Homework Due January 21st

1 Logistic discriminant classification for two classes

The logistic discriminant classifier is given by:

$$p(y = +1|\mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x}),$$

where $y \in \{-1, +1\}, \mathbf{x} \in \mathbb{R}^p, \mathbf{w} \in \mathbb{R}^p$, and the sigmoid function is given by

$$\sigma(z) = (1 + \exp(-z))^{-1}$$

The logistic loss for a training sample \mathbf{x}_i with class label y_i is given by:

$$L(y_i, \mathbf{w}^T \mathbf{x}_i) = -\log p(y_i | \mathbf{x}_i).$$

- 1. Show that $p(y = -1|\mathbf{x}) = \sigma(-\mathbf{w}^{\top}\mathbf{x})$.
- 2. Derive that the gradient of the logistic loss has the form

$$\nabla_w L(y_i, \mathbf{w}^\top \mathbf{x}_i) = -y_i \big(1 - p(y_i | \mathbf{x}_i) \big) \mathbf{x}_i.$$

3. Show that the logistic loss function is convex in $\mathbf{w} \in \mathbb{R}^p$.

2 Combination rules for kernels

Consider a set \mathcal{X} and two positive definite (p.d.) kernels $K_1, K_2 : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.

- 1. For all scalars $\alpha, \beta \geq 0$, show that the sum kernel $\alpha K_1 + \beta K_2$ is p.d.
- 2. Show that the product kernel $(x, y) \mapsto K_1(x, y)K_2(x, y)$ is p.d. (Be careful, this is a pointwise multiplication, not a matrix multiplication)
 - Tip1: It is sufficient to show that for any finite set x_1, \ldots, x_n in \mathcal{X} , the corresponding $n \times n$ kernel matrix is positive semi-definite. Remember that a positive semi-definite matrix A in $\mathbb{R}^{n \times n}$ can be factorized into a product $Z^{\top}Z$ with Z in $\mathbb{R}^{n \times n}$.
 - Tip2: remember the proof for showing that the polynomial kernel $(x, y) \mapsto (x^{\top}y)^2$ is p.d. with the "trace" trick. This was indeed a product kernel with $K_1(x, y) = K_2(x, y) = (x^{\top}y)$ and $\mathcal{X} = \mathbb{R}^p$.

- 3. Given a sequence $(K_n)_{n\geq 0}$ of p.d. kernels such that for all x, y in \mathcal{X} , $K_n(x, y)$ converges to a value K(x, y) in \mathbb{R} (pointwise convergence). Show that K is a p.d. kernel.
- 4. Show that e^{K_1} is p.d.

3 Positive definite kernels

Which of these kernels are positive definite. You need to provide proofs for all cases.

- K(x,y) = 1/(1-xy) with $\mathcal{X} = (-1,1)$.
- $K(x, y) = \min(x, y)$ with $\mathcal{X} = \mathbb{N}$.
- $K(x, y) = \max(x, y)$ with $\mathcal{X} = \mathbb{N}$.
- $K(x, y) = \cos(x + y)$ with $\mathcal{X} = \mathbb{R}$.
- $K(x, y) = \cos(x y)$ with $\mathcal{X} = \mathbb{R}$.
- K(x, y) = GCD(x, y) (greatest common divisor) with $\mathcal{X} = \mathbb{N}$.

4 The kernel $K(x, y) = \min(x, y)$ with $\mathcal{X} = [0, 1]$

A function $f : \mathcal{X} \to \mathbb{R}$ is said to be "absolutely continuous" if the function is differentiable almost everywhere with f' integrable and $f(x) = f(0) + \int_{t=0}^{x} f'(t)dt$ for all x in \mathcal{X} . Surprisingly, we will see that this concept is closely related to the min kernel.

- 1. Show that the kernel K is p.d. Tip: try to write $\min(x, y)$ as an integral.
- 2. Show that the functional space \mathcal{H} below is Hilbertian (you need to define an appropriate inner-product):

 $\mathcal{H} = \left\{ f : \mathcal{X} \to \mathbb{R} \text{ such that } f \text{ is absolutely continuous, } f' \in L^2(\mathcal{X}) \text{ and } f(0) = 0 \right\},$

where

$$L^{2}(\mathcal{X}) = \left\{ f : \mathcal{X} \to \mathbb{R} \text{ such that } \int_{t \in \mathcal{X}} f(t)^{2} dt < +\infty \right\}$$

is a Hilbert space with inner product $\langle f, g \rangle_{L^2(\mathcal{X})} = \int_{t \in \mathcal{X}} f(t)g(t)dt$.¹

3. Show that K is the reproducing kernel associated to \mathcal{H} for an appropriate innerproduct.

Remark: even though, we do not precise it in the text for simplicity, we always consider Lebesgue measurable functions.

¹Note that to be rigorous, we should remark that $L^2(\mathcal{X})$ is a Hilbert space only when two functions that are equal almost everywhere are considered to be the same element of $L^2(\mathcal{X})$. This can be formalized by defining a quotient space with an equivalence class, or by using the concept of distribution. To simplify, we will omit this subtlety, since it will not affect any result of the homework.