrm{n} \lambda)
$$

Support vector machines: Lagrangian

- We introduce Langrange multipliers for the inequality constraints.
- Define the Langrangian of the problem as

$$
\begin{aligned}
L(\alpha, \xi, \mu, v)= & C \sum_{i=1}^{n} \xi_{i}+\frac{1}{2} \alpha^{T} K \alpha \\
& -\sum_{i=1}^{n} \mu_{i}\left(y_{i} \sum_{j} \alpha_{j} k\left(x_{i}, x_{j}\right)+\xi_{i}-1\right)-\sum_{i=1}^{n} v_{i} \xi_{i}
\end{aligned}
$$

- The Lagrangian can be written in matrix-vector notation as

$$
\begin{aligned}
L(\alpha, \xi, \mu, v) & =C \xi^{T} 1+\frac{1}{2} \alpha^{T} K \alpha-\mu^{T} Y K \alpha-\mu^{T} \xi+\mu^{T} 1-v^{T} \xi \\
& =\xi^{T}(C 1-\mu-v)+\mu^{T} 1+\frac{1}{2} \alpha^{T} K \alpha-\mu^{T} Y K \alpha
\end{aligned}
$$

- Where Y is the diagonal matrix with $Y_{i i}=y_{i}$

Support vector machines: Lagrangian

$$
L(\alpha, \xi, \mu, v)=\xi^{T}(C 1-\mu-v)+\mu^{T} 1+\frac{1}{2} \alpha^{T} K \alpha-\mu^{T} Y K \alpha
$$

- The Lagrangian is convex quadratic in alpha, and is therefore minimized when gradient is zero, similar to regression case

$$
\begin{gathered}
\nabla_{\alpha} L=K \alpha-K Y \mu=K(\alpha-Y \mu)=0 \\
\alpha=Y \mu
\end{gathered}
$$

- Lagrangian is linear in xi. Minimum equal to minus infinity, except when gradient with respect to xi is zero:

$$
\begin{gathered}
\nabla_{\xi} L=C I-\mu-v=0 \\
\mu+v=C I
\end{gathered}
$$

Support vector machines: Lagrangian

$$
L(\alpha, \xi, \mu, v)=\xi^{T}(C 1-\mu-v)+\mu^{T} 1+\frac{1}{2} \alpha^{T} K \alpha-\mu^{T} Y K \alpha
$$

- We obtain the Lagrange dual function as

$$
q(\mu, v)=\inf _{\alpha, \xi} L(\alpha, \xi, \mu, v)
$$

- Plugging in the optimal alpha $\alpha=Y \mu$ we get

$$
\inf _{\alpha} L(\alpha, \xi, \mu, v)=\xi^{T}(C 1-\mu-v)+\mu^{T} 1-\frac{1}{2} \mu^{T} Y K Y \mu
$$

- Adding the minimization over xi we get

$$
q(\mu, v)=\inf _{\alpha} L(\alpha, \xi, \mu, v)=\left\{\begin{array}{ccc}
\mu^{T} 1-\frac{1}{2} \mu^{T} Y K Y \mu & : \text { if } v+\mu=1 \mathrm{C} \\
-\infty & : & \text { otherwise }
\end{array}\right\}
$$

Support vector machines: dual problem

$$
q(\mu, v)=\inf _{\alpha} L(\alpha, \xi, \mu, v)=\left\{\begin{array}{ccc}
\mu^{T} 1-\frac{1}{2} \mu^{T} Y K Y \mu & : \text { if } v+\mu=1 \mathrm{C} \\
-\infty & : & \text { otherwise }
\end{array}\right\}
$$

- The dual problem consists in maximizing the dual function q , for non-negative Lagrange multipliers:

$$
\begin{aligned}
& \max _{\mu, v} q(\mu, v) \\
& \text { subject to: } \mu \geq 0, \quad v \geq 0
\end{aligned}
$$

