
Machine Learning
with Kernel Methods

Julien Mairal (Inria)

Jean-Philippe Vert (Institut Curie, Mines ParisTech)

Nino Shervashidze (Institut Curie, Mines ParisTech)

Julien Mairal (Inria) 1/564

History of the course

A large part of the course material is due to Jean-
Philippe Vert, who gave the course from 2004 to 2015
and who is on sabbatical at UC Berkeley in 2016.

Over the years, the course has become more and more exhaustive
and the slides are probably one of the best reference available on
kernels.

This is a course with a fairly large amount of math, but still
accessible to computer scientists who have heard what is a Hilbert
space (at least once in their life).

Julien Mairal (Inria) 2/564

History of the course

A large part of the course material is due to Jean-
Philippe Vert, who gave the course from 2004 to 2015
and who is on sabbatical at UC Berkeley in 2016.

Over the years, the course has become more and more exhaustive
and the slides are probably one of the best reference available on
kernels.

This is a course with a fairly large amount of math, but still
accessible to computer scientists who have heard what is a Hilbert
space (at least once in their life).

Julien Mairal (Inria) 2/564

Starting point: what we know is how to solve

Julien Mairal (Inria) 3/564

Or

Julien Mairal (Inria) 4/564

But real data are often more complicated...

Julien Mairal (Inria) 5/564

Main goal of this course

Extend well-understood, linear statistical learning techniques to
real-world, complicated, structured, high-dimensional data (images,
texts, time series, graphs, distributions, permutations...)

Julien Mairal (Inria) 6/564

A concrete supervised learning problem

Regularized empirical risk minimization formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

Julien Mairal (Inria) 7/564

A concrete supervised learning problem

Regularized empirical risk minimization formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

A simple parametrization when X = Rp and Y = {−1,+1}.
F = {fw : w ∈ Rp} where the fw’s are linear: fw : x 7→ x>w.

The regularization is the simple Euclidean norm Ω(fw) = ‖w‖2
2.

Julien Mairal (Inria) 7/564

A concrete supervised learning problem

This simple setting corresponds to many well-studied formulations.

Ridge regression: min
w∈Rp

1

n

n∑
i=1

1

2
(yi −w>xi)

2 + λ‖w‖2
2.

Linear SVM: min
w∈Rp

1

n

n∑
i=1

max(0, 1− yi w
>xi) + λ‖w‖2

2.

Logistic regression: min
w∈Rp

1

n

n∑
i=1

log
(

1 + e−yi w
>xi

)
+ λ‖w‖2

2.

Julien Mairal (Inria) 8/564

A concrete supervised learning problem

Unfortunately, linear models often perform poorly unless the problem
features are well-engineered or the problem is very simple.

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

First approach to work with a non-linear functional space F
The “deep learning” space F is parametrized as follows:

f (x) = σk (Akσk–1(Ak–1 . . . σ2(A2σ1(A1x)) . . .)).

Finding the optimal A1,A2, . . . ,Ak involves solving an (intractable)
non-convex optimization problem in huge dimension.

Julien Mairal (Inria) 9/564

A concrete supervised learning problem

Figure : Exemple of convolutional neural network from LeCun et al. [1998]

.What are the main limitations of neural networks?

Poor theoretical understanding.

They require cumbersome hyper-parameter tuning.

They are hard to regularize.

Despite these shortcomings, they have had an enormous success, thanks
to large amounts of labeled data, computational power and engineering.

Julien Mairal (Inria) 10/564

A concrete supervised learning problem

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

Second approach based on kernels

Works with possibly infinite-dimensional functional spaces F ;

Works with non-vectorial structured data sets X such as graphs;

Regularization is natural and easy.

Current limitations (and open research topics)

Lack of scalability with n (traditionally O(n2));

Lack of adaptivity to data and task.

Julien Mairal (Inria) 11/564

Organization of the course

Contents
1 Present the basic theory of kernel methods.

2 Develop a working knowledge of kernel engineering for specific data
and applications (graphs, biological sequences, images).

3 Introduce open research topics related to kernels such as large-scale
learning with kernels and “deep kernel learning”.

Practical

Course homepage with slides, schedules, homework etc...:
http://lear.inrialpes.fr/people/mairal/teaching/2015-2016/MVA/.

Evaluation: 50% homework + 50% data challenge.

Julien Mairal (Inria) 12/564

Outline

1 Kernels and RKHS
Positive Definite Kernels
Reproducing Kernel Hilbert Spaces (RKHS)
My first kernels
Smoothness functional
The kernel trick

2 Kernel Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Foundations of constrained optimization
Support vector machines

Julien Mairal (Inria) 13/564

Outline

1 Kernels and RKHS
Positive Definite Kernels
Reproducing Kernel Hilbert Spaces (RKHS)
My first kernels
Smoothness functional
The kernel trick

2 Kernel Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Foundations of constrained optimization
Support vector machines

Julien Mairal (Inria) 13/564

Outline

3 Kernel Methods: Unsupervised Learning
Kernel K-means and spectral clustering
Kernel PCA
A quick note on kernel CCA

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

5 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels
“Deep” learning with kernels

Julien Mairal (Inria) 14/564

Outline

3 Kernel Methods: Unsupervised Learning
Kernel K-means and spectral clustering
Kernel PCA
A quick note on kernel CCA

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

5 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels
“Deep” learning with kernels

Julien Mairal (Inria) 14/564

Outline

3 Kernel Methods: Unsupervised Learning
Kernel K-means and spectral clustering
Kernel PCA
A quick note on kernel CCA

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

5 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels
“Deep” learning with kernels

Julien Mairal (Inria) 14/564

Part 1

Kernels and RKHS

Julien Mairal (Inria) 15/564

Overview

Motivations

Develop versatile algorithms to process and analyze data...

...without making any assumptions regarding the type of data
(vectors, strings, graphs, images, ...)

The approach

Develop methods based on pairwise comparisons.

By imposing constraints on the pairwise comparison function
(positive definite kernels), we obtain a general framework for
learning from data (optimization in RKHS).

Julien Mairal (Inria) 16/564

Outline

1 Kernels and RKHS
Positive Definite Kernels
Reproducing Kernel Hilbert Spaces (RKHS)
My first kernels
Smoothness functional
The kernel trick

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle

5 Open Problems and Research Topics

Julien Mairal (Inria) 17/564

Representation by pairwise comparisons

1 0.5 0.3
0.5 1 0.6
0.3 0.6 1

K=

X

S

(S)=(aatcgagtcac,atggacgtct,tgcactact)φ

Idea

Define a “comparison function”: K : X × X 7→ R.
Represent a set of n data points S = {x1, x2, . . . , xn} by the n × n
matrix:

[K]ij := K (xi , xj)

Julien Mairal (Inria) 18/564

Representation by pairwise comparisons

Remarks

Always an n × n matrix, whatever the nature of data: the same
algorithm will work for any type of data (vectors, strings, ...).

Total modularity between the choice of K and the choice of the
algorithm.

Poor scalability w.r.t. the dataset size (n2)

We will restrict ourselves to a particular class of pairwise
comparison functions.

Julien Mairal (Inria) 19/564

Positive Definite (p.d.) Kernels

Definition

A positive definite (p.d.) kernel on the set X is a function
K : X × X → R that is symmetric:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= K

(
x′, x

)
,

and which satisfies, for all N ∈ N, (x1, x2, . . . , xN) ∈ XN and
(a1, a2, . . . , aN) ∈ RN :

N∑
i=1

N∑
j=1

ai aj K (xi , xj) ≥ 0.

Julien Mairal (Inria) 20/564

Similarity matrices of p.d. kernels

Remarks

Equivalently, a kernel K is p.d. if and only if, for any N ∈ N and
any set of points (x1, x2, . . . , xN) ∈ XN , the similarity matrix
[K]ij := K (xi , xj) is positive semidefinite.

Kernel methods are algorithms that take such matrices as input.

Julien Mairal (Inria) 21/564

The simplest p.d. kernel

Lemma

Let X = Rd . The function K : X 2 7→ R defined by:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
x, x′

〉
Rd

is p.d. (it is often called the linear kernel).

Proof

〈x, x′〉Rd = 〈x′, x〉Rd ,∑N
i=1

∑N
j=1 ai aj 〈xi , xj〉Rd = ‖ ∑N

i=1 ai xi ‖2
Rd ≥ 0

Julien Mairal (Inria) 22/564

The simplest p.d. kernel

Lemma

Let X = Rd . The function K : X 2 7→ R defined by:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
x, x′

〉
Rd

is p.d. (it is often called the linear kernel).

Proof

〈x, x′〉Rd = 〈x′, x〉Rd ,∑N
i=1

∑N
j=1 ai aj 〈xi , xj〉Rd = ‖ ∑N

i=1 ai xi ‖2
Rd ≥ 0

Julien Mairal (Inria) 22/564

A more ambitious p.d. kernel

φ
X F

Lemma

Let X be any set, and Φ : X 7→ Rd . Then, the function K : X 2 7→ R
defined as follows is p.d.:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉

Rd .

Proof

〈Φ (x) ,Φ (x′)〉Rd = 〈Φ (x′) ,Φ (x)〉Rd ,∑N
i=1

∑N
j=1 ai aj 〈Φ (xi) ,Φ (xj)〉Rd = ‖ ∑N

i=1 ai Φ (xi) ‖2
Rd ≥ 0 .

Julien Mairal (Inria) 23/564

A more ambitious p.d. kernel

φ
X F

Lemma

Let X be any set, and Φ : X 7→ Rd . Then, the function K : X 2 7→ R
defined as follows is p.d.:

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉

Rd .

Proof

〈Φ (x) ,Φ (x′)〉Rd = 〈Φ (x′) ,Φ (x)〉Rd ,∑N
i=1

∑N
j=1 ai aj 〈Φ (xi) ,Φ (xj)〉Rd = ‖ ∑N

i=1 ai Φ (xi) ‖2
Rd ≥ 0 .

Julien Mairal (Inria) 23/564

Example: polynomial kernel

2R

x1

x2

x1

x2

2

For ~x = (x1, x2)> ∈ R2, let ~Φ(~x) = (x2
1 ,
√

2x1x2, x
2
2) ∈ R3:

K (~x ,~x ′) = x2
1 x ′21 + 2x1x2x ′1x ′2 + x2

2 x ′22

=
(
x1x ′1 + x2x ′2

)2

=
(
~x .~x ′

)2
.

Exercise: show that (~x .~x ′)d is p.d. for any d ∈ N.
Julien Mairal (Inria) 24/564

Conversely: Kernels as inner products

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H
such that, for any x, x′ in X :

K
(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

φ
X F

Julien Mairal (Inria) 25/564

In case of ...

Definitions

An inner product on an R-vector space H is a mapping
(f , g) 7→ 〈f , g〉H from H2 to R that is bilinear, symmetric and such
that 〈f , f 〉H > 0 for all f ∈ H\{0}.
A vector space endowed with an inner product is called pre-Hilbert.

It is endowed with a norm defined as ‖ f ‖H = 〈f , f 〉
1
2
H.

A Hilbert space is a pre-Hilbert space complete for the norm ‖.‖H.
That is, any Cauchy sequence in H converges in H.

A Cauchy sequence (fn)n≥0 is a sequence whose elements become
progressively arbitrarily close to each other:

lim
N→+∞

sup
n,m≥N

‖fn − fm‖H = 0.

Completeness is necessary to keep “good” convergence properties of
Euclidean spaces in an infinite-dimensional context.

Julien Mairal (Inria) 26/564

Proof: finite case

Proof

Assume X = {x1, x2, . . . , xN} is finite of size N.

Any p.d. kernel K : X × X → R is entirely defined by the N × N
symmetric positive semidefinite matrix [K]ij := K (xi , xj).

It can therefore be diagonalized on an orthonormal basis of
eigenvectors (u1,u2, . . . ,uN), with non-negative eigenvalues
0 ≤ λ1 ≤ . . . ≤ λN , i.e.,

K (xi , xj) =

[
N∑

l=1

λl ul u
>
l

]
ij

=
N∑

l=1

λl ul (i)ul (j) = 〈Φ (xi) ,Φ (xj)〉RN ,

with

Φ (xi) =


√
λ1u1(i)

...√
λNuN(i)

 . �

Julien Mairal (Inria) 27/564

Proof: general case

Mercer (1909) for X = [a, b] ⊂ R (more generally X compact) and
K continuous.

Kolmogorov (1941) for X countable.

Aronszajn (1944, 1950) for the general case.

We will go through the proof of the general case by introducing the
concept of Reproducing Kernel Hilbert Spaces (RKHS).

Julien Mairal (Inria) 28/564

Outline

1 Kernels and RKHS
Positive Definite Kernels
Reproducing Kernel Hilbert Spaces (RKHS)
My first kernels
Smoothness functional
The kernel trick

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle

5 Open Problems and Research Topics

Julien Mairal (Inria) 29/564

RKHS Definition

Definition

Let X be a set and H ⊂ RX be a class of functions forming a (real)
Hilbert space with inner product 〈., .〉H. The function K : X 2 7→ R is
called a reproducing kernel (r.k.) of H if

1 H contains all functions of the form

∀x ∈ X , Kx : t 7→ K (x, t) .

2 For every x ∈ X and f ∈ H the reproducing property holds:

f (x) = 〈f ,Kx〉H .

If a r.k. exists, then H is called a reproducing kernel Hilbert space
(RKHS).

Julien Mairal (Inria) 30/564

An equivalent definition of RKHS

Theorem

The Hilbert space H ⊂ RX is a RKHS if and only if for any x ∈ X , the
mapping:

F : H → R
f 7→ f (x)

is continuous.

Corollary

Convergence in a RKHS implies pointwise convergence, i.e., if (fn)n∈N
converges to f in H, then (fn (x))n∈N converges to f (x) for any x ∈ X .

Julien Mairal (Inria) 31/564

An equivalent definition of RKHS

Theorem

The Hilbert space H ⊂ RX is a RKHS if and only if for any x ∈ X , the
mapping:

F : H → R
f 7→ f (x)

is continuous.

Corollary

Convergence in a RKHS implies pointwise convergence, i.e., if (fn)n∈N
converges to f in H, then (fn (x))n∈N converges to f (x) for any x ∈ X .

Julien Mairal (Inria) 31/564

Proof

If H is a RKHS then f 7→ f (x) is continuous

If a r.k. K exists, then for any (x, f) ∈ X ×H:

| f (x) | = | 〈f ,Kx〉H |
≤ ‖ f ‖H.‖Kx ‖H (Cauchy-Schwarz)

≤ ‖ f ‖H.K (x, x)
1
2 ,

because ‖Kx ‖2
H = 〈Kx,Kx〉H = K (x, x). Therefore f ∈ H 7→ f (x) ∈ R

is a continuous linear mapping. �

Since F is linear, it is indeed sufficient to show that f → 0⇒ f (x)→ 0.

Julien Mairal (Inria) 32/564

Proof (Converse)

If f 7→ f (x) is continuous then H is a RKHS

Conversely, let us assume that for any x ∈ X the linear form
f ∈ H 7→ f (x) is continuous.
Then by Riesz representation theorem (general property of Hilbert
spaces) there exists a unique gx ∈ H such that:

f (x) = 〈f , gx〉H .

The function K (x, y) = gx (y) is then a r.k. for H. �

Julien Mairal (Inria) 33/564

Unicity of r.k. and RKHS

Theorem

If H is a RKHS, then it has a unique r.k.

Conversely, a function K can be the r.k. of at most one RKHS.

Consequence

This shows that we can talk of ”the” kernel of a RKHS, or ”the” RKHS
of a kernel.

Julien Mairal (Inria) 34/564

Unicity of r.k. and RKHS

Theorem

If H is a RKHS, then it has a unique r.k.

Conversely, a function K can be the r.k. of at most one RKHS.

Consequence

This shows that we can talk of ”the” kernel of a RKHS, or ”the” RKHS
of a kernel.

Julien Mairal (Inria) 34/564

Proof

If a r.k. exists then it is unique

Let K and K ′ be two r.k. of a RKHS H. Then for any x ∈ X :

‖Kx − K ′x ‖2
H =

〈
Kx − K ′x,Kx − K ′x

〉
H

=
〈
Kx − K ′x,Kx

〉
H −

〈
Kx − K ′x,K

′
x

〉
H

= Kx (x)− K ′x (x)− Kx (x) + K ′x (x)

= 0 .

This shows that Kx = K ′x as functions, i.e., Kx(y) = K ′x(y) for any
y ∈ X . In other words, K=K’. �

The RKHS of a r.k. K is unique

Left as exercise.

Julien Mairal (Inria) 35/564

Proof

If a r.k. exists then it is unique

Let K and K ′ be two r.k. of a RKHS H. Then for any x ∈ X :

‖Kx − K ′x ‖2
H =

〈
Kx − K ′x,Kx − K ′x

〉
H

=
〈
Kx − K ′x,Kx

〉
H −

〈
Kx − K ′x,K

′
x

〉
H

= Kx (x)− K ′x (x)− Kx (x) + K ′x (x)

= 0 .

This shows that Kx = K ′x as functions, i.e., Kx(y) = K ′x(y) for any
y ∈ X . In other words, K=K’. �

The RKHS of a r.k. K is unique

Left as exercise.

Julien Mairal (Inria) 35/564

An important result

Theorem

A function K : X × X → R is p.d. if and only if it is a r.k.

Julien Mairal (Inria) 36/564

Proof

A r.k. is p.d.

1 A r.k. is symmetric because, for any (x, y) ∈ X 2:

K (x, y) = 〈Kx,Ky〉H = 〈Ky,Kx〉H = K (y, x) .

2 It is p.d. because for any N ∈ N,(x1, x2, . . . , xN) ∈ XN , and
(a1, a2, . . . , aN) ∈ RN :

N∑
i ,j=1

ai aj K (xi , xj) =
N∑

i ,j=1

ai aj

〈
Kxi ,Kxj

〉
H

= ‖
N∑

i=1

ai Kxi ‖2
H

≥ 0. �

Julien Mairal (Inria) 37/564

Proof

A p.d. kernel is a r.k. (1/4)

Let H0 be the vector subspace of RX spanned by the functions
{Kx}x∈X .

For any f , g ∈ H0, given by:

f =
m∑

i=1

ai Kxi , g =
n∑

j=1

bj Kyj ,

let:
〈f , g〉H0

:=
∑
i ,j

ai bj K (xi , yj) .

Julien Mairal (Inria) 38/564

Proof

A p.d. kernel is a r.k. (2/4)

〈f , g〉H0
does not depend on the expansion of f and g because:

〈f , g〉H0
=

m∑
i=1

ai g (xi) =
n∑

j=1

bj f (yj) .

This also shows that 〈., .〉H0
is a symmetric bilinear form.

This also shows that for any x ∈ X and f ∈ H0:

〈f ,Kx〉H0
= f (x) .

Julien Mairal (Inria) 39/564

Proof

A p.d. kernel is a r.k. (3/4)

K is assumed to be p.d., therefore:

‖ f ‖2
H0

=
m∑

i ,j=1

ai aj K (xi , xj) ≥ 0 .

In particular Cauchy-Schwarz is valid with 〈., .〉H0
.

By Cauchy-Schwarz we deduce that ∀x ∈ X :

| f (x) | =
∣∣ 〈f ,Kx〉H0

∣∣ ≤ ‖ f ‖H0 .K (x, x)
1
2 ,

therefore ‖ f ‖H0 = 0 =⇒ f = 0.

H0 is therefore a pre-Hilbert space endowed with the inner product
〈., .〉H0

.

Julien Mairal (Inria) 40/564

Proof

A p.d. kernel is a r.k. (4/4)

For any Cauchy sequence (fn)n≥0 in
(
H0, 〈., .〉H0

)
, we note that:

∀ (x,m, n) ∈ X × N2, | fm (x)− fn (x) | ≤ ‖ fm − fn ‖H0 .K (x, x)
1
2 .

Therefore for any x the sequence (fn(x))n≥0 is Cauchy in R and has
therefore a limit.

If we add to H0 the functions defined as the pointwise limits of
Cauchy sequences, then the space becomes complete and is
therefore a Hilbert space, with K as r.k. (up to a few technicalities,
left as exercise). �

Julien Mairal (Inria) 41/564

Application: back to Aronzsajn’s theorem

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping

Φ : X 7→ H ,

such that, for any x, x′ in X :

K
(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

φ
X F

Julien Mairal (Inria) 42/564

Proof of Aronzsajn’s theorem

Proof

If K is p.d. over a set X then it is the r.k. of a Hilbert space
H ⊂ RX .

