
Advanced Learning Models

Jakob Verbeek

jakob.verbeek@inria.fr

December 10, 2015

http://lear.inrialpes.fr/people/mairal/teaching/2015-2016/MSIAM/

Practical Organization

 6 lectures of 3h each, 8h15 – 11h15, Room H204

 Homework
► Theoretical exercises covering material from lectures 1 to 4
► To be handed in on January 21, 2016 (lecture 5)
► Electronic format or printed

 Practical project
► Solve a classification/prediction task with method of choice
► 2 page report, code, and results
► To be handed-in after exam period, exact date to be decided

 Students receiving 3 credits for the course choose to do either only
homework, or only practical project

Course content

 Lecture 1
► Introduction
► Linear classification
► Non-linear classification with kernels
► Kernel-trick more generally
► Bias-variance decomposition

 Lectures 2,3,4 (Julien Mairal)
► Theory on kernels

 Lectures 5,6 (Jakob Verbeek)
► Fisher kernel
► Convolutional and recurrent neural networks

Course content

 From classic linear learning problems

Course content

 To current practical learning problems

Course content

 Extend well understood linear statistical learning techniques to real-
world complicated, structured and high-dimensional data (images,
text, time series, graphs, distributions, permutations, …)

 Kernels: basic theory and kernel design
 Neural networks: learning convolutional and recurrent architectures

Learning predictive models from data

 Given training data labeled for two or more classes

Learning predictive models from data

 Given training data labeled for two or more classes

 Determine a decision surface that separates those classes

Learning predictive models from data

 Given training data labeled for two or more classes

 Determine a decision surface that separates those classes

 Use that surface to predict the class membership of new data

Recommender systems

 Given a dataset of users and the movies they liked

 Predict which other movies a given user would also like

Recommender systems

 Given a dataset of queries and click-through data

 Predict which are the most relevant pages for a given query

Natural Language Processing

 Given a text, predict its topic

 Given an email, predict whether it is spam

 Given a text, predict its translation in another language

 Etc.

Tumor classification for prognosis

 Given the expression of genes in a new tumor, predict the development over
the next 5 years

Molecule classification for drug design

 Given a candidate molecule, predict whether it is active against a certain
condition

Gene expression clustering

 Are there groups of breast tumors with similar gene expression profile?

Audio understaning

 Given an audio stream, predict which song is played

Image Inpainting

 Complete an image with missing parts

 predict each image patch, as a linear combination of dictionary elements

Image Inpainting

 Complete an image with missing parts

 predict each image patch, as a linear combination of dictionary elements

Image Inpainting

Image super resolution

 Given an image, predict a high-resolution version of it

 Predictions per-patch, ensure spatial consistency

Classification examples in category-level recognition

 Given an image, predict if labels are relevant or not
 For example: Person = yes, TV = yes, car = no, ...

Classification examples in category-level recognition

 Category localization: predict bounding box coordinates for each object

Classification examples in category-level recognition

 Semantic segmentation: classify pixels to categories (multi-class)
 Impose spatial smoothness by Markov random field models.

Video understanding

 Given a video: predict the type of event that is shown: birthday party

Video understanding

 Given a video: predict spatio-temporal location of an action, eg drinking

Image captioning

 Given an image: predict a natural language description

Advanced learning models

 Each of these examples involves complex objects/large numbers of features
for a restricted number of samples

 Intuitively, observing all these characteristics should allow us to predict or
understand complex mechanisms

 But it also means that we should use very rich model classes that can
capture a wealth of complex dependencies

 Introduces a risk of overfitting: modeling co-incidental structure in the data

 However, this wealth of features can cause trouble in statistical learning

 This course
► Modeling complex data structures with kernels and neural networks
► Regularization to avoid overfitting

Course content

 Introduction

 Linear classification

 Non-linear classification with kernels

 Kernel-trick more generally

 Bias-variance decomposition

Binary linear classifier

 Decision function is linear in the features:
 Classification based on the sign of f(x)