- Clearly, for the solution we have $v=1 \mathrm{C}-\mu \geq 0$
- And thus: $\mu \leq 1 \mathrm{C}$
- Therefore, the dual problem is equivalent to

$$
\max _{0 \leq \mu \leq 1 C}\left\{\mu^{T} 1-\frac{1}{2} \mu^{T} Y K Y \mu\right\}
$$

Support vector machines: dual problem

$$
\max _{0 \leq \mu \leq 1 \mathrm{C}}\left\{\mu^{T} 1-\frac{1}{2} \mu^{T} Y K Y \mu\right\}
$$

- Once the dual problem is solved, we can use it to obtain the corresponding alpha vector by $\alpha=Y \mu$ and equivalently $\mu=Y \alpha$
- Therefore, we conclude that $0 \leq y_{i} \alpha_{i} \leq C$
- By complementary slackness, for the solution we have

$$
\begin{gathered}
\mu(Y K \alpha+\xi-1)=0 \\
\nu \xi=0
\end{gathered}
$$

- Equivalently, in terms of alpha we have

$$
\begin{gathered}
\alpha(Y K \alpha+\xi-1)=0 \\
(C 1-Y \alpha) \xi=0
\end{gathered}
$$

Support vector machines: dual problem

$$
\begin{gathered}
\alpha(Y K \alpha+\xi-1)=0 \\
(C 1-Y \alpha) \xi=0
\end{gathered}
$$

- If $\alpha_{i}=0$ then by the second constraint $\xi_{i}=0$, and by feasibility we therefore conclude that

$$
y_{i} \sum_{j=1}^{n} \alpha_{j} K_{i j}=y_{i} f\left(x_{i}\right) \geq 1
$$

- Thus, points with $\alpha_{i}=0$ are on the correct side of the margin.
- If $0<y_{i} \alpha_{i}<C$ then both constraints are active for the i-th point. Which means that $\xi_{i}=0$ and thus that $y_{i} \sum_{j=1}^{n} \alpha_{j} K_{i j}=y_{i} f\left(x_{i}\right)=1$
- Thus these points are on the margin.
- If $\alpha_{i}=C$ then the second constraint is not active, $\xi_{i} \geq 0$ while the first one is: $y_{i} f\left(x_{i}\right)=1-\xi \leq 1$
- Thus these points are on the wrong side of the margin

Support vector machines: geometric interpretation

Support vector machines: geometric interpretation

Support vector machines

- The data points with non-zero alpha are called the support vectors.
- Only support vectors are relevant for the classification of new data:

$$
f(x)=\sum_{i=1}^{n} \alpha_{i} k\left(x_{i}, x\right)=\sum_{i \in S V} \alpha_{i} k\left(x_{i}, x\right)
$$

- SV is the set of support vectors
- Depending on the problem, the solution can be sparse in alpha.
- Leads to fast algorithms to identify the subset of non-zero alphas.
- Makes classification of new points fast, since only a small number of kernel evaluations is needed.

Plan for this lecture

- Kernel trick
- Distance between points.
- Distance between sets and points.
- Data centering.
- Considerations on the RKHS norm
- Rademacher complexity for RKHS balls.
- Function smoothness in RKHS.
- Representer theorem.
- Supervised kernel methods
- Ridge regression.
- SVM.
- Logistic discriminant.
- Fisher kernels

Kernel multi-class logistic discriminant

- Map score functions to class probabilities with soft-max

$$
p(y=c \mid x)=\frac{\exp \left(f_{c}(x)\right)}{\sum_{c^{\prime}=1}^{C} \exp \left(f_{c^{\prime}}(x)\right)}
$$

- Loss function given by negative log-likelihood

$$
L\left(y,\left\{f_{c}(x)\right\}\right)=-\ln p(y \mid x)=-f_{y}(x)+\ln \sum_{c=1}^{C} \exp \left(f_{c}(x)\right)
$$