Let the mapping Φ : X → H defined by:

∀x ∈ X , Φ(x) = Kx .

By the reproducing property we have:

∀ (x, y) ∈ X 2, 〈Φ(x),Φ(y)〉H = 〈Kx,Ky〉H = K (x, y) . �

φ
X F

Julien Mairal (Inria) 43/564

Outline

1 Kernels and RKHS
Positive Definite Kernels
Reproducing Kernel Hilbert Spaces (RKHS)
My first kernels
Smoothness functional
The kernel trick

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle

5 Open Problems and Research Topics

Julien Mairal (Inria) 44/564

The linear kernel

Take X = Rd and the linear kernel:

K (x, y) = 〈x, y〉Rd .

Theorem

The RKHS of the linear kernel is the set of linear functions of the form

fw (x) = 〈w, x〉Rd for w ∈ Rd ,

endowed with the norm

‖ fw ‖H = ‖w ‖2 .

Julien Mairal (Inria) 45/564

Proof

The RKHS of the linear kernel consists of functions:

x ∈ Rd 7→ f (x) =
∑

i

ai 〈xi , x〉Rd = 〈w, x〉Rd ,

with w =
∑

i ai xi .

The RKHS is therefore the set of linear forms endowed with the
following inner product:

〈f , g〉HK
= 〈w, v〉Rd ,

when f (x) = w.x and g (x) = v.x.

Julien Mairal (Inria) 46/564

RKHS of the linear kernel (cont.)


Klin (x, x′) = x>x′ .

f (x) = w>x ,

‖ f ‖H = ‖w ‖2 .

||f||=1||f||=2 ||f||=0.5

Julien Mairal (Inria) 47/564

The polynomial kernel

We have already mentioned a generalization of the linear kernel: the
polynomial kernel of degree p:

Kpoly (x, y) = (〈x, y〉Rd + c)p .

Let us find its RKHS for p = 2 and c = 0.

First step: Look for an inner-product.

K (x, y) = trace
(

x>y x>y
)

= trace
(

y>x x>y
)

= trace
(

xx>yy>
)

=
〈

xx>, yy>
〉

F
,

where F is the Froebenius norm for matrices in Rd×d .

Julien Mairal (Inria) 48/564

The polynomial kernel

We have already mentioned a generalization of the linear kernel: the
polynomial kernel of degree p:

Kpoly (x, y) = (〈x, y〉Rd + c)p .

Let us find its RKHS for p = 2 and c = 0.

First step: Look for an inner-product.

K (x, y) = trace
(

x>y x>y
)

= trace
(

y>x x>y
)

= trace
(

xx>yy>
)

=
〈

xx>, yy>
〉

F
,

where F is the Froebenius norm for matrices in Rd×d .

Julien Mairal (Inria) 48/564

The polynomial kernel

Second step: propose a candidate RKHS.
We know that H contains all the functions

f (x) =
∑

i

ai K (xi , x) =
∑

i

ai

〈
xi x
>
i , xx>

〉
F

=

〈∑
i

ai xi x
>
i , xx>

〉
.

Any symmetric matrix in Rd×d may be decomposed as
∑

i ai xi x
>
i . Our

candidate RKHS H will be the set of quadratic functions

fS(x) =
〈

S, xx>
〉

F
= x>Sx for S ∈ Sd×d ,

where Sd×d is the set of symmetric matrices in Rd×d , endowed with
the inner-product 〈fS1 , fS1〉H = 〈S1,S2〉F.

Julien Mairal (Inria) 49/564

The polynomial kernel

Third step: check that the candidate is a Hilbert space.
This step is trivial in the present case since it is easy to see that H a
Euclidean space. Sometimes, things are not so simple and we need to
prove the completeness explicitly.

Fourth step: check that H is the RKHS.
H contains all the functions Kx : t 7→ K (x, t) =

〈
xx>, tt>

〉
F
.

Moreover, we have for all fS in H and x in X ,

fS(x) =
〈

S, xx>
〉

F
= 〈fS, fxx>〉H = 〈fS,Kx〉H �.

Remark

All points x in X are mapped to a rank-one matrix xx>. Most of points
in H do not admit a pre-image.

Exercise: what is the RKHS of the general polynomial kernel?

Julien Mairal (Inria) 50/564

Combining kernels

Theorem

If K1 and K2 are p.d. kernels, then:

K1 + K2,

K1K2, and

cK1, for c ≥ 0,

are also p.d. kernels

If (Ki)i≥1 is a sequence of p.d. kernels that converges pointwisely
to a function K :

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= lim

n→∞
Ki

(
x, x′

)
,

then K is also a p.d. kernel.

Proof: left as exercise

Julien Mairal (Inria) 51/564

Examples

Theorem

If K is a kernel, then eK is a kernel too.

Proof:

eK(x,x′) = lim
n→+∞

n∑
i=0

K (x, x′)i

i !

Julien Mairal (Inria) 52/564

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/564

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/564

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/564

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/564

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)

X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/564

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/564

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/564

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/564

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/564

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/564

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/564

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/564

Quizz : which of the following are p.d. kernels?

X = (−1, 1), K (x, x′) = 1
1−xx′

X = N, K (x, x′) = 2x+x′

X = N, K (x, x′) = 2xx′

X = R+, K (x, x′) = log (1 + xx′)

X = R, K (x, x′) = exp
(
−|x− x′|2

)
X = R, K (x, x′) = cos (x + x′)

X = R, K (x, x′) = cos (x− x′)

X = R+, K (x, x′) = min(x, x′)

X = R+, K (x, x′) = max(x, x′)

X = R+, K (x, x′) = min(x, x′)/max(x, x′)

X = N, K (x, x′) = GCD (x, x′)

X = N, K (x, x′) = LCM (x, x′)

X = N, K (x, x′) = GCD (x, x′) /LCM (x, x′)

Julien Mairal (Inria) 53/564

Outline

1 Kernels and RKHS
Positive Definite Kernels
Reproducing Kernel Hilbert Spaces (RKHS)
My first kernels
Smoothness functional
The kernel trick

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle

5 Open Problems and Research Topics

Julien Mairal (Inria) 54/564

Remember the RKHS of the linear kernel


Klin (x, x′) = x>x′ .

f (x) = w>x ,

‖ f ‖H = ‖w ‖2 .

||f||=1||f||=2 ||f||=0.5

Julien Mairal (Inria) 55/564

Smoothness functional

A simple inequality

By Cauchy-Schwarz we have, for any function f ∈ H and any two
points x, x′ ∈ X :∣∣ f (x)− f

(
x′
) ∣∣ = | 〈f ,Kx − Kx′〉H |
≤ ‖ f ‖H × ‖Kx − Kx′ ‖H
= ‖ f ‖H × dK

(
x, x′

)
.

The norm of a function in the RKHS controls how fast the function
varies over X with respect to the geometry defined by the kernel
(Lipschitz with constant ‖ f ‖H).

Important message

Small norm =⇒ slow variations.

Julien Mairal (Inria) 56/564

Kernels and RKHS : Summary

P.d. kernels can be thought of as inner product after embedding
the data space X in some Hilbert space. As such a p.d. kernel
defines a metric on X .

A realization of this embedding is the RKHS, valid without
restriction on the space X nor on the kernel.

The RKHS is a space of functions over X . The norm of a function
in the RKHS is related to its degree of smoothness w.r.t. the metric
defined by the kernel on X .

We will now see some applications of kernels and RKHS in
statistics, before coming back to the problem of choosing (and
eventually designing) the kernel.

Julien Mairal (Inria) 57/564

Outline

1 Kernels and RKHS
Positive Definite Kernels
Reproducing Kernel Hilbert Spaces (RKHS)
My first kernels
Smoothness functional
The kernel trick

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle

5 Open Problems and Research Topics

Julien Mairal (Inria) 58/564

The kernel trick

Choosing a p.d. kernel K on a set X amounts to embedding the
data in a Hilbert space: there exists a Hilbert space H and a
mapping Φ : X 7→ H such that, for all x, x′ ∈ X ,

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

However this mapping might not be explicitly given, nor convenient
to work with in practice (e.g., large or even infinite dimensions).

A solution is to work implicitly in the feature space!

Kernel trick

Any algorithm to process finite-dimensional vectors that can be
expressed only in terms of pairwise inner products can be applied to
potentially infinite-dimensional vectors in the feature space of a p.d.
kernel by replacing each inner product evaluation by a kernel evaluation.

Julien Mairal (Inria) 59/564

Kernel trick Summary

Summary

The kernel trick is a trivial statement with important applications.

It can be used to obtain nonlinear versions of well-known linear
algorithms, e.g., by replacing the classical inner product by a
Gaussian kernel.

It can be used to apply classical algorithms to non vectorial data
(e.g., strings, graphs) by again replacing the classical inner product
by a valid kernel for the data.

It allows in some cases to embed the initial space to a larger feature
space and involve points in the feature space with no pre-image
(e.g., barycenter).

Julien Mairal (Inria) 60/564

Example 1: computing distances in the feature space

φ
X F

x1

x2

x1

x2φ()

φ()d(x1,x2)

dK (x1, x2)2 = ‖Φ (x1)− Φ (x2) ‖2
H

= 〈Φ (x1)− Φ (x2) ,Φ (x1)− Φ (x2)〉H
= 〈Φ (x1) ,Φ (x1)〉H + 〈Φ (x2) ,Φ (x2)〉H − 2 〈Φ (x1) ,Φ (x2)〉H

dK (x1, x2)2 = K (x1, x1) + K (x2, x2)− 2K (x1, x2)

Julien Mairal (Inria) 61/564

Distance for the Gaussian kernel

The Gaussian kernel with
bandwidth σ on Rd is:

K (x, y) = e−
‖ x−y ‖2

2σ2 ,

K (x, x) = 1 = ‖Φ (x) ‖2
H, so all

points are on the unit sphere in the
feature space.

The distance between the images
of two points x and y in the feature
space is given by:

dK (x, y) =

√
2

[
1− e−

‖ x−y ‖2

2σ2

]
−4 −2 0 2 4

0.
0

0.
4

0.
8

1.
2

||x−y||

d(
x,

y)

Julien Mairal (Inria) 62/564

Example 2: distance between a point and a set

Problem

Let S = (x1, · · · , xn) be a finite set of points in X .

How to define and compute the similarity between any point x in X
and the set S?

A solution

Map all points to the feature space.

Summarize S by the barycenter of the points:

µ :=
1

n

n∑
i=1

Φ (xi) .

Define the distance between x and S by:

dK (x,S) := ‖Φ (x)− µ ‖H .

Julien Mairal (Inria) 63/564

Example 2: distance between a point and a set

Problem

Let S = (x1, · · · , xn) be a finite set of points in X .

How to define and compute the similarity between any point x in X
and the set S?

A solution

Map all points to the feature space.

Summarize S by the barycenter of the points:

µ :=
1

n

n∑
i=1

Φ (xi) .

Define the distance between x and S by:

dK (x,S) := ‖Φ (x)− µ ‖H .

Julien Mairal (Inria) 63/564

Computation

φ
X F

m

Kernel trick

dK (x,S) = ‖Φ (x)− 1

n

n∑
i=1

Φ(xi) ‖H

=

√√√√K (x, x)− 2

n

n∑
i=1

K (x, xi) +
1

n2

n∑
i=1

n∑
j=1

K (xi , xj).

Julien Mairal (Inria) 64/564

Remarks

Remarks

The barycentre µ only exists in the feature space in general: it does
not necessarily have a pre-image xµ such that Φ

(
xµ
)

= µ.

The distance obtained is a Hilbert metric (e.g., Pythagoras theorem
holds etc..)

Julien Mairal (Inria) 65/564

1D illustration

S = {2, 3}
Plot f (x) = d(x ,S)

k (x, y) = xy.

(linear)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

x
d(

x,
S

)

k (x, y) = e−
(x−y)2

2σ2 .

with σ = 1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

x

d(
x,

S
)

k (x, y) = e−
(x−y)2

2σ2 .

with σ = 0.2.

Julien Mairal (Inria) 66/564

2D illustration

S = {(1, 1)′, (1, 2)′, (2, 2)′}
Plot f (x) = d(x ,S)

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

k (x, y) = xy.

(linear)

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

k (x, y) = e−
(x−y)2

2σ2 .

with σ = 1.

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

k (x, y) = e−
(x−y)2

2σ2 .

with σ = 0.2.

Julien Mairal (Inria) 67/564

Application in discrimination

S1 = {(1, 1)′, (1, 2)′} and S2 = {(1, 3)′, (2, 2)′}
Plot f (x) = d (x,S1)2 − d (x,S2)2

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

3.5

4

k (x, y) = xy.

(linear)

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

3.5

4

k (x, y) = e−
(x−y)2

2σ2 .

with σ = 1.

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

3.5

4

k (x, y) = e−
(x−y)2

2σ2 .

with σ = 0.2.

Julien Mairal (Inria) 68/564

Example 3: Centering data in the feature space

Problem

Let S = (x1, · · · , xn) be a finite set of points in X endowed with a
p.d. kernel K . Let K be their n × n Gram matrix:
[K]ij = K (xi , xj) .

Let µ = 1/n
∑n

i=1 Φ (xi) their barycenter, and ui = Φ (xi)− µ for
i = 1, . . . , n be centered data in H.

How to compute the centered Gram matrix [Kc]i ,j = 〈ui ,uj〉H?

φ
X F

m

Julien Mairal (Inria) 69/564

Computation

Kernel trick

A direct computation gives, for 0 ≤ i , j ≤ n:

Kc
i ,j = 〈Φ (xi)− µ,Φ (xj)− µ〉H

= 〈Φ (xi) ,Φ (xj)〉H − 〈µ,Φ (xi) + Φ (xj)〉H + 〈µ,µ〉H

= Ki ,j −
1

n

n∑
k=1

(Ki ,k + Kj ,k) +
1

n2

n∑
k,l=1

Kk,l .

This can be rewritten in matricial form:

Kc = K−UK−KU + UKU = (I−U) K (I−U) ,

where Ui ,j = 1/n for 1 ≤ i , j ≤ n.

Julien Mairal (Inria) 70/564

Part 2

Kernel Methods
Supervised Learning

Julien Mairal (Inria) 71/564

Back to classifying cats and dogs

Regularized empirical risk formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

Julien Mairal (Inria) 72/564

Back to classifying cats and dogs

Regularized empirical risk formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

A simple parametrization when X = Rp and Y = {−1,+1}.
F = {fw : w ∈ Rp} where the fw’s are linear: fw : x 7→ x>w.

The regularization is the simple Euclidean norm Ω(fw) = ‖w‖2
2.

Julien Mairal (Inria) 72/564

Back to classifying cats and dogs

Regularized empirical risk formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

A simple parametrization when X = Rp and Y = {−1,+1}.
This is equivalent to using a linear kernel K (x, x′) = x>x′.
In that case, F is the Hilbert space H of linear functions fw : x 7→ x>w
and Ω(fw) = ‖fw‖2

H = ‖w‖2
2.

Julien Mairal (Inria) 72/564

Back to classifying cats and dogs

Regularized empirical risk formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

What are the new perspectives with kernel methods?

being able to deal with non-linear functional spaces endowed with a
natural regularization function ‖.‖2

H.

being able to deal with non-vectorial data (graphs, trees).

Julien Mairal (Inria) 72/564

Motivations

Two theoretical results underpin a family of powerful algorithms for data
analysis using positive definite kernels, collectively known as kernel
methods:

The kernel trick, based on the representation of p.d. kernels as
inner products,

the representer theorem, based on some properties of the
regularization functional defined by the RKHS norm.

An important property

When needed, the RKHS norm acts as a natural regularization function
that penalizes variations of functions.

Julien Mairal (Inria) 73/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Foundations of constrained optimization
Support vector machines

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle

5 Open Problems and Research Topics

Julien Mairal (Inria) 74/564

Back to classifying cats and dogs

Regularized empirical risk formulation with kernels

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈H

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λ‖f ‖2
H︸ ︷︷ ︸

regularization

. (1)

Question: how to solve the above minimization problem?

A simple theorem, called “representer theorem” can turn (1) into a
concrete optimization problem in Rn.

Julien Mairal (Inria) 75/564

The Theorem

Representer Theorem

Let X be a set endowed with a p.d. kernel K , HK the corresponding
RKHS, and S = {x1, · · · , xn} ⊂ X a finite set of points in X .

Let Ψ : Rn+1 → R be a function of n + 1 variables, strictly
increasing with respect to the last variable.

Then, any solution to the optimization problem:

min
f ∈HK

Ψ (f (x1) , · · · , f (xn) , ‖ f ‖HK
) , (2)

admits a representation of the form:

∀x ∈ X , f (x) =
n∑

i=1

αi K (xi , x) . (3)

Julien Mairal (Inria) 76/564

Proof (1/2)

Let ξ (f ,S) be the functional that is minimized in the statement of
the representer theorem, and HSK the linear span in HK of the
vectors Kxi , i.e.,

HSK =

{
f ∈ HK : f (x) =

n∑
i=1

αi K (xi , x) , (α1, · · · , αn) ∈ Rn

}
.

HSK finite-dimensional subspace, therefore any function f ∈ HK can
be uniquely decomposed as:

f = fS + f⊥ ,

with fS ∈ HSK and f⊥ ⊥ HSK (by orthogonal projection).

Julien Mairal (Inria) 77/564

Proof (2/2)

HK being a RKHS it holds that:

∀i = 1, · · · , n, f⊥ (xi) = 〈f⊥,K (xi , .)〉HK
= 0 ,

because K (xi , .) ∈ HK , therefore:

∀i = 1, · · · , n, f (xi) = fS (xi) .

Pythagoras’ theorem in HK then shows that:

‖ f ‖2
HK

= ‖ fS ‖2
HK

+ ‖ f⊥ ‖2
HK

.

As a consequence, ξ (f ,S) ≥ ξ (fS ,S) , with equality if and only if
‖ f⊥ ‖HK

= 0. The minimum of Ψ is therefore necessarily in HSK .
�

Julien Mairal (Inria) 78/564

Remarks

Practical and theoretical consequences

Often the function Ψ has the form:

Ψ (f (x1) , · · · , f (xn) , ‖ f ‖HK
) = c (f (x1) , · · · , f (xn)) + λΩ (‖ f ‖HK

)

where c(.) measures the “fit” of f to a given problem (regression,
classification, dimension reduction, ...) and Ω is strictly increasing. This
formulation has two important consequences:

Theoretically, the minimization will enforce the norm ‖ f ‖HK
to be

“small”, which can be beneficial by ensuring a sufficient level of
smoothness for the solution (regularization effect).

Practically, we know by the representer theorem that the solution
lives in a subspace of dimension n, which can lead to efficient
algorithms although the RKHS itself can be of infinite dimension.

Julien Mairal (Inria) 79/564

Remarks

Dual interpretations of kernel methods

Most kernel methods have two complementary interpretations:

A geometric interpretation in the feature space, thanks to the kernel
trick. Even when the feature space is “large”, most kernel methods
work in the linear span of the embeddings of the points available.

A functional interpretation, often as an optimization problem over
(subsets of) the RKHS associated to the kernel.

The representer theorem has important consequences, but it is in fact
rather trivial. We are looking for a function f in H such that for all x
in X , f (x) = 〈Kx, f 〉H. The part f ⊥ that is orthogonal to the Kxi ’s is
thus “useless” to explain the training data.

Julien Mairal (Inria) 80/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Foundations of constrained optimization
Support vector machines

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle

5 Open Problems and Research Topics

Julien Mairal (Inria) 81/564

Regression

Setup

Let S = {x1, . . . , xn} ∈ X n be a set of points

Let y = {y1, . . . , yn} ∈ Rn be real numbers attached to the points

Regression = find a function f : X → R to predict y by f (x)

-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1 2 3 4 5 6 7

line 1
line 2

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
	

�
�

Julien Mairal (Inria) 82/564

Least-square regression

Let us quantify the error if f predicts f (x) instead of y by:

L (f (x) , y) = (y − f (x))2 .

Fix a set of functions H.

