Advanced Learning Models

Jakob Verbeek jakob.verbeek@inria.fr

December 10, 2015

Part I

Overfitting, bias-variance tradeoff: what is the problem?

Thanks to Laurent Jacob for sharing slides!

Short term

- We start with an informal example.
- We will formalize what we observe later.

Bias-variance tradeoff: intuition

- We observe 10 couples $\left(x_{i}, y_{i}\right)$.
- We want to estimate y from x.
- Our first strategy: find f such that $f\left(x_{i}\right)$ is close to y_{i}.

Bias-variance tradeoff: intuition

Find f as a line

$$
\min _{f(x)=a x+b}\|Y-f(X)\|^{2}
$$

Bias-variance tradeoff: intuition

Find f as a quadratic function

$$
\min _{f(x)=a x^{2}+b x+c}\|Y-f(X)\|^{2}
$$

Bias-variance tradeoff: intuition

Find f as a polynomial of degree 10

$$
\min _{f(x)=\sum_{j=0}^{j o} a_{j} x^{j}}\|Y-f(X)\|^{2}
$$

Bias-variance tradeoff: intuition

Which function would you trust to predict y corresponding to $x=0.5$?

Bias-variance tradeoff: intuition

- Reminder: we aim at "finding f such that $f\left(x_{i}\right)$ is close to y_{i} ".
- With the polynomial of degree $10, f\left(x_{i}\right)-y_{i}=0$ for all 10 points.
- There is something wrong with our objective.

Bias-variance tradeoff: intuition

More precisely:

- If we allow any function f, we can find a lot of perfect solutions for the training data.
- Our actual goal is to estimate y for new points x from the same population :

$$
\min _{f} \mathbb{E}_{(X, Y)}\|Y-f(X)\|^{2}
$$

Biais-variance tradeoff: intuition

Even more precisely :

- We did not take into account the fact that our 10 points are a subsample from the population.
- If we sample 10 new points from the same population, the complex functions are likely to change more than the simple ones.
- Consequence: these fonctions will probably generalize less well to the rest of the population.

Overfitting

- When the degree increases, the error $\|y-f(x)\|^{2}$ over the 10 observations always decreases.
- Over the rest of the population, the error decreases, then increases.

Overfitting

- When the degree increases, the error $\|y-f(x)\|^{2}$ over the 10 observations always decreases.
- Over the rest of the population, the error decreases, then increases.

Overfitting

This suggests the existence of a tradeoff between two types of errors:

- Sets of functions which are too simple cannot contain functions which explain the data well enough.
- Sets of functions which are too rich may contain functions which are too specific to the observed sample.

Overfitting

This suggests the existence of a tradeoff between two types of errors:

- Sets of functions which are too simple cannot contain functions which explain the data well enough.
- Sets of functions which are too rich may contain functions which are too specific to the observed sample.
- Our introductive examples had a large number of descriptors.
- This case involves increasingly complex functions of a single variable.
- In fact, the two notions are related: here in particular, the three functions are linear in different representations.
- Reminder (linear regression):
arg $\min _{\theta \in \mathbb{R}^{p}}\|Y-X \theta\|^{2}=\left(X^{\top} X\right)^{-1} X^{\top} Y$ (if $X^{\top} X$ is invertible).
- How can we use this fact to compute $\arg \min _{f(x)=\sum_{j=1}^{p} a_{i} x^{j}}\|Y-f(X)\|^{2} ?$
- We could have illustrated the same principle using linear functions involving more and more variables.
- Example : predicting a phenotype using the expression of an increasing number of genes.
- We sticked to polynomials, which allow for better visual representations.
- Along this class, the notion of complexity of a set of functions will become more and more precise.
- Complexity is what causes problems for inference, not just dimension.

Second parenthesis : models

- Until now, we did not need to introduce a model for the data, i.e., a distribution over $\mathcal{X} \times \mathcal{Y}$:
- Data could come from any population.
- The functions we used to predict y can be derived from particular probabilistic models, but this is not necessary (they were in fact historically introduced without a model).
- The objective is not to criticize the use of models, but to show that the tradeoff problem we introduced goes beyond probabilistic models.
- We now show how using a model can give a better insight into the problem.