 Decision surface is (d-1) dimensional

hyper-plane orthogonal to w
 Offset from origin is determined by b

 We drop offset b, absorb it in x and w

 We will now consider the two most commonly used linear classifiers
► Logistic discriminant
► Support vector machines

f(x)=0

w

f (x)=wT x+b

x←(xT 1)
T

w←(wT b)T

Common loss functions for classification

 Assign class label using
► Zero-One loss:
► Hinge loss:
► Logistic loss:

L(y i , f (x i))=[y i f (xi)≤0]
L(y i , f (x i))=max (0,1− y i f (xi))
L(y i , f (x i))=log2 (1+e−yi f (xi))

y=sign (f (x))

Common loss functions for classification

 Assign class label using
► Zero-One loss:
► Hinge loss:
► Logistic loss:

 The zero-one loss counts the number of misclassifications, which is
the “ideal” empirical loss.
► Discontinuity at zero makes optimization intractable.

 Hinge and logistic loss provide continuous and convex upperbounds

 Combined with convex penalties to prevent overfitting this leads to
convex objective functions, for which global optima can be found.

L(y i , f (x i))=[y i f (xi)≤0]
L(y i , f (x i))=max (0,1− y i f (xi))
L(y i , f (x i))=log2 (1+e−yi f (xi))

y=sign (f (x))

Logistic discriminant classifier

 Map linear score function to class probabilities with sigmoid

 For binary classification problem, we have by definition

► Exercise: show that

σ(z)=
1

1+ exp(−z)

p(y=+1∣x)=σ (wT x)

p(y=−1∣x)=1−p (y=+ 1∣x)

p(y=−1∣x)=σ(−wT x)

Logistic discriminant classifier

 Map linear score function to class probabilities with sigmoid.
 The class boundary at f(x)=0, or equivalently p(y|x)=1/2.
 Soft transition between class assignment along decision boundary.

w

p(y|x)=1/2

f(x)=-5

f(x)=+5

Logistic discriminant classifier

 Probability of class y given by sigmoid of score function times label

 Log-likelihood of correct classification of i.i.d. data in training set

 We have obtained the logistic loss as negative log-likelihood

p(y∣x)=σ(ywT x)

log∏i=1

n
p(y i∣x i)=∑i=1

n
log p(yi∣x i)

=∑i=1

n
log σ(yi w

T xi)

=−∑i=1

n
log (1+exp(− yi wT xi))

=−∑i=1

n
Llogistic(yi , wT xi)

Logistic discriminant estimation

 Estimate classifier from data by minimizing, e.g. L2, penalized loss:
► Penalty reduces risk of overfitting

 Exercise 1: derive the gradient of the loss

 Exercise 2: Show that this is a convex optimization problem

minw∑i=1

n
L(y i , wT x i)+λ

1
2

wT w

=minw∑i=1

n
log (1+exp(−y i wT xi))+λ

1
2

wT w

∂ L(y i , wT xi)

∂w
=−y i(1−p(y i∣xi))x i

Logistic discriminant estimation

 Estimate classifier from data by minimizing, e.g. L2, penalized loss:

 Exercise: Show that this is a convex optimization problem
► Calculate gradient of loss w.r.t. w

► Calculate Hessian of Loss w.r.t. w

minw∑i=1

n
L(y i , wT x i)+λ

1
2

wT w

=minw∑i=1

n
log (1+exp(−y i wT x i))+λ

1
2

wT w

∂ L(y , wT x)

∂w
=−yx 1

1+exp(y wT x)

H (L)= yx (1
1+exp(y wT x))

2

exp(ywT x) yxT

=σ(ywT x)σ (− ywT x) xxT

Logistic discriminant estimation

 Consider arbitrary w with non-zero norm

 Hessian is semi-positive definite, thus L is convex in w.
 Squared L2 norm also convex in w.