Least-square regression amounts to solving:

f̂ ∈ arg min
f ∈H

1

n

n∑
i=1

(yi − f (xi))2 .

Issues: unstable (especially in large dimensions), overfitting if H is
too “large”.

Julien Mairal (Inria) 83/564

Regularized least-square

Let us consider a RKHS H, RKHS associated to a p.d. kernel K
on X .

Let us regularize the functional to be minimized by:

f̂ = arg min
f ∈H

1

n

n∑
i=1

(yi − f (xi))2 + λ‖ f ‖2
H.

1st effect = prevent overfitting by penalizing non-smooth functions.

Julien Mairal (Inria) 84/564

Representation of the solution

By the representer theorem, any solution of:

f̂ = arg min
f ∈HK

1

n

n∑
i=1

(yi − f (xi))2 + λ‖ f ‖2
HK
.

can be expanded as:

f̂ (x) =
n∑

i=1

αi K (xi , x) .

2nd effect = simplifying the solution.

Julien Mairal (Inria) 85/564

Dual formulation

Let α = (α1, . . . , αn)> ∈ Rn,

Let K be the n × n Gram matrix: Ki ,j = K (xi , xj) .

We can then write:(
f̂ (x1) , . . . , f̂ (xn)

)>
= Kα,

The following holds as usual:

‖ f̂ ‖2
HK

= α>Kα.

Julien Mairal (Inria) 86/564

Dual formulation

The problem is therefore equivalent to:

arg min
α∈Rn

1

n
(Kα− y)> (Kα− y) + λα>Kα.

This is a convex and differentiable function of α. Its minimum can
therefore be found by setting the gradient in α to zero:

0 =
2

n
K (Kα− y) + 2λKα

= K [(K + λnI)α− y] .

Julien Mairal (Inria) 87/564

Dual formulation

K being a symmetric matrix, it can be diagonalized in an
orthonormal basis and Ker(K) ⊥ Im(K).

In this basis we see that (K + λnI)−1 leaves Im(K) and Ker(K)
invariant.

The problem is therefore equivalent to:

(K + λnI)α− y ∈ Ker(K)

⇔α− (K + λnI)−1 y ∈ Ker(K)

⇔α = (K + λnI)−1 y + ε, with Kε = 0.

Julien Mairal (Inria) 88/564

Kernel ridge regression

However, if α′ = α+ ε with Kε = 0, then:

‖ f − f ′ ‖2
H =

(
α−α′

)>
K
(
α−α′

)
= 0,

therefore f = f ′.

One solution to the initial problem is therefore:

f̂ =
n∑

i=1

αi K (xi , x) ,

with
α = (K + λnI)−1 y.

Julien Mairal (Inria) 89/564

Remarks

The matrix (K + nλI)−1 is invertible when λ > 0.

When λ→ 0, the method converges towards the solution of the
classical unregularized least-square solution. When λ→∞, the
solution converges to f = 0.

In practice the symmetric matrix K + nλI is inverted with specific
algorithms (e.g., Cholevsky decomposition).

This method becomes difficult to use when the number of points
becomes large.

Julien Mairal (Inria) 90/564

Example

-4

-3

-2

-1

0

1

2

3

4

-2 -1 0 1 2 3 4 5 6 7

l=0
l=0.01

l=0.1
l=1

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
	
	

�
�

Julien Mairal (Inria) 91/564

Kernel methods: Summary

The kernel trick allows to extend many linear algorithms to
non-linear settings and to general data (even non-vectorial).

The representer theorem shows that that functional optimization
over (subsets of) the RKHS is feasible in practice.

We will see next a particularly successful applications of kernel
methods, pattern recognition.

Julien Mairal (Inria) 92/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Foundations of constrained optimization
Support vector machines

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle

5 Open Problems and Research Topics

Julien Mairal (Inria) 93/564

Pattern recognition

APPLE

APPLE

APPLE
APPLE

APPLE

PEAR

PEAR
PEAR

??? ???

???

Input variables x ∈ X .

Output y ∈ {−1, 1}.
Training set S = {(x1, y1) , . . . , (xn, yn)}.

Julien Mairal (Inria) 94/564

Or again the cats and dogs example...

Regularized empirical risk formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈F

1

n

n∑
i=1

L(yi , f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λΩ(f)︸ ︷︷ ︸
regularization

.

Julien Mairal (Inria) 95/564

...which we may reformulate with kernels

Regularized empirical risk formulation

The goal is to learn a prediction function f : X → Y given labeled
training data (xi ∈ X , yi ∈ Y)i=1,...,n:

min
f ∈H

1

n

n∑
i=1

ϕ(yi f (xi))︸ ︷︷ ︸
empirical risk, data fit

+ λ‖f ‖2
H︸ ︷︷ ︸

regularization

.

By the representer theorem, the solution of the unconstrained problem
can be expanded as:

f (x) =
n∑

i=1

αi K (xi , x) .

Julien Mairal (Inria) 96/564

Optimization in RKHS

Plugging into the original problem we obtain the following
unconstrained and convex optimization problem in Rn:

min
α∈Rn

1

n

n∑
i=1

ϕ

yi

n∑
j=1

αj K (xi , xj)

+ λ

n∑
i ,j=1

αiαj K (xi , xj)

 .

which in matrix notation gives

min
α∈Rn

{
1

n

n∑
i=1

ϕ (yi [Kα]i) + λα>Kα

}
, .

This can be implemented using general packages for convex
optimization or specific algorithms (e.g., for SVM).

Julien Mairal (Inria) 97/564

Loss function examples

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

u

ph
i(u

)

1−SVM
2−SVM
Logistic
Boosting

Method ϕ(u)

Kernel logistic regression log (1 + e−u)
Support vector machine (1-SVM) max (1− u, 0)

Support vector machine (2-SVM) max (1− u, 0)2

Boosting e−u

Julien Mairal (Inria) 98/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Foundations of constrained optimization
Support vector machines

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle

5 Open Problems and Research Topics

Julien Mairal (Inria) 99/564

Formalization

Definition of the risk and notation

Let P be an (unknown) distribution on X × Y.

Observation: Sn = (Xi ,Yi)i=1,...,n i.i.d. random variables according
to P.

Loss function L (f (x) , y) ∈ R small when f (x) is a good predictor
for y .

Risk: R(f) = E[L (f (X) ,Y)].

Estimator f̂n : X → Y.

Goal: small risk R
(

f̂n

)
.

Julien Mairal (Inria) 100/564

Large-margin classifiers

Definition of the margin

For pattern recognition Y = {−1, 1}.
The goal is to estimate a prediction function f : X → R.

The margin of the function f for a pair (x, y) is:

yf (x) .

Large margin classifiers

Focusing on large margins ensures that f (x) has the same sign as y
and a large absolute value (confidence).

Suggests a loss function L (f (x) , y) = ϕ (yf (x)), where ϕ : R→ R
is non-increasing.

Goal: small ϕ-risk Rϕ(f) = E[ϕ (Yf (X))].

Julien Mairal (Inria) 101/564

Empirical risk minimization (ERM)

ERM estimator

Given n observations, the empirical ϕ-risk is:

Rn
ϕ(f) =

1

n

n∑
i=1

ϕ (Yi f (Xi)) .

The ERM estimator on the functional class F is the solution (when
it exists) of:

f̂n = arg min
f ∈F

Rn
ϕ(f) .

Question

When is Rn
ϕ(f) a good estimate of the true risk Rϕ(f)?

Julien Mairal (Inria) 102/564

Empirical risk minimization (ERM)

ERM estimator

Given n observations, the empirical ϕ-risk is:

Rn
ϕ(f) =

1

n

n∑
i=1

ϕ (Yi f (Xi)) .

The ERM estimator on the functional class F is the solution (when
it exists) of:

f̂n = arg min
f ∈F

Rn
ϕ(f) .

Question

When is Rn
ϕ(f) a good estimate of the true risk Rϕ(f)?

Julien Mairal (Inria) 102/564

Class capacity

Motivations

The ERM principle gives a good solution if Rn
ϕ

(
f̂n

)
is similar to the

minimum achievable risk inff ∈F Rϕ(f).

This can be ensured if F is not “too large”.

We need a measure of the “capacity” of F .

Definition: Rademacher complexity

The Rademacher complexity of a class of functions F is:

Radn (F) = EX ,σ

[
sup
f ∈F

∣∣∣∣∣ 2

n

n∑
i=1

σi f (Xi)

∣∣∣∣∣
]
,

where the expectation is over (Xi)i=1,...,n and the independent uniform
{±1}-valued (Rademacher) random variables (σi)i=1,...,n.

Julien Mairal (Inria) 103/564

Basic learning bounds

Suppose ϕ is Lipschitz with constant Lϕ:

∀u, u′ ∈ R,
∣∣ϕ(u)− ϕ(u′)

∣∣ ≤ Lϕ
∣∣ u − u′

∣∣ .
Then on average over the training set (and with high probability)
the ϕ-risk of the ERM estimator is closed to the empirical one:

ES
[

sup
f ∈F

∣∣Rϕ (f)− Rn
ϕ (f)

∣∣] ≤ 2LϕRadn (F) .

The ϕ-risk of the ERM estimator is also close to the smallest
achievable on F (on average and with large probability):

ESRϕ
(

f̂n

)
≤ inf

f ∈F
Rϕ(f) + 4LϕRadn (F) .

Julien Mairal (Inria) 104/564

ERM in RKHS balls

Principle

Assume X is endowed with a p.d. kernel.

We consider the ball of radius B in the RKHS as function class for
the ERM:

FB = {f ∈ H : ‖ f ‖H ≤ B} .

Theorem (capacity control of RKHS balls)

Radn (FB) ≤ 2B
√
EK (X ,X)√

n
.

Julien Mairal (Inria) 105/564

Proof (1/2)

Radn (FB) = EX ,σ

[
sup

f∈FB

∣∣∣∣∣ 2

n

n∑
i=1

σi f (Xi)

∣∣∣∣∣
]

= EX ,σ

[
sup

f∈FB

∣∣∣∣∣
〈

f ,
2

n

n∑
i=1

σi KXi

〉 ∣∣∣∣∣
]

(RKHS)

= EX ,σ

[
B‖ 2

n

n∑
i=1

σi KXi ‖H
]

(Cauchy-Schwarz)

=
2B

n
EX ,σ

√√√√‖ n∑
i=1

σi KXi ‖2
H


≤ 2B

n

√√√√√EX ,σ

 n∑
i,j=1

σiσj K (Xi ,Xj)

 (Jensen)

Julien Mairal (Inria) 106/564

Proof (2/2)

But Eσ [σiσj] is 1 if i = j , 0 otherwise. Therefore:

Radn (FB) ≤ 2B

n

√√√√√EX

 n∑
i ,j=1

Eσ [σiσj] K (Xi ,Xj)


≤ 2B

n

√√√√EX

n∑
i=1

K (Xi ,Xi)

=
2B
√

EX K (X ,X)√
n

. �

Julien Mairal (Inria) 107/564

Basic learning bounds in RKHS balls

Corollary

Suppose K (X ,X) ≤ κ2 a.s. (e.g., Gaussian kernel and κ = 1).

Let the minimum possible ϕ-risk:

R∗ϕ = inf
f measurable

Rϕ(f) .

Then we directly get for the ERM estimator in FB :

ERϕ
(

f̂n

)
− R∗ϕ ≤

8LϕκB√
n

+

[
inf

f ∈FB

Rϕ(f)− R∗ϕ

]
.

Julien Mairal (Inria) 108/564

Choice of B by structural risk minimization

Remark

The estimation error upper bound 8LϕκB/
√

n increases (linearly)
with B.

The approximation error
[
inff ∈FB

Rϕ(f)− R∗ϕ
]

decreases with B.

Ideally, the choice of B should find a trade-off that minimizes the
upper bound.

This is achieved when

∂ inff ∈FB
Rϕ(f)

∂B
= −8Lϕκ√

n
.

Julien Mairal (Inria) 109/564

ERM in practice

Reformulation as penalized minimization

We must solve the constrained minimization problem:{
minf ∈H

1
n

∑n
i=1 ϕ (yi f (xi))

subject to ‖ f ‖H ≤ B .

This is a constrained optimization problem.

To make this practical we assume that ϕ is convex.

The problem is then a convex problem in f for which strong duality
holds. In particular f solves the problem if and only if it solves for
some dual parameter λ the unconstrained problem:

min
f ∈H

{
1

n

n∑
i=1

ϕ (yi f (xi)) + λ‖ f ‖2
H

}
.

Julien Mairal (Inria) 110/564

ERM in practice

Reformulation as penalized minimization

We must solve the constrained minimization problem:{
minf ∈H

1
n

∑n
i=1 ϕ (yi f (xi))

subject to ‖ f ‖H ≤ B .

This is a constrained optimization problem.

To make this practical we assume that ϕ is convex.

The problem is then a convex problem in f for which strong duality
holds. In particular f solves the problem if and only if it solves for
some dual parameter λ the unconstrained problem:

min
f ∈H

{
1

n

n∑
i=1

ϕ (yi f (xi)) + λ‖ f ‖2
H

}
.

Julien Mairal (Inria) 110/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Foundations of constrained optimization
Support vector machines

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle

5 Open Problems and Research Topics

Julien Mairal (Inria) 111/564

A few slides on convex duality

Strong Duality

α⋆

α κ

κ⋆

f(α), primal

g(κ), dual

b

b

b

b

Strong duality means that maxκ g(κ) = minα f (α)

Strong duality holds in most “reasonable cases” for convex
optimization (to be detailed soon).

Julien Mairal (Inria) 112/564

A few slides on convex duality

Strong Duality

α⋆

α κ

κ⋆

f(α), primal

g(κ), dual

b

b

b

b

The relation between κ? and α? is not always known a priori.

Julien Mairal (Inria) 112/564

A few slides on convex duality

Parenthesis on duality gaps

α̃

α

κ̃

κ

f(α), primal

g(κ), dual

b

b

b

b
δ(α̃, κ̃)

The duality gap guarantees us that 0 ≤ f (α̃)− f (α?) ≤ δ(α̃, κ̃).

Dual problems are often obtained by Lagrangian or Fenchel duality.

Julien Mairal (Inria) 113/564

A few slides on Lagrangian duality

Setting

We consider an equality and inequality constrained optimization
problem over a variable x ∈ X :

minimize f (x)

subject to hi (x) = 0 , i = 1, . . . ,m ,

gj (x) ≤ 0 , j = 1, . . . , r ,

making no assumption of f , g and h.

Let us denote by f ∗ the optimal value of the decision function
under the constraints, i.e., f ∗ = f (x∗) if the minimum is reached at
a global minimum x∗.

Julien Mairal (Inria) 114/564

A few slides on Lagrangian duality

Lagrangian

The Lagrangian of this problem is the function L : X × Rm × Rr → R
defined by:

L (x , λ, µ) = f (x) +
m∑

i=1

λi hi (x) +
r∑

j=1

µj gj (x) .

Lagrangian dual function

The Lagrange dual function g : Rm × Rr → R is:

q(λ, µ) = inf
x∈X

L (x , λ, µ)

= inf
x∈X

f (x) +
m∑

i=1

λi hi (x) +
r∑

j=1

µj gj (x)

 .

Julien Mairal (Inria) 115/564

A few slides on convex Lagrangian duality

For the (primal) problem:

minimize f (x)

subject to h(x) = 0 , g(x) ≤ 0 ,

the Lagrange dual problem is:

maximize q(λ, µ)

subject to µ ≥ 0 ,

Proposition

q is concave in (λ, µ), even if the original problem is not convex.

The dual function yields lower bounds on the optimal value f ∗ of
the original problem when µ is nonnegative:

q(λ, µ) ≤ f ∗ , ∀λ ∈ Rm,∀µ ∈ Rr , µ ≥ 0 .

Julien Mairal (Inria) 116/564

Proofs

For each x , the function (λ, µ) 7→ L(x , λ, µ) is linear, and therefore
both convex and concave in (λ, µ). The pointwise minimum of
concave functions is concave, therefore q is concave.

Let x̄ be any feasible point, i.e., h(x̄) = 0 and g(x̄) ≤ 0. Then we
have, for any λ and µ ≥ 0:

m∑
i=1

λi hi (x̄) +
r∑

i=1

µi gi (x̄) ≤ 0 ,

=⇒ L(x̄ , λ, µ) = f (x̄) +
m∑

i=1

λi hi (x̄) +
r∑

i=1

µi gi (x̄) ≤ f (x̄) ,

=⇒ q(λ, µ) = inf
x

L(x , λ, µ) ≤ L(x̄ , λ, µ) ≤ f (x̄) , ∀x̄ . �

Julien Mairal (Inria) 117/564

Weak duality

Let d∗ the optimal value of the Lagrange dual problem. Each
q(λ, µ) is an lower bound for f ∗ and by definition d∗ is the best
lower bound that is obtained. The following weak duality inequality
therefore always hold:

d∗ ≤ f ∗ .

This inequality holds when d∗ or f ∗ are infinite. The difference
d∗ − f ∗ is called the optimal duality gap of the original problem.

Julien Mairal (Inria) 118/564

Strong duality

We say that strong duality holds if the optimal duality gap is zero,
i.e.:

d∗ = f ∗ .

If strong duality holds, then the best lower bound that can be
obtained from the Lagrange dual function is tight

Strong duality does not hold for general nonlinear problems.

It usually holds for convex problems.

Conditions that ensure strong duality for convex problems are called
constraint qualification.

in that case, we have for all feasible primal and dual points x , λ, µ,

q(λ, µ) ≤ q(λ?, µ?) = L (x?, λ?, µ?) = f (x?) ≤ f (x).

Julien Mairal (Inria) 119/564

Slater’s constraint qualification

Strong duality holds for a convex problem:

minimize f (x)

subject to gj (x) ≤ 0 , j = 1, . . . , r ,

Ax = b ,

if it is strictly feasible, i.e., there exists at least one feasible point that
satisfies:

gj (x) < 0 , j = 1, . . . , r , Ax = b .

Julien Mairal (Inria) 120/564

Remarks

Slater’s conditions also ensure that the maximum d∗ (if > −∞) is
attained, i.e., there exists a point (λ∗, µ∗) with

q (λ∗, µ∗) = d∗ = f ∗

They can be sharpened. For example, strict feasibility is not
required for affine constraints.

There exist many other types of constraint qualifications

Julien Mairal (Inria) 121/564

Dual optimal pairs

Suppose that strong duality holds, x∗ is primal optimal, (λ∗, µ∗) is dual
optimal. Then we have:

f (x∗) = q (λ∗, µ∗)

= inf
x∈Rn

f (x) +
m∑

i=1

λ∗i hi (x) +
r∑

j=1

µ∗j gj (x)


≤ f (x∗) +

m∑
i=1

λ∗i hi (x∗) +
r∑

j=1

µ∗j gj (x∗)

≤ f (x∗)

Hence both inequalities are in fact equalities.

Julien Mairal (Inria) 122/564

Complimentary slackness

The first equality shows that:

L (x∗, λ∗, µ∗) = inf
x∈Rn

L (x , λ∗, µ∗) ,

showing that x∗ minimizes the Lagrangian at (λ∗, µ∗). The second
equality shows that:

µj gj (x∗) = 0 , j = 1, . . . , r .

This property is called complementary slackness:
the ith optimal Lagrange multiplier is zero unless the ith constraint is
active at the optimum.

Julien Mairal (Inria) 123/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning
The representer theorem
Kernel ridge regression
Classification with empirical risk minimization
A (tiny) bit of learning theory
Foundations of constrained optimization
Support vector machines

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle

5 Open Problems and Research Topics

Julien Mairal (Inria) 124/564

Motivations

Support vector machines (SVM)

Historically the first “kernel method” for pattern recognition, still
the most popular.

Often state-of-the-art in performance.

One particular choice of loss function (hinge loss).

Leads to a sparse solution, i.e., not all points are involved in the
decomposition (compression).

Particular algorithm for fast optimization (decomposition by
chunking methods).

Julien Mairal (Inria) 125/564

Definitions

yf(x)

l(f(x),y)

1

The loss function is the hinge loss:

ϕhinge(u) = max (1− u, 0) =

{
0 if u ≥ 1,

1− u otherwise.

SVM solve the problem:

min
f ∈H

{
1

n

n∑
i=1

ϕhinge (yi f (xi)) + λ‖ f ‖2
H

}
.