- Consider class of functions in H which is the RKHS of a p.d. kernel k .
- Estimate the score functions by penalized empirical risk minimization

$$
\min _{\left\{f_{c} \in H\right\}} \lambda \frac{1}{2} \sum_{c=1}^{C}\left\|f_{c}\right\|_{H}^{2}+\sum_{i=1}^{n} L\left(y_{i},\left\{f_{k}\left(x_{i}\right)\right\}\right)
$$

- By trivial extension of the representer theorem, we have that for the optimal score functions

$$
f_{c}(x)=\sum_{i=1}^{n} \alpha_{i c} k\left(x_{i}, x\right)
$$

Kernel multi-class logistic discriminant

$$
\min _{\left\{f_{f} \in H\right\}} \lambda \frac{1}{2} \sum_{c=1}^{c}\left\|f_{c}\right\|_{H}^{2}+\sum_{i=1}^{n} L\left(y_{i},\left\{f_{c}\left(x_{i}\right)\right\}\right)
$$

- We can now rewrite the optimization problem in terms of the alphas.
- Let us define $\alpha_{c}=\left(\alpha_{1 c}, \ldots, \alpha_{n c}\right)^{T} \in R^{n}$ and $k_{i}=\left(k\left(x_{i}, x_{1}\right), \ldots, k\left(x_{i}, x_{n}\right)\right)^{T} \in R^{n}$
- Now consider the score function of class c for a training point

$$
f_{c}\left(x_{i}\right)=\sum_{j=1}^{n} \alpha_{j c} k\left(x_{j}, x_{i}\right)=\alpha_{c}^{T} k_{i}
$$

- Now consider the optimization problem w.r.t. alpha
$\min _{\left\{\alpha_{c} \in R^{n}\right\}} \lambda \frac{1}{2} \sum_{c=1}^{C} \alpha_{c}^{T} K \alpha_{c}+\sum_{i=1}^{n} \ln \sum_{c^{\prime}=1}^{C} \exp \left(\alpha_{c^{\prime}}^{T} k_{i}\right)-\sum_{i=1}^{n} \alpha_{y_{i}}^{T} k_{i}$
- Where we expanded the loss function as

$$
L\left(y_{i},\left\{f_{c}\left(x_{i}\right)\right\}\right)=-f_{y_{i}}\left(x_{i}\right)+\ln \sum_{c=1}^{C} \exp \left(f_{c}\left(x_{i}\right)\right)
$$

Kernel multi-class logistic discriminant

$$
\min _{\left\langle\alpha_{c} \in \mathbb{R}^{n}\right\}} \lambda \frac{1}{2} \sum_{c=1}^{C} \alpha_{c}^{T} K \alpha_{c}+\sum_{i=1}^{n} \ln \sum_{c^{\prime}=1}^{C} \exp \left(\alpha_{c^{\prime}}^{T} k_{i}\right)-\sum_{i=1}^{n} \alpha_{y_{i}}^{T} k_{i}
$$

- Consider the gradient w.r.t. the alphas

$$
\begin{aligned}
\nabla_{\alpha_{c}} & =\lambda K \alpha_{c}+\sum_{i=1}^{n} p\left(y=c \mid x_{i}\right) k_{i}-\sum_{i: y_{i}=c} k_{i} \\
& =\lambda K \alpha_{c}+\sum_{i=1}^{n}\left(p\left(y=c \mid x_{i}\right)-\left[y_{i}=c\right]\right) k_{i}
\end{aligned}
$$

- Let us define the $\mathrm{n} \times \mathrm{C}$ matrix that collects all alphas $A=\left(\alpha_{1}, \ldots, \alpha_{c}\right)$

$$
\nabla_{A}=\lambda K A+K(\tilde{Y}-P)=K(\lambda A+\tilde{Y}-P)
$$

- Where $\tilde{Y}_{i c}=\left[y_{i}=c\right]$
and

$$
P_{i c}=p\left(y=c \mid x_{i}\right)
$$

- Note that P depends on A !