wT H (L)w=wT (σ(ywT x)σ(−ywT x)xxT) w

=σ(ywT x)σ (− ywT x)(wT x)2≥0

Logistic discriminant estimation

 Solve objective function using first or second order methods

► E.g. using gradient descent, conjugate gradient descent,...
► Stochastic gradient descent for large-scale problems

 Recall the gradient

 Consider gradient descent, starting from w=0
► Each step we add to w a linear combination of the data points
► Magnitude of weight given by probability of misclassification
► Sign of weight given by the label

 The optimal w is a linear combination of the data samples
► L2 regularization term does not change this property

minw∑i=1

n
log (1+exp(−y iw

T x i))+λ
1
2

wT w

∂ L(y i , wT xi)

∂w
=−y i(1−p(y i∣xi))x i

Support Vector Machines

 Find linear function to separate positive and negative examples
 Which function best separates the samples ?

► Function inducing the largest margin

y i=+1 : wT x i+b>0

y i=−1 : wT xi+b<0

Support vector machines

 Without loss of generality, define function value at margin as +/- 1
 Now constrain w to that all points fall on correct side of the margin:

 By construction we have that the “support vectors”, the ones that define the
margin, have function values

 Express the size of the margin

in terms of w.

Margin
Support vectors

y i(wT x i+b)≥1

wT x i+b=y i

f(x)=+1

f(x)=0

f(x)=-1

Support vector machines

 Let's consider a support vector x from the positive class
 Let z be its projection on the decision plane

► Since w is normal vector to the decision plane, we have
► and since z is on the decision plane

 Solve for alpha

 Margin is twice distance from x to z

MarginSupport vectors

f (x)=wT x+ b=1

z=x−α w

f (z)=wT
(x−αw)+b=0

∥x−z∥2=∥x−(x−α w)∥2

∥α w∥2=α∥w∥2

∥w∥2

∥w∥2
2=

1
∥w∥2

wT
(x−α w)+b=0

wT x+b−α wT w=0
α wT w=1

α=
1

∥w∥2
2

Support vector machines

 To find the maximum-margin separating hyperplane, we
► Maximize the margin, while ensuring correct classification
► Minimize the norm of w, s.t.

 Solve using quadratic program with linear inequality constraints over
p+1 variables

Margin
Support vectors

∀ i : y i(wT x i+b)≥1

f(x)=+1

f(x)=0

f(x)=-1

argminw ,b
1
2

wT w

subject to y i(wT xi+b)≥1

Support vector machines: inseperable classes

 For non-separable classes we incorporate hinge-loss

 Recall: convex and piecewise linear upper bound on zero/one loss.
► Zero if point on the correct side of the margin
► Otherwise given by absolute difference from score at margin

L(y i , f (x i))=max (0,1− y i f (xi))

Support vector machines: inseperable classes

 Minimize penalized loss function

► Quadratic function, plus piecewise linear functions.

 Can again be transformed to a quadratic program
► Define “slack variables” that measure the loss for each data point
► Should be non-negative, and at least as large as the loss

minw ,b λ
1
2

wT w + ∑i
max (0,1− yi(wT xi+b))

minw , b , {ξi}
λ

1
2

wT w + ∑i
ξi

subject to ∀i : ξi≥0 and ξi≥1− yi(wT x i+b)

Support vector machines: solution

 Minimize penalized loss function

 Solution for w will be a linear combination of the input data
► Split w into a part inside and outside the span of the data

► Only norm of w depends on part of w outside the data span
► Note that

► Therefore optimal w is a linear combination of the data

 This is a special case of the more general “representer theorem”

minw , b , {ξi}
λ

1
2

wT w + ∑i
ξi

subject to ∀i : ξi≥0 and ξi≥1− yi(wT x i+b)

w=w p+wo ∀ i : wo
T xi=0 w p=∑i

αi xi

wT w=w p
T w p+w o

T w o≥w p
T w p

Dealing with more than two classes

 So far, we have only considered the, useful, case for two classes
► E.g., is this email spam or not ?