Julien Mairal (Inria) 126/564

Problem reformulation (1/3)

Slack variables

This is a convex optimization problem

However the objective function in not differentiable, so we
reformulate the problem with additional slack variables
ξ1, . . . , ξn ∈ R:

min
f ∈H,ξ∈Rn

{
1

n

n∑
i=1

ξi + λ‖ f ‖2
H

}
,

subject to:
ξi ≥ ϕhinge (yi f (xi)) .

Julien Mairal (Inria) 127/564

Problem reformulation (2/3)

The objective function is now differentiable in f and ξi , and we can
rewrite the constraints as a conjunction of linear constraints:

min
f ∈H,ξ∈Rn

1

n

n∑
i=1

ξi + λ‖ f ‖2
H ,

subject to: {
ξi ≥ 1− yi f (xi) , for i = 1, . . . , n ,

ξi ≥ 0, for i = 1, . . . , n .

Julien Mairal (Inria) 128/564

Problem reformulation (3/3)

Finite-dimensional expansion

Replacing f̂ by

f̂ (x) =
n∑

i=1

αi K (xi , x) ,

the problem can be rewritten as an optimization problem in α and ξ:

min
α∈Rn,ξ∈Rn

1

n

n∑
i=1

ξi + λα>Kα ,

subject to:{
yi
∑n

j=1 αj K (xi , xj) + ξi − 1 ≥ 0 , for i = 1, . . . , n ,

ξi ≥ 0 , for i = 1, . . . , n .

Julien Mairal (Inria) 129/564

Problem reformulation (3/3)

Finite-dimensional expansion

Replacing f̂ by

f̂ (x) =
n∑

i=1

αi K (xi , x) ,

the problem can be rewritten as an optimization problem in α and ξ:

min
α∈Rn,ξ∈Rn

1

n

n∑
i=1

ξi + λα>Kα ,

subject to: {
yi [Kα]i + ξi − 1 ≥ 0 , for i = 1, . . . , n ,

ξi ≥ 0 , for i = 1, . . . , n .

Julien Mairal (Inria) 129/564

Solving the problem

Remarks

This is a classical quadratic program (minimization of a convex
quadratic function with linear constraints) for which any
out-of-the-box optimization package can be used.

The dimension of the problem and the number of constraints,
however, are 2n where n is the number of points. General-purpose
QP solvers will have difficulties when n exceeds a few thousands.

Solving the dual of this problem (also a QP) will be more
convenient and lead to faster algorithms (due to the sparsity of the
final solution).

Julien Mairal (Inria) 130/564

Lagrangian

Let us introduce the Lagrange multipliers µ ∈ Rn and ν ∈ Rn.

The Lagrangian of the problem is:

L (α, ξ,µ,ν) =
1

n

n∑
i=1

ξi + λα>Kα

−
n∑

i=1

µi [yi [Kα]i + ξi − 1]−
n∑

i=1

νiξi .

Julien Mairal (Inria) 131/564

Lagrangian

Let us introduce the Lagrange multipliers µ ∈ Rn and ν ∈ Rn.

The Lagrangian of the problem is:

L (α, ξ,µ,ν) =
1

n

n∑
i=1

ξi + λα>Kα

− (diag (y)µ)>Kα− (µ+ ν)>ξ + µ>1.

Julien Mairal (Inria) 131/564

Minimizing L (α, ξ,µ,ν) w.r.t. α

L (α, ξ,µ,ν) is a convex quadratic function in α. It is minimized
when its gradient is null:

∇αL = 2λKα−Kdiag (y)µ = K (2λα− diag (y)µ) ,

Solving ∇αL = 0 leads to

α =
diag (y)µ

2λ
+ ε,

with Kε = 0. But ε does not change f (same as kernel ridge
regression), so we can choose for example ε = 0 and:

α∗i (µ,ν) =
yiµi

2λ
, for i = 1, . . . , n.

Julien Mairal (Inria) 132/564

Minimizing L (α, ξ,µ,ν) w.r.t. ξ

L (α, ξ,µ,ν) is a linear function in ξ.

Its minimum is −∞ except when ∇ξL = 0, i.e.:

∂L

∂ξi
=

1

n
− µi − νi = 0.

Julien Mairal (Inria) 133/564

Dual function

We therefore obtain the Lagrange dual function:

q (µ,ν) = inf
α∈Rn,ξ∈Rn

L (α, ξ,µ,ν)

=

{∑n
i=1 µi − 1

4λ

∑n
i ,j=1 yi yjµiµj K (xi , xj) if µi + νi = 1

n for all i ,

−∞ otherwise.

The dual problem is:

maximize q (µ,ν)

subject to µ ≥ 0 ,ν ≥ 0 .

Julien Mairal (Inria) 134/564

Dual problem

If µi > 1/n for some i , then there is no νi ≥ 0 such that
µi + νi = 1/n, hence q (µ,ν) = −∞.

If 0 ≤ µi ≤ 1/n for all i , then the dual function takes finite values
that depend only on µ by taking νi = 1/n − µi .

The dual problem is therefore equivalent to:

max
0≤µ≤1/n

n∑
i=1

µi −
1

4λ

n∑
i ,j=1

yi yjµiµj K (xi , xj) .

Julien Mairal (Inria) 135/564

Back to the primal

Once the dual problem is solved in µ we get a solution of the
primal problem by α = diag (y)µ/2λ.

We can therefore directly plug this into the dual problem to obtain
the QP that α must solve:

max
α∈Rn

2
n∑

i=1

αi yi −
n∑

i ,j=1

αiαj K (xi , xj) = 2α>y −α>Kα ,

subject to:

0 ≤ yiαi ≤
1

2λn
, for i = 1, . . . , n .

Julien Mairal (Inria) 136/564

Complimentary slackness conditions

The complimentary slackness conditions are, for i = 1, . . . , n:{
µi [yi f (xi) + ξi − 1] = 0,

νiξi = 0,

In terms of α this can be rewritten as:{
αi [yi f (xi) + ξi − 1] = 0 ,(
αi − yi

2λn

)
ξi = 0 .

Julien Mairal (Inria) 137/564

Analysis of KKT conditions

{
αi [yi f (xi) + ξi − 1] = 0 ,(
αi − yi

2λn

)
ξi = 0 .

If αi = 0, then the second constraint is active: ξi = 0. This implies
yi f (xi) ≥ 1.

If 0 < yiαi <
1

2λn , then both constraints are active: ξi = 0 et
yi f (xi) + ξi − 1 = 0. This implies yi f (xi) = 1.

If αi = yi
2λn , then the second constraint is not active (ξi ≥ 0) while

the first one is active: yi f (xi) + ξi = 1. This implies yi f (xi) ≤ 1

Julien Mairal (Inria) 138/564

Geometric interpretation

Julien Mairal (Inria) 139/564

Geometric interpretation

f(x
)=

−1

f(x
)=

+1

f(x
)=

0

Julien Mairal (Inria) 139/564

Geometric interpretation

0<α

α=0

y<1/2n

αy=1/2nλ

λ

Julien Mairal (Inria) 139/564

Support vectors

Consequence of KKT conditions

The training points with αi 6= 0 are called support vectors.

Only support vectors are important for the classification of new
points:

∀x ∈ X , f (x) =
n∑

i=1

αi K (xi , x) =
∑

i∈SV

αi K (xi , x) ,

where SV is the set of support vectors.

Consequences

The solution is sparse in α, leading to fast algorithms for training
(use of decomposition methods).

The classification of a new point only involves kernel evaluations
with support vectors (fast).

Julien Mairal (Inria) 140/564

Remark: C-SVM

Often the SVM optimization problem is written in terms of a
regularization parameter C instead of λ as follows:

arg min
f ∈H

1

2
‖ f ‖2

H + C
n∑

i=1

Lhinge (f (xi) , yi) .

This is equivalent to our formulation with C = 1
2nλ .

The SVM optimization problem is then:

max
α∈Rd

2
n∑

i=1

αi yi −
n∑

i ,j=1

αiαj K (xi , xj) ,

subject to:
0 ≤ yiαi ≤ C , for i = 1, . . . , n .

This formulation is often called C-SVM.

Julien Mairal (Inria) 141/564

Remark: 2-SVM

A variant of the SVM, sometimes called 2-SVM, is obtained by
replacing the hinge loss by the square hinge loss:

min
f ∈H

{
1

n

n∑
i=1

ϕhinge (yi f (xi))2 + λ‖ f ‖2
H

}
.

After some computation (left as exercice) we find that the dual
problem of the 2-SVM is:

max
α∈Rd

2α>y −α> (K + nλI)α ,

subject to:
0 ≤ yiαi , for i = 1, . . . , n .

This is therefore equivalent to the previous SVM with the kernel
K + nλI and C = +∞

Julien Mairal (Inria) 142/564

Part 3

Kernel Methods
Unsupervised Learning

Julien Mairal (Inria) 143/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning
Kernel K-means and spectral clustering
Kernel PCA
A quick note on kernel CCA

4 The Kernel Jungle

5 Open Problems and Research Topics

Julien Mairal (Inria) 144/564

The K-means algorithm

K-means is probably the most popular algorithm for clustering.

Optimization point of view

Given data points x1, . . . , xn in Rp, it consists of performing alternate
minimization steps for optimizing the following cost function

min
µj∈Rp for j=1,...,k

si∈{1,...,k}, for i=1,...,n

n∑
i=1

‖xi − µsi
‖2

2.

K-means alternates between two steps:

1 cluster assignment:
Given fixed µ1, . . . ,µk , assign each xi to its closest centroid

∀i , si ∈ argmin
s∈{1,...,k}

‖xi − µs‖2
2.

Julien Mairal (Inria) 145/564

The K-means algorithm

K-means is probably the most popular algorithm for clustering.

Optimization point of view

Given data points x1, . . . , xn in Rp, it consists of performing alternate
minimization steps for optimizing the following cost function

min
µj∈Rp for j=1,...,k

si∈{1,...,k}, for i=1,...,n

n∑
i=1

‖xi − µsi
‖2

2.

K-means alternates between two steps:

2 centroids update:
Given the previous assignments s1, . . . , sn, update the centroids

∀j , µj = argmin
µ∈Rp

∑
i :si =j

‖xi − µ‖2
2.

Julien Mairal (Inria) 145/564

The K-means algorithm

K-means is probably the most popular algorithm for clustering.

Optimization point of view

Given data points x1, . . . , xn in Rp, it consists of performing alternate
minimization steps for optimizing the following cost function

min
µj∈Rp for j=1,...,k

si∈{1,...,k}, for i=1,...,n

n∑
i=1

‖xi − µsi
‖2

2.

K-means alternates between two steps:

2 centroids update:
Given the previous assignments s1, . . . , sn, update the centroids

⇔ ∀j , µj =
1

nj

∑
i :si =j

xi .

Julien Mairal (Inria) 145/564

Kernel K-means and spectral clustering

We may now modify the objective to operate in a RKHS. Given data
points x1, . . . , xn in X and a p.d. kernel K : X × X → R with H its
RKHS, the new objective becomes

min
µj∈H for j=1,...,k

si∈{1,...,k} for i=1,...,n

n∑
i=1

‖ϕ(xi)− µsi
‖2
H.

To optimize the cost function, we will first use the following Proposition

Proposition

The center of mass ϕn = 1
n

∑n
i=1 ϕ(xi) solves the following optimization

problem

min
µ∈H

n∑
i=1

‖ϕ(xi)− µ‖2
H.

Julien Mairal (Inria) 146/564

Kernel K-means and spectral clustering

Proof

1

n

n∑
i=1

‖ϕ(xi)− µ‖2
H =

1

n

n∑
i=1

‖ϕ(xi)‖2
H −

〈
2

n

n∑
i=1

ϕ(xi),µ

〉
H

+ ‖µ‖2
H

=
1

n

n∑
i=1

‖ϕ(xi)‖2
H − 2 〈ϕn,µ〉H + ‖µ‖2

H

=
1

n

n∑
i=1

‖ϕ(xi)‖2
H − ‖ϕn‖2

H + ‖ϕn − µ‖2
H,

which is minimum for µ = ϕn.

Julien Mairal (Inria) 147/564

Kernel K-means and spectral clustering

Back with the objective,

min
µj∈H for j=1,...,k

si∈{1,...,k} for i=1,...,n

n∑
i=1

‖ϕ(xi)− µsi
‖2
H,

we know that given assignments si , the optimal µj are the centers of
mass of the respective clusters and we obtain the equivalent objective:

min
si∈{1,...,k}

for i=1,...,n

n∑
i=1

∥∥∥∥∥∥ϕ(xi)−
1

|Csi |
∑
j∈Csi

ϕ(xj)

∥∥∥∥∥∥
2

H

,

or, after short calculations,

min
si∈{1,...,k}

for i=1,...,n

n∑
i=1

K (xi , xi)−
2

|Csi |
∑
j∈Csi

K (xi , xj) +
1

|Csi |2
∑
j∈Csi

∑
l∈Csi

K (xj , xl).

Julien Mairal (Inria) 148/564

Kernel K-means and spectral clustering

and, after removing the constant terms, we obtain the objective

min
si∈{1,...,k}

for i=1,...,n

n∑
i=1

− 1

|Csi |
∑
j∈Csi

K (xi , xj), (?)

The objective can be expressed with pairwise kernel comparisons.
Unfortunately, the problem is hard and we need an appropriate strategy
to obtain an approximate solution.

Greedy approach: kernel K-means

At every iteration,

Update the sets Cl , l = 1, . . . , k given current assignments si ’s.

Update the assignments by minimizing (?) keeping the sets Cl fixed.

The algorithm is similar to the traditional K-means algorithm.

Julien Mairal (Inria) 149/564

Kernel K-means and spectral clustering

Another approach consists of relaxing the non-convex problem with a
feasible one, which yields a class of algorithms called spectral clustering.
First, we rewrite the objective function as

min
si∈{1,...,k}

for i=1,...,n

k∑
l=1

∑
i ,j∈Cl

− 1

|Cl |
K (xi , xj).

and we introduce

the binary matrix A in {0, 1}n×k such that [A]ij = 1 if si = j and 0
otherwise.

a diagonal matrix D in Rl×l with diagonal entries [D]jj equal to the
inverse of the number of elements in cluster j .

and the objective can be rewritten (proof is easy and left as an exercise)

min
A,D

[
− trace (D1/2A>KAD1/2)

]
.

Julien Mairal (Inria) 150/564

Kernel K-means and spectral clustering

min
A,D

[
− trace (D1/2A>KAD1/2)

]
.

The constraints on A,D are such that D1/2A>AD1/2 = I (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z>KZ) s.t. Z>Z = I.

A solution Z? to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.

Julien Mairal (Inria) 151/564

Kernel K-means and spectral clustering

min
A,D

[
− trace (D1/2A>KAD1/2)

]
.

The constraints on A,D are such that D1/2A>AD1/2 = I (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z>KZ) s.t. Z>Z = I.

A solution Z? to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.

Question

How do we obtain an approximate solution (A,D) of the original
problem from Z??

Julien Mairal (Inria) 151/564

Kernel K-means and spectral clustering

min
A,D

[
− trace (D1/2A>KAD1/2)

]
.

The constraints on A,D are such that D1/2A>AD1/2 = I (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z>KZ) s.t. Z>Z = I.

A solution Z? to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.

Answer 1

With the original constraints on A, every row of A has a single non-zero
entry ⇒ compute the maximum entry of every row of Z?.

Julien Mairal (Inria) 151/564

Kernel K-means and spectral clustering

min
A,D

[
− trace (D1/2A>KAD1/2)

]
.

The constraints on A,D are such that D1/2A>AD1/2 = I (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z>KZ) s.t. Z>Z = I.

A solution Z? to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.

Answer 2

Normalize the rows of Z? to have unit `2-norm, and apply the traditional
K-means algorithm on the rows. This is called spectral clustering.

Julien Mairal (Inria) 151/564

Kernel K-means and spectral clustering

min
A,D

[
− trace (D1/2A>KAD1/2)

]
.

The constraints on A,D are such that D1/2A>AD1/2 = I (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = AD1/2:

max
Z∈Rn×k

trace (Z>KZ) s.t. Z>Z = I.

A solution Z? to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.

Answer 3

Choose another variant of the previous procedures.

Julien Mairal (Inria) 151/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning
Kernel K-means and spectral clustering
Kernel PCA
A quick note on kernel CCA

4 The Kernel Jungle

5 Open Problems and Research Topics

Julien Mairal (Inria) 152/564

Principal Component Analysis (PCA)

Classical setting

Let S = {x1, . . . , xn} be a set of vectors (xi ∈ Rd)

PCA is a classical algorithm in multivariate statistics to define a set
of orthogonal directions that capture the maximum variance

Applications: low-dimensional representation of high-dimensional
points, visualization

PC1PC2

Julien Mairal (Inria) 153/564

Principal Component Analysis (PCA)

Formalization

Assume that the data are centered (otherwise center them as
preprocessing), i.e.:

n∑
i=1

xi = 0.

The orthogonal projection onto a direction w ∈ Rd is the function
hw : X → R defined by:

hw (x) = x>
w

‖w ‖ .

Julien Mairal (Inria) 154/564

Principal Component Analysis (PCA)

Formalization

The empirical variance captured by hw is:

ˆvar (hw) :=
1

n

n∑
i=1

hw (xi)
2 =

1

n

n∑
i=1

(
x>i w

)2

‖w ‖2
.

The i-th principal direction wi (i = 1, . . . , d) is defined by:

wi = arg max
w⊥{w1,...,wi−1}

ˆvar (hw) .

Julien Mairal (Inria) 155/564

Principal Component Analysis (PCA)

Solution

Let X be the n × d data matrix whose rows are the vectors
x1, . . . , xn. We can then write:

ˆvar (hw) =
1

n

n∑
i=1

(
x>i w

)2

‖w ‖2
=

1

n

w>X>Xw

w>w
.

The solutions of:

wi = arg max
w⊥{w1,...,wi−1}

1

n

w>X>Xw

w>w

are the successive eigenvectors of K = X>X, ranked by decreasing
eigenvalues.

Julien Mairal (Inria) 156/564

Functional point of view

Let K (x, y) = x>y be the linear kernel.

The associated RKHS H is the set of linear functions:

fw (x) = w>x ,

endowed with the norm ‖ fw ‖H = ‖w ‖Rd .

Therefore we can write:

ˆvar (hw) =
1

n

n∑
i=1

(
x>i w

)2

‖w ‖2
=

1

n‖ fw ‖2

n∑
i=1

fw(xi)
2.

Moreover, w ⊥ w′ ⇔ fw ⊥ fw′ .

Julien Mairal (Inria) 157/564

Functional point of view

In other words, PCA solves, for i = 1, . . . , d :

fi = arg max
f⊥{f1,...,fi−1}

1

n‖ f ‖2

n∑
i=1

f (xi)
2.

We can apply the representer theorem (exercise: check that is is
also valid in a linear subspace): for i = 1, . . . , d , we have:

∀x ∈ X , fi (x) =
n∑

j=1

αi ,j K (xj , x) ,

with αi = (αi ,1, . . . , αi ,n)> ∈ Rn.

Julien Mairal (Inria) 158/564

Functional point of view

Therefore we have:

‖ fi ‖2
H =

d∑
k,l=1

αi ,kαi ,l K (xk , xl) = α>i Kαi ,

Similarly:
n∑

k=1

fi (xk)2 = α>i K2αi .

Julien Mairal (Inria) 159/564

Functional point of view

PCA maximizes in α the function:

αi = arg max
α

α>K2α

nα>Kα
,

under the constraints:

α>i Kαj = 0 for j = 1, . . . , i − 1 .

Julien Mairal (Inria) 160/564

Solution

Let U = (u1, . . . ,un) be an orthonormal basis of eigenvectors of K
with eigenvalues λ1 ≥ . . . ≥ λn ≥ 0.

Let αi =
∑n

j=1 βij uj , then

α>i K2αi

nα>i Kαi
=

∑n
j=1 β

2
ijλ

2
j

n
∑n

j=1 β
2
ijλj

,

which is maximized at α1 = β11u1, α2 = β22u2, etc...

Julien Mairal (Inria) 161/564

Normalization

For αi = βii ui , we want:

1 = ‖ fi ‖2
H = α>i Kαi = β2

iiλi .