Plan for this lecture

- Kernel trick
- Distance between points.
- Distance between sets and points.
- Data centering.
- Considerations on the RKHS norm
- Rademacher complexity for RKHS balls.
- Function smoothness in RKHS.
- Representer theorem.
- Supervised kernel methods
- Ridge regression.
- SVM.
- Logistic discriminant.
- Fisher kernels

Fisher kernels

- Proposed by Jaakkola \& Haussler, "Exploiting generative models in discriminative classifiers",In Advances in Neural Information Processing Systems 11, 1998.
- Motivated by the need to represent variably sized objects in a vector space, such as sequences, sets, trees, graphs, etc., such that they become amenable to be used with linear classifiers, and other data analysis tools
- A generic method to define kernels over arbitrary data types based on generative statistical models.

$$
p(x ; \theta), \quad x \in X, \quad \theta \in R^{D}
$$

Fisher kernels

- Given a generative data model

$$
p(x ; \theta), \quad x \in X, \quad \theta \in R^{D}
$$

- Represent data x in X by means of the gradient of the data log-likelihood, or "Fisher score":

$$
\begin{gathered}
g(x)=\nabla_{\theta} \ln p(x) \\
g(x) \in R^{D}
\end{gathered}
$$

- Define a kernel over X by taking the scaled inner product between the Fisher score vectors:

$$
k(x, y)=g(x)^{T} F^{-1} g(y)
$$

- Where F is the Fisher information matrix F :

$$
F=\boldsymbol{E}_{X}\left[g(x) g(x)^{T}\right]
$$

- Note 1: The Fisher kernel is a positive definite kernel.
- Note 2: The Fisher kernel is invariant for reparametrization of the model.

Fisher kernels - relation to generative classification

- Suppose we make use of generative model for classification via Bayes' rule
- Where x is the data to be classified, and y is the discrete class label

$$
\begin{gathered}
p(y \mid x)=p(x \mid y) p(y) / p(x) \\
p(x)=\sum_{k=1}^{K} p(y=k) p(x \mid y=k)
\end{gathered}
$$

and

$$
\begin{gathered}
p(x \mid y)=p\left(x ; \theta_{y}\right), \\
p(y=k)=\pi_{k}=\frac{\exp \left(\alpha_{k}\right)}{\sum_{k^{\prime}=1}^{K} \exp \left(\alpha_{k}^{\prime}\right)}
\end{gathered}
$$

- Classification with the Fisher kernel is at least as powerful as using the Fisher kernel obtained using the marginal distribution $p(x)$ on X.
- This becomes useful when the class conditional models are poorly estimated, either due to bias or variance type of errors.
- In practice often used without class-conditional models, but direct generative model for the marginal distribution on X .

Fisher kernels - relation to generative classification

- Consider the Fisher score vector with respect to the marginal distribution on X

$$
\begin{aligned}
\nabla_{\theta} \ln p(x) & =\frac{1}{p(x)} \nabla_{\theta} \sum_{k=1}^{K} p(x, y=k) \\
& =\frac{1}{p(x)} \sum_{k=1}^{K} p(x, y=k) \nabla_{\theta} \ln p(x, y=k) \\
& =\sum_{k=1}^{K} p(y=k \mid x)\left[\nabla_{\theta} \ln p(y=k)+\nabla_{\theta} \ln p(x \mid y=k)\right]
\end{aligned}
$$

- In particular for the alpha that model the class prior probabilities we have

$$
\frac{\partial \ln p(x)}{\partial \alpha_{k}}=p(y=k \mid x)-\pi_{k}
$$

Fisher kernels - relation to generative classification

$$
\frac{\partial \ln p(x)}{\partial \alpha_{k}}=p(y=k \mid x)-\pi_{k}
$$

- Let the weight vector for the k-th class to be zero, except for the position that corresponds to the alpha of the k-th class where it is one. And let the bias term for the k-th class be equal to the prior probability of that class, then

$$
f_{k}(x)=w_{k}^{T} g(x)+b_{k}=p(y=k \mid x)
$$

- Thus the Fisher kernel based classifier can implement classification via Bayes' rule, and generalizes it to other functions.