 Many practical problems have more classes
► E.g., which fruit is placed on the supermarket weight scale: apple,

orange, or banana ?
 First idea: construction from multiple binary classifiers

► Learn binary “base” classifiers independently

 One vs rest approach:
► Train: 1 vs (2 & 3), 2 vs (1 & 3), 3 vs (1 & 2)

 Issue: regions claimed by several classes

Dealing with more than two classes

 One vs one approach:
► Train: 1 vs 2, and 1 vs 3, and 2 vs 3

 Issue: conflicts in some regions

Dealing with more than two classes

 Instead: define a separate linear score function for each class

 Assign sample to the class of the function with maximum value

 Exercise 1: give the expression for points

where two classes have equal score

 Exercise 2: show that the set of points

assigned to a class is convex
► If two points are assigned to a class, then all points on connecting line

are also assigned to that class.

f k (x)=wk
T x

y=arg maxk f k (x)

Multi-class logistic discriminant classifier

 Map score functions to class probabilities with “soft-max”

► The class probability estimates are non-negative, and sum to one.

 Relative probability of classes changes exponentially with the
difference in the linear score functions

 For any given pair of classes, they are equally

likely on a hyperplane in the feature space

p(y=c∣x)=
exp(f c (x))

∑k=1

K
exp(f k(x))

f k (x)=wk
T x

p(y=c∣x)

p (y=k∣x)
=

exp(f c (x))

exp (f k (x))
=exp(f c(x)−f k (x))

Multi-class logistic discriminant: estimation

 Consider the likelihood of correct classification of i.i.d. data in training set

 As before, we define loss function as negative log-likelihood

 Estimate model by means of penalized empirical risk

minw∑i=1

n
L(y i , {f k (x i)})+λ

1
2
∑k=1

K
wk

T w k

log∏i=1

n
p(y i∣x i)=∑i=1

n
log p(y i∣x i)

=∑i=1

n

(f yi
(xi)−log∑k=1

K
exp(f k (xi)))

L(y , {f k (x)})=−f y(x)+ log∑k=1

K
exp(f k (x))

Multi-class logistic discriminant: estimation

 Derivative of loss function has an intuitive interpretation
► Focus on points with poor classification, w is linear combination of x's

 Gradient is zero when

► If x also contains the constant 1 as last element then empirical count of each
class matches expected count.

► Therefore, for each class 1st order moment matches for empirical distribution
and the model's class conditional distribution.

∂ L
∂ wk

=∑i=1

n

([yi=k]− p(yi=k∣xi)) xi

L=∑i=1

n
L(y i ,{f k (xi)})

∑i=1

n
[yi=k]xi

∑i=1

n
[yi=k]

=
∑i=1

n
p(y i=k∣xi)xi

∑i=1

n
p(yi=k∣xi)

∑i=1

n
[y i=k]=∑i=1

n
p(yi=k∣xi)

∑i=1

n
[y i=k]xi=∑i=1

n
p(yi=k∣xi) xi

Summary of linear classifiers

 Two most widely used binary linear classifiers:
► Logistic discriminant, also considered the extension to >2 classes.
► Support vector machines, similar multi-class extensions exist.

 Both minimize convex upper bounds on the 0/1 loss
 In both cases the optimal weight vector w is a linear combination of

the data points

 Therefore, we only need the inner-products between data
points to use linear classifiers. This also holds for the
optimization of w.

w=∑i=1

n
αi xi

f (x)=wT x+b

=∑i=1

n
αi (xi

T x)+b

Course content

 Introduction

 Linear classification

 Non-linear classification with kernels

 Kernel-trick more generally

 Bias-variance decomposition

Nonlinear Classification

 So far we just considered linear classifiers.
 Obviously limits the problems that can be addressed.
 What to do it the data is not linearly separable?