A little more formally: biais-variance decomposition

- We now assume that the data follow:

$$
\begin{equation*}
y=f(x)+\varepsilon, \tag{1}
\end{equation*}
$$

and $\mathrm{E}[\varepsilon]=0$.

- Without loss of generality, we consider an estimator \hat{f} of f, which is a function of training data $\mathcal{D}=\left(x_{i}, y_{i}\right)_{(i=1, \ldots, n)}$ sampled i.i.d. from (1)
- Note: \hat{f} is a random function.
- We consider the mean quadratic error $\mathrm{E}\left[(y-\hat{f}(x))^{2}\right]$ incurred when using \hat{f} to estimate for a given x the corresponding y sampled from (1) independently from \mathcal{D}.
- Expectation is taken over \mathcal{D} used to estimate \hat{f}, and $\varepsilon=y-f(x)$.

A little more formally: biais-variance decomposition

Proposition

Under the previous hypotheses,

$$
\begin{aligned}
\mathbf{E}\left[(y-\hat{f}(x))^{2}\right]=(\mathrm{E}[\hat{f}(x)]-f(x))^{2} & +\mathbf{E}\left[(\mathbf{E}[\hat{f}(x)]-\hat{f}(x))^{2}\right] \\
& +\mathrm{E}\left[(y-f(x))^{2}\right]
\end{aligned}
$$

- The first term is the squared bias of \hat{f} : the difference between its mean (over the sample of \mathcal{D}) and the true f.
- The second term is the variance of \hat{f} : how much \hat{f} varies around its average when the dataset \mathcal{D} changes.
- The third term is the Bayes error, and does not depend on the estimator. The actual quantity of interest is the excess of risk $\mathbf{E}\left[(y-\hat{f}(x))^{2}\right]-E\left[(y-f(x))^{2}\right]$.

Back to our example

Tradeoff between two types of error:

- Sets of functions which are too simple cannot contain functions which explain the data well enough: these sets lead to estimators with a large bias.
- Sets of functions which are too rich may contain functions which are
too specific to the observed sample:
these sets lead to estimators with a large variance

Back to our example

Tradeoff between two types of error:

- Sets of functions which are too simple cannot contain functions which explain the data well enough: these sets lead to estimators with a large bias.
- Sets of functions which are too rich may contain functions which are too specific to the observed sample: these sets lead to estimators with a large variance.

Biais-variance decomposition: proof

Reminder (König-Huygens)

For any real random variable $Z, \mathrm{E}\left[(Z-\mathrm{E}[Z])^{2}\right]=\mathrm{E}\left[Z^{2}\right]-\mathrm{E}[Z]^{2}$

$$
\mathrm{E}\left[(y-\hat{f}(x))^{2}\right]=\mathrm{E}\left[y^{2}-2 y \hat{f}(x)+\hat{f}(x)^{2}\right]
$$

Biais-variance decomposition: proof

Reminder (König-Huygens)

For any real random variable $Z, \mathrm{E}\left[(Z-\mathrm{E}[Z])^{2}\right]=\mathrm{E}\left[Z^{2}\right]-\mathrm{E}[Z]^{2}$

$$
\begin{aligned}
\mathrm{E}\left[(y-\hat{f}(x))^{2}\right] & =\mathrm{E}\left[y^{2}-2 y \hat{f}(x)+\hat{f}(x)^{2}\right] \\
& =\mathrm{E}\left[y^{2}\right]-\mathrm{E}[2 y \hat{f}(x)]+\mathrm{E}\left[\hat{f}(x)^{2}\right]
\end{aligned}
$$

Biais-variance decomposition: proof

Reminder (König-Huygens)