Therefore:

αi =
1√
λi

ui .

Julien Mairal (Inria) 162/564

Kernel PCA: summary

1 Center the Gram matrix

2 Compute the first eigenvectors (ui , λi)

3 Normalize the eigenvectors αi = ui/
√
λi

4 The projections of the points onto the i-th eigenvector is given by
Kαi

Julien Mairal (Inria) 163/564

Kernel PCA: remarks

In this formulation, we must diagonalize the centered kernel Gram
matrix, instead of the covariance matrix in the classical setting

Exercise: check that X>X and XX> have the same spectrum (up
to 0 eigenvalues) and that the eigenvectors are related by a simple
relationship.

This formulation remains valid for any p.d. kernel: this is kernel
PCA

Applications: nonlinear PCA with nonlinear kernels for vectors, PCA
of non-vector objects (strings, graphs..) with specific kernels...

Julien Mairal (Inria) 164/564

Example

PC2

PC1

A set of 74 human tRNA
sequences is analyzed using
a kernel for sequences (the
second-order marginalized
kernel based on SCFG). This
set of tRNAs contains three
classes, called Ala-AGC
(white circles), Asn-GTT
(black circles) and Cys-GCA
(plus symbols) (from Tsuda
et al., 2003).

Julien Mairal (Inria) 165/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning
Kernel K-means and spectral clustering
Kernel PCA
A quick note on kernel CCA

4 The Kernel Jungle

5 Open Problems and Research Topics

Julien Mairal (Inria) 166/564

Canonical Correlation Analysis (CCA)

Given two views X = [x1, . . . , xn] in Rp×n and Y = [y1, . . . , yn] in Rd×n

of the same dataset, the goal of canonical correlation analysis (CCA) is
to find pairs of directions in the two views that are maximally correlated.

Formulation

Assuming that the datasets are centered, we want to maximize

max
wa∈Rp ,wb∈Rd

1
n

∑n
i=1 w>a xi y

>
i wb(

1
n

∑n
i=1 w>a xi x>i wa

)1/2 (1
n

∑n
i=1 w>b yi y>i wb

)1/2
.

Assuming that the pairs (xi , yi) are i.i.d. samples from an unknown
distribution, CCA seeks to maximize

max
wa∈Rp ,wb∈Rd

cov(w>a X ,w>b Y)√
var(w>a X)

√
var(w>b Y)

.

Julien Mairal (Inria) 167/564

Canonical Correlation Analysis (CCA)

Given two views X = [x1, . . . , xn] in Rp×n and Y = [y1, . . . , yn] in Rd×n

of the same dataset, the goal of canonical correlation analysis (CCA) is
to find pairs of directions in the two views that are maximally correlated.

Formulation

Assuming that the datasets are centered, we want to maximize

max
wa∈Rp ,wb∈Rd

1
n

∑n
i=1 w>a xi y

>
i wb(

1
n

∑n
i=1 w>a xi x>i wa

)1/2 (1
n

∑n
i=1 w>b yi y>i wb

)1/2
.

It is possible to show that this is an generalized eigenvalue problem (see
next slide or see Section 6.5 of Shawe-Taylor and Cristianini 2004b).

The above problem provides the first pair of canonical directions. Next
directions can be obtained by solving the same problem under the
constraint that they are orthogonal to the previous canonical directions.

Julien Mairal (Inria) 167/564

Canonical Correlation Analysis (CCA)

Formulation

Assuming that the datasets are centered,

max
wa∈Rp ,wb∈Rd

w>a X>Ywb

(w>a X>Xwa)
1/2 (w>b Y>Ywb

)1/2
.

can be formulated, after removing the scaling ambiguity, as

max
wa∈Rp ,wb∈Rd

w>a X>Ywb s.t. w>a X>Xwa = 1 and w>b Y>Ywb = 1.

Then, there exists λa and λb such that the problem is equivalent to

min
wa∈Rp ,wb∈Rd

−w>a X>Ywb +
λa

2
(w>a X>Xwa − 1) +

λb

2
(w>b Y>Ywb − 1).

Julien Mairal (Inria) 168/564

Canonical Correlation Analysis (CCA)

Taking the derivatives and setting the gradient to zero, we obtain

−X>Ywb + λaX>Xwa = 0

−Y>Xwa + λbY>Ywb = 0

Multiply first equality by w>a and second equality by w>b ; subtract the
two resulting equalities and we get

λaw>a X>Xwa = λbw>b Y>Ywb = λa = λb = λ,

and then, we obtain the generalized eigenvalue problem:[
0 X>Y

Y>X 0

] [
wa

wb

]
= λ

[
X>X 0

0 Y>Y

] [
wa

wb

]

Julien Mairal (Inria) 169/564

Canonical Correlation Analysis (CCA)

Let us define

ΣA =

[
0 X>Y

Y>X 0

]
, ΣB =

[
X>X 0

0 Y>Y

]
and w =

[
wa

wb

]
Assuming the covariances are invertible, the generalized eigenvalue
problem is equivalent to

Σ
−1/2
B ΣAw = λΣ

1/2
B w

which is also equivalent to the eigenvalue problem

Σ
−1/2
B ΣAΣ

−1/2
B (Σ

−1/2
B w) = λ(Σ

−1/2
B w).

Julien Mairal (Inria) 170/564

Kernel Canonical Correlation Analysis

Similar to kernel PCA, it is possible to operate in a RKHS. Given two
p.d. kernels Ka,Kb : X × X → R, we can obtain two “views” of a
dataset x1, . . . , xn in X n:

(ϕa(x1), . . . , ϕa(xn)) and (ϕb(x1), . . . , ϕb(xn)),

where ϕa : X → Ha and ϕb : X → Hb are the embeddings in the
RKHSs Ha of Ka and Hb of Kb, respectively. Then, we may formulate
kernel CCA as the following optimization problem

max
fa∈Ha,fb∈Hb

1
n

∑n
i=1 〈fa, ϕa(xi)〉Ha

〈ϕb(xi), fb〉Hb(
1
n

∑n
i=1 〈fa, ϕa(xi)〉2Ha

)1/2 (
1
n

∑n
i=1 〈fb, ϕb(xi)〉2Hb

)1/2
.

Julien Mairal (Inria) 171/564

Kernel Canonical Correlation Analysis

Similar to kernel PCA, it is possible to operate in a RKHS. Given two
p.d. kernels Ka,Kb : X × X → R, we can obtain two “views” of a
dataset x1, . . . , xn in X n:

(ϕa(x1), . . . , ϕa(xn)) and (ϕb(x1), . . . , ϕb(xn)),

where ϕa : X → Ha and ϕb : X → Hb are the embeddings in the
RKHSs Ha of Ka and Hb of Kb, respectively. Then, we may formulate
kernel CCA as the following optimization problem

max
fa∈Ha,fb∈Hb

1
n

∑n
i=1 fa(xi)fb(xi)(

1
n

∑n
i=1 fa(xi)2

)1/2 (1
n

∑n
i=1 fb(xi)2

)1/2
.

Julien Mairal (Inria) 171/564

Kernel Canonical Correlation Analysis

Up to a few technical details (exercise), we can apply the representer
theorem and look for solutions fa(.) =

∑n
i=1 αi Ka(xi , .) and

fb(.) =
∑n

i=1 βi Kb(xi , .). We finally obtain the formulation

max
α∈Rn,β∈Rn

1
n

∑n
i=1[Kaα]i [Kbβ]i(

1
n

∑n
i=1[Kaα]2i

)1/2 (1
n

∑n
i=1[Kbβ]2i

)1/2
,

which is equivalent to

max
α∈Rn,β∈Rn

α>KaKbβ

(α>K2
aα)

1/2 (
β>K2

bβ
)1/2

,

or, after removing the scaling ambiguity for α and β,

max
α∈Rn,β∈Rn

α>KaKbβ s.t. α>K2
aα = 1 and β>K2

bβ = 1.

Julien Mairal (Inria) 172/564

Kernel Canonical Correlation Analysis

Remarks

kernel CCA also yields a generalized eigenvalue problem.

the subsequent canonical directions are obtained by solving the
same problem with additional orthogonality constraints.

in practice, kernel CCA is numerically unstable; it requires
regularization to replace the constraints α>K2

aα by
α>(K2

a + µaI)α = 1 (same for Kb), which improves the condition
number of the matrix K2

a.

Julien Mairal (Inria) 173/564

Part 4

The Kernel Jungle

Julien Mairal (Inria) 174/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

5 Open Problems and Research Topics

Julien Mairal (Inria) 175/564

Motivation

Kernel methods are sometimes criticized for their lack of flexibility: a
large effort is spent in designing by hand the kernel.

Question

How do we design a kernel adapted to the data?

Answer

A successful strategy is given by kernels for generative models, which
are/have been the state of the art in many fields, including image and
sequence representations.

Parametric model

A model is a family of distributions

{Pθ, θ ∈ Θ ⊂ Rm} ⊆ M+
1 (X) .

Julien Mairal (Inria) 176/564

Motivation

Kernel methods are sometimes criticized for their lack of flexibility: a
large effort is spent in designing by hand the kernel.

Question

How do we design a kernel adapted to the data?

Answer

A successful strategy is given by kernels for generative models, which
are/have been the state of the art in many fields, including image and
sequence representations.

Parametric model

A model is a family of distributions

{Pθ, θ ∈ Θ ⊂ Rm} ⊆ M+
1 (X) .

Julien Mairal (Inria) 176/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models

Fisher kernel
Mutual information kernels
Marginalized kernels

Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 177/564

Fisher kernel

Definition

Fix a parameter θ0 ∈ Θ (e.g., by maximum likelihood over a
training set of sequences)

For each sequence x, compute the Fisher score vector:

Φθ0(x) = ∇θ log Pθ(x)|θ=θ0 .

Form the kernel (Jaakkola et al., 2000):

K
(
x, x′

)
= Φθ0(x)>I(θ0)−1Φθ0(x′) ,

where I(θ0) = E
[
Φθ0(x)Φθ0(x)>

]
is the Fisher information matrix.

Julien Mairal (Inria) 178/564

Fisher kernel properties (1/2)

The Fisher score describes how each parameter contributes to the
process of generating a particular example

A kernel classifier employing the Fisher kernel derived from a model
that contains the label as a latent variable is, asymptotically, at
least as good a classifier as the MAP labelling based on the model
(Jaakkola and Haussler, 1999).

A variant of the Fisher kernel (called the Tangent of Posterior
kernel) can also improve over the direct posterior classification by
helping to correct the effect of estimation errors in the parameter
(Tsuda et al., 2002).

Julien Mairal (Inria) 179/564

Fisher kernel properties (2/2)

Lemma

The Fisher kernel is invariant under change of parametrization.

Consider indeed different parametrization given by some
diffeomorphism λ = f (θ). The Jacobian matrix relating the

parametrization is denoted by [J]ij =
∂θj

∂λi
.

The gradient of log-likelihood w.r.t. to the new parameters is

Φλ0(x) = ∇λ log Pλ0(x) = J∇θ log Pθ0(x) = JΦθ0(x).

the Fisher information matrix is

I(λ0) = E
[
Φθ0(x)Φθ0(x)>

]
= JI(θ0)J>.

we conclude by noticing that I(λ0)−1 = J−1I(θ0)−1J>−1.

Julien Mairal (Inria) 180/564

Fisher kernel in practice

Φθ0(x) can be computed explicitly for many models (e.g., HMMs),
where the model is first estimated from data.

I(θ0) is often replaced by the identity matrix for simplicity.

Several different models (i.e., different θ0) can be trained and
combined.

The Fisher vectors are defined as ϕθ0(x) = I(θ0)−1/2Φθ0(x). They
are explicitly computed and correspond to an explicit embedding:
K (x, x′) = ϕθ0(x)>ϕθ0(x′).

Julien Mairal (Inria) 181/564

Fisher kernels: example with Gaussian data model (1/2)

Consider a normal distribution N (µ, σ2) and denote by α = 1/σ2 the
inverse variance, i.e., precision parameter. With θ = (µ, α), we have

log Pθ(x) =
1

2
logα− 1

2
log(2π)− 1

2
α(x − µ)2,

and thus

∂ log Pθ(x)

∂µ
= α(x − µ),

∂ log Pθ(x)

∂α
=

1

2

[
1

α
− (x − µ)2

]
,

and (exercise)

I(θ) =

(
α 0
0 (1/2)α−2

)
.

The Fisher vector is then

ϕθ(x) =

(
(x − µ)/σ

(1/
√

2)(1− (x − µ)2/σ2)

)
.

Julien Mairal (Inria) 182/564

Fisher kernels: example with Gaussian data model (2/2)

Now consider an i.i.d. data model over a set of data points x1, . . . , xn all
distributed according to N (µ, σ2):

Pθ(x1, . . . , xn) =
n∏

i=1

Pθ(xi).

Then, the Fisher vector is given by the sum of Fisher vectors of the
points.

Encodes the discrepancy in the first and second order moment of
the data w.r.t. those of the model.

ϕ(x1, . . . , xn) =
n∑

i=1

ϕ(xi) = n

(
(µ̂− µ)/σ

(σ2 − σ̂2)/(
√

2σ2)

)
,

where

µ̂ =
1

n

n∑
i=1

xi and σ̂ =
1

n

n∑
i=1

(xi − µ̂)2.

Julien Mairal (Inria) 183/564

Application: Aggregation of visual words (1/4)

Patch extraction and description stage:
In various contexts, images may be described as a set of
patches x1, . . . , xn computed at interest points. For example, SIFT,
HOG, LBP, color histograms, convolutional features...

Coding stage: The set of patches is then encoded into a single
representation ϕ(xi), typically in a high-dimensional space.

Pooling stage: For example, sum pooling

ϕ(x1, . . . , xn) =
n∑

i=1

ϕ(xi).

Fisher vectors with a Gaussian Mixture Model (GMM) is
considered to be a state-of-the-art aggregation
technique [Perronnin and Dance, 2007].

Julien Mairal (Inria) 184/564

Application: Aggregation of visual words (2/4)

Let θ = (πj ,µj ,Σj)j=1 ldots,k be the parameters of a GMM with k
Gaussian components. Then, the probabilistic model is given by

Pθ(x) =
k∑

j=1

πjN (x;µj ,Σj).

Remarks

Each mixture component corresponds to a visual word, with a
mean, variance, and mixing weight.

Diagonal covariances Σj = diag (σj1, . . . , σjp) = diag (σj) are often
used for simplicity.

This is a richer model than the traditional “bag of words” approach.

The probabilistic model is learned offline beforehand.

Julien Mairal (Inria) 185/564

Application: Aggregation of visual words (3/4)

After a few calculations (exercise), we obtain ϕθ(x1, . . . , xn) =

[ϕπ1(X), . . . , ϕπp (X), ϕµ1
(X)>, . . . , ϕµp

(X)>, ϕσ1(X)>, . . . , ϕσp (X)>]>,

with

ϕµj
(X) =

1

n
√
πj

n∑
i=1

γij (xi − µj)/σj

ϕσj (X) =
1

n
√

2πj

n∑
i=1

γij

[
(xi − µj)

2/σ2
j − 1

]
,

where with an abuse of notation, the division between two vectors is
meant elementwise and the scalars γij can be interpreted as the
soft-assignment of word i to component j :

γij =
πjN (xi ;µj ,σj)∑k
l=1 πlN (xi ;µl ,σl)

.

Julien Mairal (Inria) 186/564

Application: Aggregation of visual words (4/4)

Finally, we also have the following interpretation of encoding first and
second-order statistics:

ϕµj
(X) =

γj√
πj

(µ̂j − µj)/σj

ϕσj (X) =
γj√
2πj

(σ̂2
j − σ2

j)/σ2
j ,

with

γj =
n∑

i=1

γij and µ̂j =
1

γj

n∑
i=1

γij xi and σ̂j =
1

γj

n∑
i=1

γij (xi −µj)
2.

The component ϕπ(X) is often dropped due to its negligible
contribution in practice, and the resulting representation is of
dimension 2kp where p is the dimension of the xi ’s.

Julien Mairal (Inria) 187/564

Relation to classification with generative models (1/3)

Assume that we have a generative probabilistic model Pθ to model
random variables (X ,Y) where Y is a label in {1, . . . , p}.
Assume that the marginals Pθ(Y = k) = πk are among the model
parameters θ, which we can also parametrize as

Pθ(Y = k) = πk =
eαk∑p

k ′=1 eαk′
.

The classification of a new point x can be obtained via Bayes’ rule:

ŷ(x) = argmax
k=1,...,p

Pθ(Y = k |x),

where Pθ(Y = k|x) is short for Pθ(Y = k|X = x) and

Pθ(Y = k|x) = Pθ(x |Y = k)Pθ(Y = k)/Pθ(x)

= Pθ(x |Y = k)πk/

p∑
k ′=1

Pθ(x |Y = k ′)πk ′

Julien Mairal (Inria) 188/564

Relation to classification with generative models (2/3)

Then, consider the Fisher score

∇θ log Pθ(x) =
1

Pθ(x)
∇θPθ(x)

=
1

Pθ(x)
∇θ

p∑
k=1

Pθ(x ,Y = k)

=
1

Pθ(x)

p∑
k=1

Pθ(x ,Y = k)∇θ log Pθ(x ,Y = k)

=

p∑
k=1

Pθ(Y = k|x)[∇θ log πk +∇θ log Pθ(x |Y = k)].

In particular (exercise)

∂ log Pθ(x)

∂αk
= Pθ(Y = k|x)− πk .

Julien Mairal (Inria) 189/564

Relation to classification with generative models (3/3)

The first p elements in the Fisher score are given by class posteriors
minus a constant

ϕθ(x) = [Pθ(Y = 1|x)− π1, . . . ,Pθ(Y = p|x)− πp, ...].

Consider a multi-class linear classifier on ϕθ(x) such that for class k

The weights are zero except one for the k-th position;

The intercept bk be −πk ;

Then,

ŷ(x) = argmax
k=1,...,p

ϕθ(x)>wk + bk

ŷ(x) = argmax
k=1,...,p

Pθ(Y = k|x).

Bayes’ rule is implemented via this simple classifier using Fisher kernel.

Julien Mairal (Inria) 190/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models

Fisher kernel
Mutual information kernels
Marginalized kernels

Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 191/564

Mutual information kernels

Definition

Chose a prior w(dθ) on the measurable set Θ.

Form the kernel (Seeger, 2002):

K
(
x, x′

)
=

∫
θ∈Θ

Pθ(x)Pθ(x′)w(dθ) .

No explicit computation of a finite-dimensional feature vector.

K (x, x′) =< ϕ (x) , ϕ (x′) >L2(w) with

ϕ (x) = (Pθ (x))θ∈Θ .

Julien Mairal (Inria) 192/564

Example: coin toss

Let Pθ(X = 1) = θ and Pθ(X = 0) = 1− θ a model for random
coin toss, with θ ∈ [0, 1].

Let dθ be the Lebesgue measure on [0, 1]

The mutual information kernel between x = 001 and x′ = 1010 is:{
Pθ (x) = θ (1− θ)2 ,

Pθ (x′) = θ2 (1− θ)2 ,

K
(
x, x′

)
=

∫ 1

0
θ3 (1− θ)4 dθ =

3!4!

8!
=

1

280
.

Julien Mairal (Inria) 193/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models

Fisher kernel
Mutual information kernels
Marginalized kernels

Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 194/564

Marginalized kernels

Definition

For any observed data x ∈ X , let a latent variable y ∈ Y be
associated probabilistically through a conditional probability
Px (dy).

Let KZ be a kernel for the complete data z = (x, y)

Then the following kernel is a valid kernel on X , called a
marginalized kernel (Tsuda et al., 2002):

KX
(
x, x′

)
:= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
=

∫ ∫
KZ
(
(x, y) ,

(
x′, y′

))
Px (dy) Px′

(
dy′
)
.

Julien Mairal (Inria) 195/564

Marginalized kernels: proof of positive definiteness

KZ is p.d. on Z. Therefore there exists a Hilbert space H and
ΦZ : Z → H such that:

KZ
(
z, z′

)
=
〈
ΦZ (z) ,ΦZ

(
z′
)〉
H .