 Similar to what we considered last week for regression with higher-
order polynomials, we can do linear classification on non-linear
features. For example augment map the data to R2 by adding x2.

0 x

x2

0 x
Slide credit: Andrew Moore

Φ: x → φ(x)

Non-linear feature mappings for classification

 Map the original input space to some higher-dimensional feature
space where the training set is separable

 Data occupies a (non-linear) subspace of dimension equal to the
original space.

 Which features could separate this 2dimensional data linearly ?

Slide credit: Andrew Moore

Non-linear feature mappings for classification

 Remember that for classification we only need dot-products.
 Let's calculate the dot-product explicitly for our example.

► New dot-product easily computed from the original one.

Φ: x → φ(x)

ϕ(x)=(
x1

2

x2
2

√2 x1 x2
)

k (x , z)=ϕ(x)
T
ϕ(z)=?

=x1
2 z1

2
+x2

2 z2
2
+2x1 x2 z1 z2

=(x1 z1+x2 z2)
2

=(xT z)
2

Non-linear feature mappings for classification

 Suppose we also want to keep the original features to still be able to
implement linear functions
► Again efficient computation in 6d, roughly at cost of 2d dot-product

Φ: x → φ(x)

ϕ(x)=(
1

√2 x1

√2 x2

x1
2

x2
2

√2 x1 x2

)
k (x , y)=ϕ(x)

T
ϕ(y)=?

=1+ 2xT y+ (xT y)
2

=(xT y+ 1)
2

0 x
Slide credit: Andrew Moore

0 x
Slide credit: Andrew Moore

Non-linear feature mappings for classification

 What happens if we do the same for higher dimensional data
► Which feature vector corresponds to it ?

► First term, encodes an additional 1 in each feature vector
► Second term, encodes scaling of the original features by sqrt(2)
► Let's consider the third term

► In total we have 1 + 2D + D(D-1)/2 features !
► But computed as efficiently as dot-product in original space

(xT y)
2
=(x1 y1+ ...+ xD yD)

2

k (x , y)=(xT y+ 1)
2
=1+ 2xT y+ (xT y)

2

=∑d=1

D
(xd yd)

2+2∑d=1

D−1

∑i=d+1

D
(xd yd)(xi y i)

=∑d=1

D
xd

2 yd
2+2∑d=1

D−1

∑i=d+1

D
(xd x i)(yd yi)

ϕ(x)=(1 ,√2 x1 ,√2 x2, ... , √2 xD , x1
2 , x2

2 , ... , xD
2 ,√2 x1 x2 , ... , √2 x1 xD , ... ,√2 xD−1 xD)

T

Original features Squares Products of two distinct elements

ϕ(x)

Nonlinear classification with kernels

 The kernel trick: instead of explicitly computing the feature
transformation φ(x), define a kernel function K such that

 K(xi , xj) = φ(xi) · φ(xj)

 This allows us to obtain nonlinear classification in the original space:

f (x) = b+wT ϕ(x)

= b+∑i
αi ϕ(x)

T
ϕ(xi)

= b+∑i
αi k (x , xi)

= b+αT k (x ,.)

wT w=∑i ∑ j
αi α j ϕ(xi)

T
ϕ(x j)

=∑i ∑ j
αi α j k (xi , x j)

=α
T K α

Summary of classification

 Linear classifiers learned by minimizing convex cost functions
► Logistic loss: smooth objective, minimized using gradient descent, etc.
► Hinge loss: piecewise linear objective, quadratic programming
► Both require only computing inner product between data points

 Non-linear classification can be done with linear classifiers over new
features that are non-linear functions of the original features
► Kernel functions efficiently compute inner products in (very) high-

dimensional spaces, can even be infinite dimensional.