For any real random variable $Z, \mathrm{E}\left[(Z-\mathrm{E}[Z])^{2}\right]=\mathrm{E}\left[Z^{2}\right]-\mathrm{E}[Z]^{2}$

$$
\begin{aligned}
\mathbf{E}\left[(y-\hat{f}(x))^{2}\right]= & \mathbf{E}\left[y^{2}-2 y \hat{f}(x)+\hat{f}(x)^{2}\right] \\
= & \mathbf{E}\left[y^{2}\right]-\mathbf{E}[2 y \hat{f}(x)]+\mathbf{E}\left[\hat{f}(x)^{2}\right] \\
= & \mathbf{E}[y]^{2}+\mathbf{E}\left[(y-\mathbf{E}[y])^{2}\right] \\
& -2 \mathbf{E}[y] \mathbf{E}[\hat{f}(x)] \\
& +\mathbf{E}[\hat{f}(x)]^{2}+\mathbf{E}\left[(\hat{f}(x)-\mathbf{E}[\hat{f}(x)])^{2}\right]
\end{aligned}
$$

Biais-variance decomposition: proof

Reminder (König-Huygens)

For any real random variable $Z, \mathrm{E}\left[(Z-\mathrm{E}[Z])^{2}\right]=\mathrm{E}\left[Z^{2}\right]-\mathrm{E}[Z]^{2}$

$$
\begin{aligned}
\mathbf{E}\left[(y-\hat{f}(x))^{2}\right]= & \mathbf{E}\left[y^{2}-2 y \hat{f}(x)+\hat{f}(x)^{2}\right] \\
= & \mathbf{E}\left[y^{2}\right]-\mathbf{E}[2 y \hat{f}(x)]+\mathbf{E}\left[\hat{f}(x)^{2}\right] \\
= & f(x)^{2}+\mathbf{E}\left[(y-f(x))^{2}\right] \\
& -2 f(x) \mathbf{E}[\hat{f}(x)] \\
& +\mathbf{E}[\hat{f}(x)]^{2}+\mathbf{E}\left[(\hat{f}(x)-\mathbf{E}[\hat{f}(x)])^{2}\right]
\end{aligned}
$$

Biais-variance decomposition: proof

Reminder (König-Huygens)

For any real random variable $Z, \mathrm{E}\left[(Z-\mathrm{E}[Z])^{2}\right]=\mathrm{E}\left[Z^{2}\right]-\mathrm{E}[Z]^{2}$

$$
\begin{aligned}
\mathrm{E}\left[(y-\hat{f}(x))^{2}\right]= & \mathrm{E}\left[y^{2}-2 y \hat{f}(x)+\hat{f}(x)^{2}\right] \\
= & \mathrm{E}\left[y^{2}\right]-\mathrm{E}[2 y \hat{f}(x)]+\mathrm{E}\left[\hat{f}(x)^{2}\right] \\
= & f(x)^{2}+\mathrm{E}\left[(y-f(x))^{2}\right] \\
& -2 f(x) \mathrm{E}[\hat{f}(x)] \\
& +\mathbf{E}[\hat{f}(x)]^{2}+\mathrm{E}\left[(\hat{f}(x)-\mathbf{E}[\hat{f}(x)])^{2}\right] \\
= & \mathrm{E}\left[(y-f(x))^{2}\right]+\mathrm{E}\left[(\hat{f}(x)-\mathrm{E}[\hat{f}(x)])^{2}\right] \\
& +(\mathrm{E}[\hat{f}(x)]-f(x))^{2}
\end{aligned}
$$

Biais-variance decomposition : perspective

$$
\begin{aligned}
\mathrm{E}\left[(y-\hat{f}(x))^{2}\right]=(\mathrm{E}[\hat{f}(x)]-f(x))^{2} & +\mathbf{E}\left[(\mathrm{E}[\hat{f}(x)]-\hat{f}(x))^{2}\right] \\
& +\mathrm{E}\left[(y-f(x))^{2}\right]
\end{aligned}
$$

- Using a (rather general) model, we managed to start formalizing the tradeoff introduced with our example.
- Decomposition valid for any x, thus also in expectation over independent x.