Marginalizing therefore gives:

KX
(
x, x′

)
= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
= EPx(dy)×Px′ (dy′)

〈
ΦZ (z) ,ΦZ

(
z′
)〉
H

=
〈
EPx(dy)ΦZ (z) ,EPx(dy′)ΦZ

(
z′
)〉
H ,

therefore KX is p.d. on X . �

Julien Mairal (Inria) 196/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

5 Open Problems and Research Topics

Julien Mairal (Inria) 197/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences

Motivations and history of genomics
Kernels derived from large feature spaces
Kernels derived from generative models
Kernels derived from a similarity measure
Application to remote homology detection

Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 198/564

Short history of genomics

1866 : Laws of heredity (Mendel)
1909 : Morgan and the drosophilists
1944 : DNA supports heredity (Avery)
1953 : Structure of DNA (Crick and Watson)
1966 : Genetic code (Nirenberg)
1960-70 : Genetic engineering
1977 : Method for sequencing (Sanger)
1982 : Creation of Genbank
1990 : Human genome project launched
2003 : Human genome project completed

Julien Mairal (Inria) 199/564

A cell

Julien Mairal (Inria) 200/564

Chromosomes

Julien Mairal (Inria) 201/564

Chromosomes and DNA

Julien Mairal (Inria) 202/564

Structure of DNA

“We wish to suggest a
structure for the salt of
desoxyribose nucleic acid
(D.N.A.). This structure have
novel features which are of
considerable biological
interest” (Watson and Crick,
1953)

Julien Mairal (Inria) 203/564

The double helix

Julien Mairal (Inria) 204/564

Central dogma

Julien Mairal (Inria) 205/564

Proteins

Julien Mairal (Inria) 206/564

Genetic code

Julien Mairal (Inria) 207/564

Human genome project

Goal : sequence the 3,000,000,000 bases of the human genome

Consortium with 20 labs, 6 countries

Cost : about 3,000,000,000 USD

Julien Mairal (Inria) 208/564

2003: End of genomics era

Findings

About 25,000 genes only (representing 1.2% of the genome).

Automatic gene finding with graphical models.

97% of the genome is considered “junk DNA”.

Superposition of a variety of signals (many to be discovered).

Julien Mairal (Inria) 209/564

Protein sequence

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine

E : Glutamic acid K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine

H : Histidine Y : Tyrosine W : Tryptophane

I : Isoleucine S : Serine Q : Glutamine

D : Aspartic acid G : Glycine

Julien Mairal (Inria) 210/564

Challenges with protein sequences

A protein sequences can be seen as a variable-length sequence over
the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

These sequences are produced at a fast rate (result of the
sequencing programs)

Need for algorithms to compare, classify, analyze these sequences

Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...

Julien Mairal (Inria) 211/564

Example: supervised sequence classification

Data (training)

Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA...

MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW...

MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL...

...

Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG...

MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG...

MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP..

...

Goal

Build a classifier to predict whether new proteins are secreted or not.

Julien Mairal (Inria) 212/564

Supervised classification with vector embedding

The idea

Map each string x ∈ X to a vector Φ(x) ∈ F .

Train a classifier for vectors on the images Φ(x1), . . . ,Φ(xn) of the
training set (nearest neighbor, linear perceptron, logistic regression,
support vector machine...)

mahtlg...

φ
X F

maskat...
msises

marssl...

malhtv...
mappsv...

Julien Mairal (Inria) 213/564

Kernels for protein sequences

Kernel methods have been widely investigated since Jaakkola et
al.’s seminal paper (1998).

What is a good kernel?

it should be mathematically valid (symmetric, p.d. or c.p.d.)
fast to compute
adapted to the problem (give good performances)

Julien Mairal (Inria) 214/564

Kernel engineering for protein sequences

Define a (possibly high-dimensional) feature space of interest

Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model

Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure

Local alignment kernel

Julien Mairal (Inria) 215/564

Kernel engineering for protein sequences

Define a (possibly high-dimensional) feature space of interest

Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model

Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure

Local alignment kernel

Julien Mairal (Inria) 215/564

Kernel engineering for protein sequences

Define a (possibly high-dimensional) feature space of interest

Physico-chemical kernels
Spectrum, mismatch, substring kernels
Pairwise, motif kernels

Derive a kernel from a generative model

Fisher kernel
Mutual information kernel
Marginalized kernel

Derive a kernel from a similarity measure

Local alignment kernel

Julien Mairal (Inria) 215/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences

Motivations and history of genomics
Kernels derived from large feature spaces
Kernels derived from generative models
Kernels derived from a similarity measure
Application to remote homology detection

Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 216/564

Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
Φ (x) ∈ Rn. How to perform this embedding?

Physico-chemical kernel

Extract relevant features, such as:

length of the sequence

time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

Fourier transforms (Wang et al., 2004)
Autocorrelation functions (Zhang et al., 2003)

rj =
1

n − j

n−j∑
i=1

hi hi+j

Julien Mairal (Inria) 217/564

Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
Φ (x) ∈ Rn. How to perform this embedding?

Physico-chemical kernel

Extract relevant features, such as:

length of the sequence

time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

Fourier transforms (Wang et al., 2004)
Autocorrelation functions (Zhang et al., 2003)

rj =
1

n − j

n−j∑
i=1

hi hi+j

Julien Mairal (Inria) 217/564

Substring indexation

The approach

Alternatively, index the feature space by fixed-length strings, i.e.,

Φ (x) = (Φu (x))u∈Ak

where Φu (x) can be:

the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)

the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)

the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)

Julien Mairal (Inria) 218/564

Example: spectrum kernel (1/2)

Kernel definition

The 3-spectrum of

x = CGGSLIAMMWFGV

is:

(CGG,GGS,GSL,SLI,LIA,IAM,AMM,MMW,MWF,WFG,FGV) .

Let Φu (x) denote the number of occurrences of u in x. The
k-spectrum kernel is:

K
(
x, x′

)
:=
∑

u∈Ak

Φu (x) Φu

(
x′
)
.

Julien Mairal (Inria) 219/564

Example: spectrum kernel (2/2)

Implementation

The computation of the kernel is formally a sum over |A|k terms,
but at most | x | − k + 1 terms are non-zero in Φ (x) =⇒
Computation in O (| x |+ | x′ |) with pre-indexation of the strings.

Fast classification of a sequence x in O (| x |):

f (x) = w · Φ (x) =
∑

u

wuΦu (x) =

| x |−k+1∑
i=1

wxi ...xi+k−1
.

Remarks

Work with any string (natural language, time series...)

Fast and scalable, a good default method for string classification.

Variants allow matching of k-mers up to m mismatches.

Julien Mairal (Inria) 220/564

Example 2: Substring kernel (1/11)

Definition

For 1 ≤ k ≤ n ∈ N, we denote by I(k, n) the set of sequences of
indices i = (i1, . . . , ik), with 1 ≤ i1 < i2 < . . . < ik ≤ n.

For a string x = x1 . . . xn ∈ X of length n, for a sequence of indices
i ∈ I(k , n), we define a substring as:

x (i) := xi1xi2 . . . xik .

The length of the substring is:

l (i) = ik − i1 + 1.

Julien Mairal (Inria) 221/564

Example 2: Substring kernel (2/11)

Example

ABRACADABRA

i = (3, 4, 7, 8, 10)

x (i) =RADAR

l (i) = 10− 3 + 1 = 8

Julien Mairal (Inria) 222/564

Example 2: Substring kernel (3/11)

The kernel

Let k ∈ N and λ ∈ R+ fixed. For all u ∈ Ak , let Φu : X → R be
defined by:

∀x ∈ X , Φu (x) =
∑

i∈I(k,| x |): x(i)=u

λl(i) .

The substring kernel is the p.d. kernel defined by:

∀
(
x, x′

)
∈ X 2, Kk,λ

(
x, x′

)
=
∑

u∈Ak

Φu (x) Φu

(
x′
)
.

Julien Mairal (Inria) 223/564

Example 2: Substring kernel (4/11)

Example

u ca ct at ba bt cr ar br

Φu(cat) λ2 λ3 λ2 0 0 0 0 0
Φu(car) λ2 0 0 0 0 λ3 λ2 0
Φu(bat) 0 0 λ2 λ2 λ3 0 0 0
Φu(bar) 0 0 0 λ2 0 0 λ2 λ3


K (cat,cat) = K (car,car) = 2λ4 + λ6

K (cat,car) = λ4

K (cat,bar) = 0

Julien Mairal (Inria) 224/564

Example 2: Substring kernel (5/11)

Kernel computation

We need to compute, for any pair x, x′ ∈ X , the kernel:

Kn,λ

(
x, x′

)
=
∑

u∈Ak

Φu (x) Φu

(
x′
)

=
∑

u∈Ak

∑
i:x(i)=u

∑
i′:x′(i′)=u

λl(i)+l(i′) .

Enumerating the substrings is too slow (of order | x |k).

Julien Mairal (Inria) 225/564

Example 2: Substring kernel (6/11)

Kernel computation (cont.)

For u ∈ Ak remember that:

Φu (x) =
∑

i:x(i)=u

λin−i1+1 .

Let now:
Ψu (x) =

∑
i:x(i)=u

λ| x |−i1+1 .

Julien Mairal (Inria) 226/564

Example 2: Substring kernel (7/11)

Kernel computation (cont.)

Let us note x (1, j) = x1 . . . xj . A simple rewriting shows that, if we note
a ∈ A the last letter of u (u = va):

Φva (x) =
∑

j∈[1,| x |]:xj =a

Ψv (x (1, j − 1))λ ,

and
Ψva (x) =

∑
j∈[1,| x |]:xj =a

Ψv (x (1, j − 1))λ| x |−j+1 .

Julien Mairal (Inria) 227/564

Example 2: Substring kernel (8/11)

Kernel computation (cont.)

Moreover we observe that if the string is of the form xa (i.e., the last
letter is a ∈ A), then:

If the last letter of u is not a:{
Φu (xa) = Φu (x) ,

Ψu (xa) = λΨu (x) .

If the last letter of u is a (i.e., u = va with v ∈ An−1):{
Φva (xa) = Φva (x) + λΨv (x) ,

Ψva (xa) = λΨva (x) + λΨv (x) .

Julien Mairal (Inria) 228/564

Example 2: Substring kernel (9/11)

Kernel computation (cont.)

Let us now show how the function:

Bn

(
x, x′

)
:=
∑

u∈An

Ψu (x) Ψu

(
x′
)

and the kernel:
Kn

(
x, x′

)
:=
∑

u∈An

Φu (x) Φu

(
x′
)

can be computed recursively. We note that:{
B0 (x, x′) = K0 (x, x′) = 0 for all x, x′

Bk (x, x′) = Kk (x, x′) = 0 if min (| x | , | x′ |) < k

Julien Mairal (Inria) 229/564

Example 2: Substring kernel (10/11)

Recursive computation of Bn

Bn

(
xa, x′

)
=
∑

u∈An

Ψu (xa) Ψu

(
x′
)

= λ
∑

u∈An

Ψu (x) Ψu

(
x′
)

+ λ
∑

v∈An−1

Ψv (x) Ψva

(
x′
)

= λBn

(
x, x′

)
+

λ
∑

v∈An−1

Ψv (x)

 ∑
j∈[1,| x′ |]:x ′j =a

Ψv

(
x′ (1, j − 1)

)
λ| x
′ |−j+1


= λBn

(
x, x′

)
+

∑
j∈[1,| x′ |]:x ′j =a

Bn−1

(
x, x′ (1, j − 1)

)
λ| x
′ |−j+2

Julien Mairal (Inria) 230/564

Example 2: Substring kernel (10/11)

Recursive computation of Bn

Bn

(
xa, x′b

)
= λBn

(
x, x′b

)
+ λ

∑
j∈[1,| x′ |]:x ′j =a

Bn−1

(
x, x′ (1, j − 1)

)
λ| x
′ |−j+2

+ δa=bBn−1(x, x′)λ2

= λBn

(
x, x′b

)
+ λ(Bn(xa, x′)− λBn(x, x′)) + δa=bBn−1(x, x′)λ2

= λBn

(
x, x′b

)
+ λBn(xa, x′)− λ2Bn(x, x′) + δa=bBn−1(x, x′)λ2.

The dynamic programming table can be filled in O(n|x||x′|) operations.

Julien Mairal (Inria) 231/564

Example 2: Substring kernel (10/11)

Recursive computation of Kn

Kn

(
xa, x′

)
=
∑

u∈An

Φu (xa) Φu

(
x′
)

=
∑

u∈An

Φu (x) Φu

(
x′
)

+ λ
∑

v∈An−1

Ψv (x) Φva

(
x′
)

= Kn

(
x, x′

)
+

λ
∑

v∈An−1

Ψv (x)

 ∑
j∈[1,| x′ |]:x ′j =a

Ψv

(
x′ (1, j − 1)

)
λ


= λKn

(
x, x′

)
+ λ2

∑
j∈[1,| x′ |]:x ′j =a

Bn−1

(
x, x′ (1, j − 1)

)

Julien Mairal (Inria) 232/564

Summary: Substring indexation

Implementation in O(|x|+ |x′|) in memory and time for the
spectrum and mismatch kernels (with suffix trees)

Implementation in O(k(|x|+ |x′|)) in memory and time for the
spectrum and mismatch kernels (with tries)

Implementation in O(k |x| × |x′|) in memory and time for the
substring kernels

The feature space has high dimension (|A|k), so learning requires
regularized methods (such as SVM)

Julien Mairal (Inria) 233/564

Dictionary-based indexation

The approach

Chose a dictionary of sequences D = (x1, x2, . . . , xn)

Chose a measure of similarity s (x, x′)

Define the mapping ΦD (x) = (s (x, xi))xi∈D

Examples

This includes:

Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function

Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.

Julien Mairal (Inria) 234/564

Dictionary-based indexation

The approach

Chose a dictionary of sequences D = (x1, x2, . . . , xn)

Chose a measure of similarity s (x, x′)

Define the mapping ΦD (x) = (s (x, xi))xi∈D

Examples

This includes:

Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function

Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between
sequences.

Julien Mairal (Inria) 234/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences

Motivations and history of genomics
Kernels derived from large feature spaces
Kernels derived from generative models
Kernels derived from a similarity measure
Application to remote homology detection

Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 235/564

Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel
designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Recall: parametric model

A model is a family of distributions

{Pθ, θ ∈ Θ ⊂ Rm} ⊂ M+
1 (X)

Julien Mairal (Inria) 236/564

Context-tree model

Definition

A context-tree model is a variable-memory Markov chain:

PD,θ(x) = PD,θ (x1 . . . xD)
n∏

i=D+1

PD,θ (xi | xi−D . . . xi−1)

D is a suffix tree

θ ∈ ΣD is a set of conditional probabilities (multinomials)

Julien Mairal (Inria) 237/564

Context-tree model: example

P(AABACBACC) = P(AAB)θAB(A)θA(C)θC (B)θACB(A)θA(C)θC (A) .

Julien Mairal (Inria) 238/564

The context-tree kernel

Theorem (Cuturi et al., 2005)

For particular choices of priors, the context-tree kernel:

K
(
x, x′

)
=
∑
D

∫
θ∈ΣD

PD,θ(x)PD,θ(x′)w(dθ|D)π(D)

can be computed in O(|x|+ |x′|) with a variant of the Context-Tree
Weighting algorithm.

This is a valid mutual information kernel.

The similarity is related to information-theoretical measure of
mutual information between strings.

Julien Mairal (Inria) 239/564

Marginalized kernels

Recall: Definition

For any observed data x ∈ X , let a latent variable y ∈ Y be
associated probabilistically through a conditional probability
Px (dy).

Let KZ be a kernel for the complete data z = (x, y)

Then the following kernel is a valid kernel on X , called a
marginalized kernel (Tsuda et al., 2002):

KX
(
x, x′

)
:= EPx(dy)×Px′ (dy′)KZ

(
z, z′

)
=

∫ ∫
KZ
(
(x, y) ,

(
x′, y′

))
Px (dy) Px′

(
dy′
)
.

Julien Mairal (Inria) 240/564

Example: HMM for normal/biased coin toss

S

B

0.5

0.5

0.1
0.1

0.05

0.05N

E

0.85

0.85

Normal (N) and biased (B)
coins (not observed)

Observed output are 0/1 with probabilities:{
π(0|N) = 1− π(1|N) = 0.5,

π(0|B) = 1− π(1|B) = 0.8.

Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB

1001011101111010010111001111011

Julien Mairal (Inria) 241/564

1-spectrum kernel on complete data

If both x ∈ A∗ and y ∈ S∗ were observed, we might rather use the
1-spectrum kernel on the complete data z = (x, y):

KZ
(
z, z′

)
=

∑
(a,s)∈A×S

na,s (z) na,s (z) ,

where na,s (x, y) for a = 0, 1 and s = N,B is the number of
occurrences of s in y which emit a in x.

Example:

z =1001011101111010010111001111011,
z′ =0011010110011111011010111101100101,

KZ
(
z, z′

)
= n0 (z) n0

(
z′
)

+ n0 (z) n0

(
z′
)

+ n1 (z) n1

(
z′
)

+ n1 (z) n1

(
z′
)

= 7× 15 + 9× 12 + 13× 6 + 2× 1 = 293.

Julien Mairal (Inria) 242/564

1-spectrum marginalized kernel on observed data

The marginalized kernel for observed data is:

KX
(
x, x′

)
=

∑
y,y′∈S∗

KZ ((x, y) , (x, y)) P (y|x) P
(
y′|x′

)
=

∑
(a,s)∈A×S

Φa,s (x) Φa,s

(
x′
)
,

with
Φa,s (x) =

∑
y∈S∗

P (y|x) na,s (x, y)

Julien Mairal (Inria) 243/564

Computation of the 1-spectrum marginalized kernel

Φa,s (x) =
∑
y∈S∗

P (y|x) na,s (x, y)

=
∑
y∈S∗

P (y|x)

{
n∑

i=1

δ (xi , a) δ (yi , s)

}

=
n∑

i=1

δ (xi , a)

∑
y∈S∗

P (y|x) δ (yi , s)


=

n∑
i=1

δ (xi , a) P (yi = s|x) .

and P (yi = s|x) can be computed efficiently by forward-backward
algorithm!

Julien Mairal (Inria) 244/564

HMM example (DNA)

Julien Mairal (Inria) 245/564

HMM example (protein)

Julien Mairal (Inria) 246/564

SCFG for RNA sequences

SFCG rules

S → SS

S → aSa

S → aS

S → a

Marginalized kernel (Kin et al., 2002)

Feature: number of occurrences of each (base,state) combination

Marginalization using classical inside/outside algorithm

Julien Mairal (Inria) 247/564

Marginalized kernels in practice

Examples

Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)

Kernels for RNA sequences based on SCFG (Kin et al., 2002)

Kernels for graphs based on random walks on graphs (Kashima et
al., 2004)

Kernels for multiple alignments based on phylogenetic models (Vert
et al., 2006)

Julien Mairal (Inria) 248/564

Marginalized kernels: example

PC2

PC1

A set of 74 human tRNA
sequences is analyzed using a
kernel for sequences (the
second-order marginalized
kernel based on SCFG). This
set of tRNAs contains three
classes, called Ala-AGC (white
circles), Asn-GTT (black
circles) and Cys-GCA (plus
symbols) (from Tsuda et al.,
2002).

Julien Mairal (Inria) 249/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences

Motivations and history of genomics
Kernels derived from large feature spaces
Kernels derived from generative models
Kernels derived from a similarity measure
Application to remote homology detection

Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 250/564

Sequence alignment

Motivation

How to compare 2 sequences?

x1 = CGGSLIAMMWFGV

x2 = CLIVMMNRLMWFGV

Find a good alignment:

CGGSLIAMM------WFGV

|...|||||....||||

C-----LIVMMNRLMWFGV

Julien Mairal (Inria) 251/564

Alignment score

In order to quantify the relevance of an alignment π, define:

a substitution matrix S ∈ RA×A

a gap penalty function g : N→ R
Any alignment is then scored as follows

CGGSLIAMM------WFGV

|...|||||....||||

C----LIVMMNRLMWFGV

sS ,g (π) = S(C ,C) + S(L, L) + S(I , I) + S(A,V) + 2S(M,M)

+ S(W ,W) + S(F ,F) + S(G ,G) + S(V ,V)− g(3)− g(4)

Julien Mairal (Inria) 252/564

Local alignment kernel

Smith-Waterman score (Smith and Waterman, 1981)

The widely-used Smith-Waterman local alignment score is defined
by:

SWS ,g (x, y) := max
π∈Π(x,y)

sS ,g (π).