 Using kernel functions non-linear classification has drawbacks
► Requires storing the data with non-zero weights, memory cost
► Kernel evaluations for test point may be computationally expensive

Course content

 Introduction

 Linear classification

 Non-linear classification with kernels

 Kernel-trick more generally

 Bias-variance decomposition

Representation by pairwise comparisons

 We can think of a kernel function as a pairwise comparison function

 Represent a set of n data points by the n x n matrix

 Always an n x n matrix, whatever the nature of the data
► Same algorithms will work for any type of data: images, text...

 Modularity between the choice of K and the choice of algorithms.

 Poor scalability with respect to the data size (squared in n).

 We will restrict attention to a specific class of kernels.

K : X× X → R

[K]ij=K (xi , x j)

Positive definite kernels

 Definition: A positive definite kernel on the set X is a function

which is symmetric:

and which satisfies

 Equivalently, a kernel K is positive definite if and only if, for any n
and any set of n points, the similarity matrix K is positive
semidefinite:

K : X× X → R

∀(x , x ')∈X 2: K (x , x ')=K (x ' , x)

∀ n∈N
∀(x1, ... , xn)∈Rn and (a1,... , an)∈Rn

∑i=1

n

∑ j=1

n
ai a j K (xi , x j)≥0

aT K a≥0

The simplest positive definite kernel

 Lemma: The kernel function defined by the inner product over
vectors is a positive definite kernel.
► This kernel is known as the “linear kernel”

 Proof
► Symmetry:

► Positive definiteness:

K : X× X → R
∀(x , x ')∈X 2: K (x , x ')=xT x '

∑i=1

n

∑ j=1

n

ai a j K (xi , x j)=∑i=1

n

∑ j=1

n

ai a j xi
T x j=∥∑i=1

n

ai xi∥2
2
≥0

K (x , x ')=xT x '=(x ')T x=K (x ' , x)

More generally: for any embedding function

 Lemma: The kernel function defined by the inner product over data
points embedded in a vector space by a function φ is a positive
definite kernel.

 Proof
► Symmetry:

► Positive definiteness:

K : X× X → R
∀(x , x ')∈X 2: K (x , x ')=⟨ϕ(x),ϕ(x ')⟩H

∑i=1

n

∑ j=1

n
ai a j K (xi , x j)=∑i=1

n

∑ j=1

n
ai a j ⟨ϕ(xi) ,ϕ(x j)⟩H=∥∑i=1

n
aiϕ(xi)∥H

2 ≥0

K (x , x ')=⟨ϕ(x) ,ϕ(x ')⟩H=⟨ϕ(x ') ,ϕ(x)⟩H=K (x ' , x)

Conversely: Kernels as inner products

 Theorem (Aronszajn,1950)

K is a positive definite kernel on the set X if and only if there exists a
Hilbert space H and a mapping

such that for any x and x' in X

 Establishes the correspondence between kernels and
representations.

Φ : X →H

K (x , x ')=⟨ϕ(x) ,ϕ(x ')⟩H

The kernel trick

 Choosing a p.d. kernel K on a set X amounts to embedding the data
in a Hilbert space: there exists a Hilbert space H and a mapping

such that for all x and x' in X

 This mapping might not be explicitly given, nor convenient to work
with in practice, e.g. for very large or even infinite dimensions.

 The “trick” is to work implicitly in the feature space H by means of
kernel evaluations.

k (x , x ')=〈ϕ(x) ,ϕ(x ')〉H.

Φ : X→H

The kernel trick

 Any algorithm to process finite dimensional vectors that can be
expressed only in terms of pairwise inner products can be applied to
potentially infinite-dimensional vectors in the feature space of a p.d.
kernel by replacing each inner product evaluation by a kernel
evaluation.

 This statement is trivially true, since the kernel computes the inner
product in the associated RKHS.

 The practical implications of this “trick” are important.

 Vectors in the feature space are only manipulated implicitly, through
pairwise inner products, there is no need to explicitly represent any
data in the feature space.

Example 1: computing distances in the feature space

d k (x , x ')2=∥ϕ(x)−ϕ(x ')∥H

2

=〈ϕ(x)−ϕ(x ') ,ϕ(x)−ϕ(x ')〉H

=〈ϕ(x) ,ϕ(x)〉H+〈ϕ(x ') ,ϕ(x ')〉H−2 〈ϕ(x) ,ϕ(x ')〉H

=k (x , x)+k (x ' , x ')−2k (x , x ')

Distance for the Gaussian kernel

 The Gaussian kernel with bandwidth

sigma is given by

 In the feature space, all points are
embedded on the unit sphere since

 The distance in the feature space
between x and x' is given by

k (x , x ')=exp (−∥x−x '∥2 /(2σ
2
))

d k (x , x ')=√2 [1−exp (−∥x−x '∥2 /(2σ2))]

k (x , x)=∥ϕ(x)∥H
2
=1

Example 2: distance between a point and a set

 Let S be a finite set of points in X:

 How to define and compute the similarity between any point x in X and
the set S?

 The following is a simple approach:

► Map all points to the feature space

► Summarize S by the barycenter of the points

► Define the distance between x and S as

d k (x , S)=∥ϕ(x)−m∥H

m=
1
n
∑i=1

n
ϕ(x i)

S=(x1, ... , xn)

Example 2: distance between a point and a set

=∥ϕ(x)−
1
n
∑i=1

n
ϕ(x i)∥H

=√k (x , x)−
2
n ∑i=1

n

k (x , x i)+
1
n2 ∑i , j=1

n

k (xi , x j)

d k (x , S)=∥ϕ(x)−m∥H

Uni-dimensional illustration

 Let S = {2,3}, plot f(x) = d(x,S).

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2

2D illustration

 Let S = { (1,1)', (1,2)', (2,2)' }, plot f(x) = d(x,S).

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2

Application to discrimination

 Consider a set of points from positive class P = { (1,1)', (1,2)' }
 And a set of points from the negative class N={ (1,3)', (2,2)' }
 Plot

Linear kernel Gaussian kernel, Gaussian kernel,

with σ=1 with σ=0.2

=∥ϕ(x)−mP∥H
2 −∥ϕ(x)−mN∥H

2

=
2
n ∑xi∈N

k (x , xi)−
2
n ∑xi∈P

k (x , x i)+constant

f (x)=dk (x , P)2−d k (x , N)2

Example 3: centering data in feature space

 Let S be a set of n points in X.
 Let K be the kernel matrix generated by the p.d. kernel k(.,.).
 Let m be the barycenter in the feature space of the points in S.
 How to compute the kernel matrix when the points are centered on m?

h(x , x ')=〈ϕ(x)−m ,ϕ(x ')−m〉H

Example 3: centering data in feature space

 Substitution of the barycenter gives

 Or, in matrix notation we get

where for all i,j:

h(x i , x j)=〈ϕ(x i)−m ,ϕ(x j)−m〉H

=〈ϕ(x i) ,ϕ(x j)〉H−〈m ,ϕ(x i)+ϕ(x j)〉H+〈m , m〉H

=k (x i , x j)−
1
n
∑k=1

n

(k (xi , xk)+k (xk , x j))+
1

n2 ∑k , l=1

n
k (xk , x l)

H=K−KU −UK +UKU =(I−U)K (I−U)

U i , j=1 /n

Course content

 Introduction

 Linear classification

 Non-linear classification with kernels

 Kernel-trick more generally

 Bias-variance decomposition

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Linear classifiers
	Slide 30
	Slide 31
	Logistic discriminant for two classes
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Support Vector Machines
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Dealing with more than two classes
	Slide 47
	Slide 48
	Multi-class logistic discriminant
	Slide 50
	Parameter estimation for logistic discriminant
	Summary Linear discriminant analysis
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	SVMs vs Logisitic discriminants
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