It is symmetric, but not positive definite...

LA kernel (Saigo et al., 2004)

The local alignment kernel:

K
(β)
LA (x, y) =

∑
π∈Π(x,y)

exp (βsS ,g (x, y, π)) ,

is symmetric positive definite.

Julien Mairal (Inria) 253/564

Local alignment kernel

Smith-Waterman score (Smith and Waterman, 1981)

The widely-used Smith-Waterman local alignment score is defined
by:

SWS ,g (x, y) := max
π∈Π(x,y)

sS ,g (π).

It is symmetric, but not positive definite...

LA kernel (Saigo et al., 2004)

The local alignment kernel:

K
(β)
LA (x, y) =

∑
π∈Π(x,y)

exp (βsS ,g (x, y, π)) ,

is symmetric positive definite.

Julien Mairal (Inria) 253/564

LA kernel is p.d.: proof (1/11)

Lemma

If K1 and K2 are p.d. kernels, then:

K1 + K2,

K1K2, and

cK1, for c ≥ 0,

are also p.d. kernels

If (Ki)i≥1 is a sequence of p.d. kernels that converges pointwisely
to a function K :

∀
(
x, x′

)
∈ X 2, K

(
x, x′

)
= lim

n→∞
Ki

(
x, x′

)
,

then K is also a p.d. kernel.

Julien Mairal (Inria) 254/564

LA kernel is p.d.: proof (2/11)

Proof of lemma

Let A and B be n × n positive semidefinite matrices. By diagonalization
of A:

Ai ,j =
n∑

p=1

fp(i)fp(j)

for some vectors f1, . . . , fn. Then, for any α ∈ Rn:

n∑
i ,j=1

αiαj Ai ,j Bi ,j =
n∑

p=1

n∑
i ,j=1

αi fp(i)αj fp(j)Bi ,j ≥ 0.

The matrix Ci ,j = Ai ,j Bi ,j is therefore p.d. Other properties are obvious
from definition. �

Julien Mairal (Inria) 255/564

LA kernel is p.d.: proof (3/11)

Lemma (direct sum and product of kernels)

Let X = X1 ×X2. Let K1 be a p.d. kernel on X1, and K2 be a p.d.
kernel on X2. Then the following functions are p.d. kernels on X :

the direct sum,

K ((x1, x2) , (y1, y2)) = K1 (x1, y1) + K2 (x2, y2) ,

The direct product:

K ((x1, x2) , (y1, y2)) = K1 (x1, y1) K2 (x2, y2) .

Julien Mairal (Inria) 256/564

LA kernel is p.d.: proof (4/11)

Proof of lemma

If K1 is a p.d. kernel, let Φ1 : X1 7→ H be such that:

K1 (x1, y1) = 〈Φ1 (x1) ,Φ1 (y1)〉H .

Let Φ : X1 ×X2 → H be defined by:

Φ ((x1, x2)) = Φ1 (x1) .

Then for x = (x1, x2) and y = (y1, y2) ∈ X , we get

〈Φ ((x1, x2)) ,Φ ((y1, y2))〉H = K1 (x1, x2) ,

which shows that K (x, y) := K1 (x1, y1) is p.d. on X1 ×X2. The lemma
follows from the properties of sums and products of p.d. kernels. �

Julien Mairal (Inria) 257/564

LA kernel is p.d.: proof (5/11)

Lemma: kernel for sets

Let K be a p.d. kernel on X , and let P (X) be the set of finite subsets
of X . Then the function KP on P (X)× P (X) defined by:

∀A,B ∈ P (X) , KP (A,B) :=
∑
x∈A

∑
y∈B

K (x, y)

is a p.d. kernel on P (X).

Julien Mairal (Inria) 258/564

LA kernel is p.d.: proof (6/11)

Proof of lemma

Let Φ : X 7→ H be such that

K (x, y) = 〈Φ (x) ,Φ (y)〉H .

Then, for A,B ∈ P (X), we get:

KP (A,B) =
∑
x∈A

∑
y∈B

〈Φ (x) ,Φ (y)〉H

=

〈∑
x∈A

Φ (x) ,
∑
y∈B

Φ (y)

〉
H

= 〈ΦP(A),ΦP(B)〉H ,

with ΦP(A) :=
∑

x∈A Φ (x). �

Julien Mairal (Inria) 259/564

LA kernel is p.d.: proof (7/11)

Definition: Convolution kernel (Haussler, 1999)

Let K1 and K2 be two p.d. kernels for strings. The convolution of K1

and K2, denoted K1 ? K2, is defined for any x, x′ ∈ X by:

K1 ? K2(x, y) :=
∑

x1x2=x,y1y2=y

K1(x1, y1)K2(x2, y2).

Lemma

If K1 and K2 are p.d. then K1 ? K2 is p.d..

Julien Mairal (Inria) 260/564

LA kernel is p.d.: proof (8/11)

Proof of lemma

Let X be the set of finite-length strings. For x ∈ X , let

R (x) = {(x1, x2) ∈ X × X : x = x1x2} ⊂ X × X .

We can then write

K1 ? K2(x, y) =
∑

(x1,x2)∈R(x)

∑
(y1,y2)∈R(y)

K1(x1, y1)K2(x2, y2)

which is a p.d. kernel by the previous lemmas. �

Julien Mairal (Inria) 261/564

LA kernel is p.d.: proof (9/11)

3 basic string kernels

The constant kernel:
K0 (x, y) := 1 .

A kernel for letters:

K
(β)
a (x, y) :=

{
0 if | x | 6= 1 where | y | 6= 1 ,
exp (βS(x, y)) otherwise .

A kernel for gaps:

K
(β)
g (x, y) = exp [β (g (| x |) + g (| y |))] .

Julien Mairal (Inria) 262/564

LA kernel is p.d.: proof (10/11)

Remark

S : A2 → R is the similarity function between letters used in the

alignment score. K
(β)
a is only p.d. when the matrix:

(exp (βs(a, b)))(a,b)∈A2

is positive semidefinite (this is true for all β when s is conditionally
p.d..

g is the gap penalty function used in alignment score. The gap
kernel is always p.d. (with no restriction on g) because it can be
written as:

K
(β)
g (x, y) = exp (βg (| x |))× exp (βg (| y |)) .

Julien Mairal (Inria) 263/564

LA kernel is p.d.: proof (11/11)

Lemma

The local alignment kernel is a (limit) of convolution kernel:

K
(β)
LA =

∞∑
n=0

K0 ?
(

K
(β)
a ? K

(β)
g

)(n−1)
? K

(β)
a ? K0.

As such it is p.d..

Proof (sketch)

By induction on n (simple but long to write).

See details in Vert et al. (2004).

Julien Mairal (Inria) 264/564

LA kernel computation

We assume an affine gap penalty:{
g(0) = 0,

g(n) = d + e(n − 1) si n ≥ 1,

The LA kernel can then be computed by dynamic programming by:

K
(β)
LA (x, y) = 1 + X2(|x|, |y|) + Y2(|x|, |y|) + M(|x|, |y|),

where M(i , j),X (i , j),Y (i , j),X2(i , j), and Y2(i , j) for 0 ≤ i ≤ |x|,
and 0 ≤ j ≤ |y| are defined recursively.

Julien Mairal (Inria) 265/564

LA kernel is p.d.: proof (/)

Initialization 

M(i , 0) = M(0, j) = 0,

X (i , 0) = X (0, j) = 0,

Y (i , 0) = Y (0, j) = 0,

X2(i , 0) = X2(0, j) = 0,

Y2(i , 0) = Y2(0, j) = 0,

Julien Mairal (Inria) 266/564

LA kernel is p.d.: proof (/)

Recursion

For i = 1, . . . , |x| and j = 1, . . . , |y|:

M(i , j) = exp(βS(xi , yj))
[
1 + X (i − 1, j − 1)

+Y (i − 1, j − 1) + M(i − 1, j − 1)
]
,

X (i , j) = exp(βd)M(i − 1, j) + exp(βe)X (i − 1, j),

Y (i , j) = exp(βd) [M(i , j − 1) + X (i , j − 1)]

+ exp(βe)Y (i , j − 1),

X2(i , j) = M(i − 1, j) + X2(i − 1, j),

Y2(i , j) = M(i , j − 1) + X2(i , j − 1) + Y2(i , j − 1).

Julien Mairal (Inria) 267/564

LA kernel in practice

Implementation by a finite-state transducer in O(|x| × |x′|)

a:0/1

a:0/1

a:0/1

a:0/1

0:a/1

0:a/1

0:a/1 0:a/1

0:a/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:0/1

0:a/1

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)

a:b/m(a,b)
a:0/D

a:0/E

0:b/E

0:b/D

0:b/D

B M E

XX X

YY Y

1

1 2

2

In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)

Julien Mairal (Inria) 268/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences

Motivations and history of genomics
Kernels derived from large feature spaces
Kernels derived from generative models
Kernels derived from a similarity measure
Application to remote homology detection

Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 269/564

Remote homology

Sequence similarity

Clo
se

 h
om

olo
gs

Tw
ili

ght z
one

N
on h

om
olo

gs

Homologs have common ancestors

Structures and functions are more conserved than sequences

Remote homologs can not be detected by direct sequence
comparison

Julien Mairal (Inria) 270/564

SCOP database

Remote homologs

Superfamily

Family

SCOP

Close homologs

Fold

Julien Mairal (Inria) 271/564

A benchmark experiment

Goal: recognize directly the superfamily

Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.

Test: predict the superfamily.

Julien Mairal (Inria) 272/564

Difference in performance

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

N
o.

 o
f f

am
ili

es
 w

ith
 g

iv
en

 p
er

fo
rm

an
ce

ROC50

SVM-LA
SVM-pairwise

SVM-Mismatch
SVM-Fisher

Performance on the SCOP superfamily recognition benchmark (from
Saigo et al., 2004).

Julien Mairal (Inria) 273/564

String kernels: Summary

A variety of principles for string kernel design have been proposed.

Good kernel design is important for each data and each task.
Performance is not the only criterion.

Still an art, although principled ways have started to emerge.

Fast implementation with string algorithms is often possible.

Their application goes well beyond computational biology.

Julien Mairal (Inria) 274/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

5 Open Problems and Research Topics

Julien Mairal (Inria) 275/564

Motivations

The RKHS norm is related to the smoothness of functions.

Smoothness of a function is naturally quantified by Sobolev norms
(in particular L2 norms of derivatives), or by the decay of the
Fourier transform.

In this section, we introduce several kernels were this link is explicit,
and we make a general link between RKHS and Green functions
defined by differential operators.

Julien Mairal (Inria) 276/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels

Shift-invariant kernels
Generalization to semigroups
Mercer kernels
RKHS and Green functions

Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 277/564

Translation invariant kernels

Definition

A kernel K : Rd × Rd 7→ R is called translation invariant (t.i.) if it only
depends on the difference between its argument, i.e.:

∀ (x, y) ∈ R2d , K (x, y) = κ (x− y) .

Examples

Gaussian kernel (or RBF kernel)

K (x, y) = e−
1

2σ2 ‖x−y‖2
2 .

Laplace kernel
K (x, y) = e−α‖x−y‖1 .

Julien Mairal (Inria) 278/564

In case of...

Definition

Let f ∈ L1
(
Rd
)
. The Fourier transform of f , denoted f̂ or F [f], is the

function defined for all ω ∈ Rd by:

f̂ (ω) =

∫
Rd

e−ix.ωf (x) dx .

Julien Mairal (Inria) 279/564

In case of...

Properties

f̂ is complex-valued, continuous, tends to 0 at infinity and
‖ f̂ ‖L∞ ≤ ‖ f ‖L1 .

If f̂ ∈ L1
(
Rd
)
, then the inverse Fourier formula holds:

∀x ∈ Rd , f (x) =
1

(2π)d

∫
Rd

e ix.ω f̂ (ω) dω.

If f ∈ L1
(
Rd
)

is square integrable, then Parseval’s formula holds:∫
Rd

| f (x) |2 dx =
1

(2π)d

∫
Rd

∣∣∣ f̂ (ω)
∣∣∣2 dω .

Julien Mairal (Inria) 280/564

Translation invariant kernels

Definition

A kernel K : Rd × Rd 7→ R is called translation invariant (t.i.) if it only
depends on the difference between its argument, i.e.:

∀ (x, y) ∈ R2d , K (x, y) = κ (x− y) .

Intuition

If K is t.i. and κ ∈ L1
(
Rd
)
, then

κ (x− y) =
1

(2π)d

∫
Rd

e i(x−y).ωκ̂ (ω) dω

=

∫
Rd

κ̂ (ω)

(2π)d
e iω.xe−iω.ydω .

Julien Mairal (Inria) 281/564

Characterization of p.d. t.i. kernels

Theorem (Bochner)

A real-valued continuous function κ(x− y) on Rd is positive definite if
and only if it is the Fourier-Stieltjes transform of a symmetric, positive,
and finite Borel measure µ:

κ(z) =

∫
Rd

e iz.ωµ(dω).

Remarks

If κ(0) = 1, κ is a characteristic function—that is, κ(z) = Eω[e iz.ω].

⇐ is easy:

∑
k,l

αkαlκ(xk − xl) =

∫
Rd

∣∣∣∣∣∑
k

αk e ixk .ω

∣∣∣∣∣
2

µ(dω) ≥ 0.

Julien Mairal (Inria) 282/564

RKHS of translation invariant kernels

Theorem

Let K be a translation invariant p.d. kernel, such that κ is integrable on
Rd as well as its Fourier transform κ̂. The subset HK of L2

(
Rd
)

that
consists of integrable and continuous functions f such that:

‖ f ‖2
K :=

1

(2π)d

∫
Rd

∣∣∣ f̂ (ω)
∣∣∣2

κ̂(ω)
dω < +∞ ,

endowed with the inner product:

〈f , g〉 :=
1

(2π)d

∫
Rd

f̂ (ω)ĝ (ω)∗

κ̂(ω)
dω

is a RKHS with K as r.k.

Julien Mairal (Inria) 283/564

Proof

HK is a Hilbert space: exercise.
For x ∈ Rd , Kx(y) = K (x, y) = κ(x− y) therefore:

K̂x(ω) =

∫
e−iω.uκ(u− x)du = e−iω.xκ̂(ω) .

This leads to Kx ∈ H, because:

∫
Rd

∣∣∣ K̂x(ω)
∣∣∣2

κ̂(ω)
≤
∫
Rd

| κ̂(ω) | <∞,

Moreover, if f ∈ H and x ∈ Rd , we have:

〈f ,Kx〉H =
1

(2π)d

∫
Rd

K̂x(ω)f̂ (ω)∗

κ̂(ω)
dω =

1

(2π)d

∫
Rd

f̂ (ω)∗ e−iω.x = f (x) �

Julien Mairal (Inria) 284/564

Example

Gaussian kernel

K (x , y) = e−
(x−y)2

2σ2

corresponds to:

κ̂ (ω) = e−
σ2ω2

2

and

H =

{
f :

∫ ∣∣∣ f̂ (ω)
∣∣∣2 e

σ2ω2

2 dω <∞
}
.

In particular, all functions in H are infinitely differentiable with all
derivatives in L2.

Julien Mairal (Inria) 285/564

Example

Laplace kernel

K (x , y) =
1

2
e−γ| x−y |

corresponds to:

κ̂ (ω) =
γ

γ2 + ω2

and

H =

{
f :

∫ ∣∣∣ f̂ (ω)
∣∣∣2 (γ2 + ω2

)
γ

dω <∞
}
,

the set of functions L2 differentiable with derivatives in L2 (Sobolev
norm).

Julien Mairal (Inria) 286/564

Example

Low-frequency filter

K (x , y) =
sin (Ω(x − y))

π(x − y)

corresponds to:

κ̂ (ω) = U (ω + Ω)− U (ω − Ω)

and

H =

{
f :

∫
|ω |>Ω

∣∣∣ f̂ (ω)
∣∣∣2 dω = 0

}
,

the set of functions whose spectrum is included in [−Ω,Ω].

Julien Mairal (Inria) 287/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels

Shift-invariant kernels
Generalization to semigroups
Mercer kernels
RKHS and Green functions

Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 288/564

Generalization to semigroups (cf Berg et al., 1983)

Definition

A semigroup (S , ◦) is a nonempty set S equipped with an
associative composition ◦ and a neutral element e.

A semigroup with involution (S , ◦, ∗) is a semigroup (S , ◦) together
with a mapping ∗ : S → S called involution satisfying:

1 (s ◦ t)∗ = t∗ ◦ s∗, for s, t ∈ S .
2 (s∗)∗ = s for s ∈ S .

Examples

Any group (G , ◦) is a semigroup with involution when we define
s∗ = s−1.

Any abelian semigroup (S ,+) is a semigroup with involution when
we define s∗ = s, the identical involution.

Julien Mairal (Inria) 289/564

Positive definite functions on semigroups

Definition

Let (S , ◦, ∗) be a semigroup with involution. A function ϕ : S → R is
called positive definite if the function:

∀s, t ∈ S , K (s, t) = ϕ (s∗ ◦ t)

is a p.d. kernel on S .

Example: translation invariant kernels(
Rd ,+,−

)
is an abelian group with involution. A function ϕ : Rd → R

is p.d. if the function
K (x, y) = ϕ(x− y)

is p.d. on Rd (translation invariant kernels).

Julien Mairal (Inria) 290/564

Semicharacters

Definition

A function ρ : S → C on an abelian semigroup with involution (S ,+, ∗)
is called a semicharacter if

1 ρ(0) = 1,

2 ρ(s + t) = ρ(s)ρ(t) for s, t ∈ S ,

3 ρ (s∗) = ρ(s) for s ∈ S .

The set of semicharacters on S is denoted by S∗.

Remarks

If ∗ is the identity, a semicharacter is automatically real-valued.

If (S ,+) is an abelian group and s∗ = −s, a semicharacter has its
values in the circle group {z ∈ C | | z | = 1} and is a group
character.

Julien Mairal (Inria) 291/564

Semicharacters are p.d.

Lemma

Every semicharacter is p.d., in the sense that:

K (s, t) = K (t, s),∑n
i ,j=1 ai aj K (xi , xj) ≥ 0.

Proof

Direct from definition, e.g.,

n∑
i ,j=1

ai ajρ
(
xi + x∗j

)
=

n∑
i ,j=1

ai ajρ (xi) ρ (xj) ≥ 0 .

Examples

ϕ(t) = eβt on (R,+, Id).

ϕ(t) = e iωt on (R,+,−).

Julien Mairal (Inria) 292/564

Integral representation of p.d. functions

Definition

An function α : S → R on a semigroup with involution is called an
absolute value if (i) α(e) = 1, (ii)α(s ◦ t) ≤ α(s)α(t), and (iii)
α (s∗) = α(s).

A function f : S → R is called exponentially bounded if there exists an
absolute value α and a constant C > 0 s.t. | f (s) | ≤ Cα(s) for s ∈ S .

Theorem

Let (S ,+, ∗) an abelian semigroup with involution. A function ϕ : S → R is
p.d. and exponentially bounded (resp. bounded) if and only if it has a
representation of the form:

ϕ(s) =

∫
S∗
ρ(s)dµ(ρ) .

where µ is a Radon measure with compact support on S∗ (resp. on Ŝ, the set
of bounded semicharacters).

Julien Mairal (Inria) 293/564

Proof

Sketch (details in Berg et al., 1983, Theorem 4.2.5)

For an absolute value α, the set Pα
1 of α-bounded p.d. functions

that satisfy ϕ(0) = 1 is a compact convex set whose extreme points
are precisely the α-bounded semicharacters.

If ϕ is p.d. and exponentially bounded then there exists an absolute
value α such that ϕ(0)−1ϕ ∈ Pα

1 .

By the Krein-Milman theorem there exits a Radon probability
measure on Pα

1 having ϕ(0)−1ϕ as barycentre.

Remarks

The result is not true without the assumption of exponentially
bounded semicharacters.

In the case of abelian groups with s∗ = −s this reduces to
Bochner’s theorem for discrete abelian groups, cf. Rudin (1962).

Julien Mairal (Inria) 294/564

Example 1: (R+,+, Id)

Semicharacters

S = (R+,+, Id) is an abelian semigroup.

P.d. functions are nonnegative, because ϕ(x) = ϕ
(√

x
)2

.

The set of bounded semicharacters is exactly the set of functions:

s ∈ R+ 7→ ρa(s) = e−as ,

for a ∈ [0,+∞] (left as exercice).

Non-bounded semicharacters are more difficult to characterize; in
fact there exist nonmeasurable solutions of the equation
h(x + y) = h(x)h(y).

Julien Mairal (Inria) 295/564

Example 1: (R+,+, Id) (cont.)

P.d. functions

By the integral representation theorem for bounded semi-characters
we obtain that a function ϕ : R+ → R is p.d. and bounded if and
only if it has the form:

ϕ(s) =

∫ ∞
0

e−asdµ(a) + bρ∞(s)

where µ ∈Mb
+ (R+) and b ≥ 0.

The first term is the Laplace transform of µ. ϕ is p.d., bounded and
continuous iff it is the Laplace transform of a measure in Mb

+ (R).

Julien Mairal (Inria) 296/564

Example 2: Semigroup kernels for finite measures (1/6)

Setting

We assume that data to be processed are “bags-of-points”, i.e., sets
of points (with repeats) of a space U .

Example : a finite-length string as a set of k-mers.

How to define a p.d. kernel between any two bags that only
depends on the union of the bags?

See details and proofs in Cuturi et al. (2005).

Julien Mairal (Inria) 297/564

Example 2: Semigroup kernels for finite measures (2/6)

Semigroup of bounded measures

We can represent any bag-of-point x as a finite measure on U :

x =
∑

i

aiδxi ,

where ai is the number of occurrences on xi in the bag.

The measure that represents the union of two bags is the sum of
the measures that represent each individual bag.

This suggests to look at the semigroup
(
Mb

+ (U) ,+, Id
)

of
bounded Radon measures on U and to search for p.d. functions ϕ
on this semigroup.

Julien Mairal (Inria) 298/564

Example 2: Semigroup kernels for finite measures (3/6)

Semicharacters

For any Borel measurable function f : U → R the function
ρf :Mb

+ (U)→ R defined by:

ρf (µ) = eµ[f]

is a semicharacter on
(
Mb

+ (U) ,+
)
.

Conversely, ρ is continuous semicharacter (for the topology of weak
convergence) if and only if there exists a continuous function
f : U → R such that ρ = ρf .

No such characterization for non-continuous characters, even
bounded.

Julien Mairal (Inria) 299/564

Example 2: Semigroup kernels for finite measures (4/6)

Corollary

Let U be a Hausdorff space. For any Radon measure µ ∈Mc
+ (C (U))

with compact support on the Hausdorff space of continuous real-valued
functions on U endowed with the topology of pointwise convergence, the
following function K is a continuous p.d. kernel on Mb

+ (U) (endowed
with the topology of weak convergence):

K (µ, ν) =

∫
C(X)

eµ[f]+ν[f]dµ(f) .

Remarks
The converse is not true: there exist continuous p.d. kernels that do not have
this integral representation (it might include non-continuous semicharacters)

Julien Mairal (Inria) 300/564

Example 2: Semigroup kernels for finite measures (5/6)

Example : entropy kernel

Let X be the set of probability densities (w.r.t. some reference
measure) on U with finite entropy:

h(x) = −
∫
U

x ln x .

Then the following entropy kernel is a p.d. kernel on X for all
β > 0:

K
(
x, x′

)
= e−βh(x+x

2) .

Remark: only valid for densities (e.g., for a kernel density estimator
from a bag-of-parts)

Julien Mairal (Inria) 301/564

Example 2: Semigroup kernels for finite measures (6/6)

Examples : inverse generalized variance kernel

Let U = Rd and MV
+ (U) be the set of finite measure µ with

second order moment and non-singular variance

Σ(µ) = µ
[
xx>

]
− µ [x]µ [x]> .

Then the following function is a p.d. kernel on MV
+ (U), called the

inverse generalized variance kernel:

K
(
µ, µ′

)
=

1

det Σ
(
µ+µ′

2

) .
Generalization possible with regularization and kernel trick.

Julien Mairal (Inria) 302/564

Application of semigroup kernel

Weighted linear PCA of two different measures, with the first PC shown.
Variances captured by the first and second PC are shown. The
generalized variance kernel is the inverse of the product of the two
values.

Julien Mairal (Inria) 303/564

Kernelization of the IGV kernel

Motivations

Gaussian distributions may be poor models.

The method fails in large dimension

Solution
1 Regularization:

Kλ

(
µ, µ′

)
=

1

det
(

Σ
(
µ+µ′

2

)
+ λId

) .
2 Kernel trick: the non-zero eigenvalues of UU> and U>U are the

same =⇒ replace the covariance matrix by the centered Gram
matrix (technical details in Cuturi et al., 2005).

Julien Mairal (Inria) 304/564

Illustration of kernel IGV kernel

Julien Mairal (Inria) 305/564

Semigroup kernel remarks

Motivations

A very general formalism to exploit an algebraic structure of the
data.

Kernel IVG kernel has given good results for character recognition
from a subsampled image.

The main motivation is more generally to develop kernels for
complex objects from which simple “patches” can be extracted.

The extension to nonabelian groups (e.g., permutation in the
symmetric group) might find natural applications.

Julien Mairal (Inria) 306/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels

Shift-invariant kernels
Generalization to semigroups
Mercer kernels
RKHS and Green functions

Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 307/564

Mercer kernels

Definition

A kernel K on a set X is called a Mercer kernel if:

1 X is a compact metric space (typically, a closed bounded subset of
Rd).

2 K : X × X → R is a continuous p.d. kernel (w.r.t. the Borel
topology)

Motivations

We can exhibit an explicit and intuitive feature space for a large
class of p.d. kernels

Historically, provided the first proof that a p.d. kernel is an inner
product for non-finite sets X (Mercer, 1905).

Can be thought of as the natural generalization of the factorization
of positive semidefinite matrices over infinite spaces.

Julien Mairal (Inria) 308/564

Sketch of the proof

1 The kernel matrix when X is finite becomes a linear operator when
X is a metric space.

2 The matrix was positive semidefinite in the finite case, the linear
operator is self-adjoint and positive in the metric case.

3 The spectral theorem states that any compact linear operator
admits a complete orthonormal basis of eigenfunctions, with
non-negative eigenvalues (just like positive semidefinite matrices
can be diagonalized with nonnegative eigenvalues).

4 The kernel function can then be expanded over basis of
eigenfunctions as:

K (x, t) =
∞∑

k=1

λkψk (x)ψk (t) ,

where λi ≥ 0 are the non-negative eigenvalues.

Julien Mairal (Inria) 309/564

In case of...

Definition

Let H be a Hilbert space

A linear operator is a continuous linear mapping from H to itself.

A linear operator L is called compact if, for any bounded sequence
{fn}∞n=1, the sequence {Lfn}∞n=1 has a subsequence that converges.

L is called self-adjoint if, for any f , g ∈ H:

〈f , Lg〉 = 〈Lf , g〉 .

L is called positive if it is self-adjoint and, for any f ∈ H:

〈f , Lf 〉 ≥ 0 .

Julien Mairal (Inria) 310/564

An important lemma

The linear operator

Let ν be any Borel measure on X , and Lν2 (X) the Hilbert space of
square integrable functions on X .

For any function K : X 2 7→ R, let the transform:

∀f ∈ Lν2 (X) , (LK f) (x) =

∫
K (x, t) f (t) dν (t) .

Lemma

If K is a Mercer kernel, then LK is a compact and bounded linear
operator over Lν2 (X), self-adjoint and positive.

Julien Mairal (Inria) 311/564

Proof (1/6)

LK is a mapping from Lν2 (X) to Lν2 (X)

For any f ∈ Lν2 (X) and (x1, x1) ∈ X 2:

| LK f (x1)− LK f (x2) | =

∣∣∣∣ ∫ (K (x1, t)− K (x2, t)) f (t) dν (t)

∣∣∣∣
≤ ‖K (x1, ·)− K (x2, ·) ‖‖ f ‖

(Cauchy-Schwarz)

≤
√
ν (X) max

t∈X
|K (x1, t)− K (x2, t) | ‖ f ‖.

K being continuous and X compact, K is uniformly continuous,
therefore LK f is continuous. In particular, LK f ∈ Lν2 (X) (with the slight
abuse of notation C (X) ⊂ Lν2 (X)). �

Julien Mairal (Inria) 312/564

Proof (2/6)

LK is linear and continuous

Linearity is obvious (by definition of LK and linearity of the
integral).

For continuity, we observe that for all f ∈ Lν2 (X) and x ∈ X :

| (LK f) (x) | =

∣∣∣∣ ∫ K (x, t) f (t) dν (t)

∣∣∣∣
≤
√
ν (X) max

t∈X
|K (x, t) | ‖ f ‖

≤
√
ν (X)CK‖ f ‖.

with CK = maxx,t∈X |K (x, t) |. Therefore:

‖ LK f ‖ =

(∫
LK f (t)2 dν (t)

) 1
2

≤ ν (X) CK‖ f ‖. �

Julien Mairal (Inria) 313/564

Proof (3/6)

Criterion for compactness

In order to prove the compactness of LK we need the following criterion.
Let C (X) denote the set of continuous functions on X endowed with
infinite norm ‖ f ‖∞ = maxx∈X | f (x) |.
A set of functions G ⊂ C (X) is called equicontinuous if:

∀ε > 0, ∃δ > 0,∀ (x, y) ∈ X 2,

‖ x− y ‖ < δ =⇒ ∀g ∈ G , | g (x)− g (y) | < ε.

Ascoli Theorem

A part H ⊂ C (X) is relatively compact (i.e., its closure is compact) if
and only if it is uniformly bounded and equicontinuous.

Julien Mairal (Inria) 314/564

Proof (4/6)

LK is compact

Let (fn)n≥0 be a bounded sequence of Lν2 (X) (‖ fn ‖ < M for all n).
The sequence (LK fn)n≥0 is a sequence of continuous functions,
uniformly bounded because:

‖ LK fn ‖∞ ≤
√
ν (X)CK‖ fn ‖ ≤

√
ν (X)CK M .

It is equicontinuous because:

| LK fn (x1)− LK fn (x2) | ≤
√
ν (X) max

t∈X
|K (x1, t)− K (x2, t) |M .

By Ascoli theorem, we can extract a sequence uniformly convergent in
C (X), and therefore in Lν2 (X). �

Julien Mairal (Inria) 315/564

Proof (5/6)

LK is self-adjoint

K being symmetric, we have for all f , g ∈ H:

〈f , Lg〉 =

∫
f (x) (Lg) (x) ν (dx)

=

∫ ∫
f (x) g (t) K (x, t) ν (dx) ν (dt) (Fubini)

= 〈Lf , g〉 .

Julien Mairal (Inria) 316/564

Proof (6/6)

LK is positive

We can approximate the integral by finite sums:

〈f , Lf 〉 =

∫ ∫
f (x) f (t) K (x, t) ν (dx) ν (dt)

= lim
k→∞

ν (X)

k2

k∑
i ,j=1

K (xi , xj) f (xi) f (xj)

≥ 0 ,

because K is positive definite. �

Julien Mairal (Inria) 317/564

Diagonalization of the operator

We need the following general result:

Spectral theorem

Let L be a compact linear operator on a Hilbert space H. Then there
exists in H a complete orthonormal system (ψ1, ψ2, . . .) of eigenvectors
of L. The eigenvalues (λ1, λ2, . . .) are real if L is self-adjoint, and
non-negative if L is positive.

Remark

This theorem can be applied to LK . In that case the eigenfunctions ϕk

associated to the eigenfunctions λk 6= 0 can be considered as continuous
functions, because:

ψk =
1

λk
LψK .

Julien Mairal (Inria) 318/564

Main result

Mercer Theorem

Let X be a compact metric space, ν a Borel measure on X , and K a
continuous p.d. kernel. Let (λ1, λ2, . . .) denote the nonnegative
eigenvalues of LK and (ψ1, ψ2, . . .) the corresponding eigenfunctions.
Then all ψk are continuous functions, and for any x, t ∈ X :

K (x, t) =
∞∑

k=1

λkψk (x)ψk (t) ,

where the convergence is absolute for each x, t ∈ X , and uniform on
X × X .

Julien Mairal (Inria) 319/564

Mercer kernels as inner products

Corollary

The mapping

Φ : X 7→ l2

x 7→
(√

λkψk (x)
)

k∈N

is well defined, continuous, and satisfies

K (x, t) = 〈Φ (x) ,Φ (t)〉l2 .

Julien Mairal (Inria) 320/564

Proof of the corollary

Proof

By Mercer theorem we see that for all x ∈ X ,
∑
λkψ

2
k (x) converges to

K (x, x) <∞, therefore Φ (x) ∈ l2.
The continuity of Φ results from:

‖Φ (x)− Φ (t) ‖2
l2 =

∞∑
k=1

λk (ψk (x)− ψk (t))2

= K (x, x) + K (t, t)− 2K (x, t)

Julien Mairal (Inria) 321/564

Summary

This proof extends the proof valid when X is finite.

This is a constructive proof, developed by Mercer (1905).

Compactness and continuity are required. For instance, for
X = Rd , the eigenvalues of:∫

X
K (x, t)ψ (t) = λψ (t)

are not necessarily countable, Mercer theorem does not hold. Other
tools are thus required such as the Fourier transform for
shift-invariant kernels.

Julien Mairal (Inria) 322/564

RKHS of Mercer kernels

Let X be a compact metric space, and K a Mercer kernel on X
(symmetric, continuous and positive definite).

We have expressed a decomposition of the kernel in terms of the
eigenfunctions of the linear convolution operator.

In some cases this provides an intuitive feature space.

The kernel also has a RKHS, like any p.d. kernel.

Can we get an intuition of the RKHS norm in terms of the
eigenfunctions and eigenvalues of the convolution operator?

Julien Mairal (Inria) 323/564

Reminder: expansion of Mercer kernel

Theorem

Denote by LK the linear operator of Lν2 (X) defined by:

∀f ∈ Lν2 (X) , (LK f) (x) =

∫
K (x, t) f (t) dν (t) .

Let (λ1, λ2, . . .) denote the eigenvalues of LK in decreasing order, and
(ψ1, ψ2, . . .) the corresponding eigenfunctions. Then it holds that for
any x, y ∈ X :

K (x, y) =
∞∑

k=1

λkψk (x)ψk (y) = 〈Φ (x) ,Φ (y)〉l2 ,

with Φ : X 7→ l2 defined par Φ (x) =
(√
λkψk (x)

)
k∈N.

Julien Mairal (Inria) 324/564

RKHS construction

Theorem

Assuming that all eigenvalues are positive, the RKHS is the Hilbert
space:

HK =

{
f ∈ Lν2 (X) : f =

∞∑
i=1

aiψi , with
∞∑

k=1

a2
k

λk
<∞

}

endowed with the inner product:

〈f , g〉K =
∞∑

k=1

ak bk

λk
, for f =

∑
k

akψk , g =
∑

k

bkψk .

Remark
If some eigenvalues are equal to zero, then the result and the proof remain valid
on the subspace spanned by the eigenfunctions with positive eigenvalues.

Julien Mairal (Inria) 325/564

Proof (1/6)

Sketch

In order to show that HK is the RKHS of the kernel K we need to show
that:

1 it is a Hilbert space of functions from X to R,

2 for any x ∈ X , Kx ∈ HK ,

3 for any x ∈ X and f ∈ HK , f (x) = 〈f ,Kx〉HK
.

Julien Mairal (Inria) 326/564

Proof (2/6)

HK is a Hilbert space

Indeed the function:

L
1
2
K :Lν2 (X)→ HK

∞∑
i=1

aiψi 7→
∞∑

i=1

ai

√
λiψi

is an isomorphism, therefore HK is a Hilbert space, like Lν2 (X). �

Julien Mairal (Inria) 327/564

Proof (3/6)

HK is a space of continuous functions

For any f =
∑∞

i=1 aiψi ∈ HK , and x ∈ X , we have (if f (x) makes sense):

| f (x) | =

∣∣∣∣∣
∞∑

i=1

aiψi (x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

i=1

ai√
λi

√
λiψi (x)

∣∣∣∣∣
≤
(∞∑

i=1

a2
i

λi

) 1
2

.

(∞∑
i=1

λiψi (x)2

) 1
2

= ‖ f ‖HK
K (x, x)

1
2

= ‖ f ‖HK

√
CK .

Therefore convergence in ‖ . ‖HK
implies uniform convergence for

functions.

Julien Mairal (Inria) 328/564

Proof (4/6)

HK is a space of continuous functions (cont.)

Let now fn =
∑n

i=1 aiψi ∈ HK . The functions ψi are continuous
functions, therefore fn is also continuous, for all n. The fn’s are
convergent in HK , therefore also in the (complete) space of continuous
functions endowed with the uniform norm.
Let fc the continuous limit function. Then fc ∈ Lν2 (X) and

‖ fn − fc ‖Lν2 (X) →
n→∞

0.

On the other hand,

‖ f − fn ‖Lν2 (X) ≤ λ1‖ f − fn ‖HK
→

n→∞
0,

therefore f = fc . �

Julien Mairal (Inria) 329/564

Proof (5/6)

Kx ∈ HK

For any x ∈ X let, for all i , ai = λiψi (x). We have:

∞∑
i=1

a2
i

λi
=
∞∑

i=1

λiψi (x)2 = K (x, x) <∞,

therefore ϕx :=
∑∞

i=1 aiψi ∈ HK . As seen earlier the convergence in HK

implies pointwise convergence, therefore for any t ∈ X :

ϕx (t) =
∞∑

i=1

aiψi (t) =
∞∑

i=1

λiψi (x)ψi (t) = K (x, t) ,

therefore ϕx = Kx ∈ HK . �

Julien Mairal (Inria) 330/564

Proof (6/6)

f (x) = 〈f ,Kx〉HK

Let f =
∑∞

i=1 aiψi ∈ HK , et x ∈ X . We have seen that:

Kx =
∞∑

i=1

λiψi (x)ψi ,

therefore:

〈f ,Kx〉HK
=
∞∑

i=1

λiψi (x) ai

λi
=
∞∑

i=1

aiψi (x) = f (x) ,

which concludes the proof. �

Julien Mairal (Inria) 331/564

Remarks

Although HK was built from the eigenfunctions of LK , which
depend on the choice of the measure ν (x), we know by uniqueness
of the RKHS that HK is independant of ν and LK .

Mercer theorem provides a concrete way to build the RKHS, by
taking linear combinations of the eigenfunctions of LK (with
adequately chosen weights).

The eigenfunctions (ψi)i∈N form an orthogonal basis of the RKHS:

〈ψi , ψj〉HK
= 0 si i 6= j , ‖ψi ‖HK

=
1√
λi
.

The RKHS is a well-defined ellipsoid with axes given by the
eigenfunctions.

Julien Mairal (Inria) 332/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels

Shift-invariant kernels
Generalization to semigroups
Mercer kernels
RKHS and Green functions

Kernels for graphs
Kernels on graphs

Julien Mairal (Inria) 333/564

Motivations

The RKHS norm is related to the smoothness of functions.

Smoothness of a function is naturally quantified by Sobolev norms
(in particular L2 norms of derivatives).

In this section we make a general link between RKHS and Green
functions defined by differential operators.

Julien Mairal (Inria) 334/564

A simple example

Explicit choice of smoothness

Let

H =
{

f : [0, 1] 7→ R, absolutely continuous, f ′ ∈ L2 ([0, 1]) , f (0) = 0
}
.

endowed with the bilinear form:

∀ (f , g) ∈ F2 〈f , g〉H =

∫ 1

0
f ′ (u) g ′ (u) du .

Note that 〈f , f 〉H measures the smoothness of f :

〈f , f 〉H =

∫ 1

0
f ′ (u)2 du = ‖ f ′ ‖2

L2([0,1]) .

Julien Mairal (Inria) 335/564

The RKHs point of view

Theorem

H is a RKHS with r.k. given by:

∀ (x , y) ∈ [0, 1]2, K (x , y) = min (x , y) .

Remark

Therefore, ‖ f ‖H = ‖ f ′ ‖L2 : the RKHS norm is precisely the smoothness
functional defined in the simple example.

Julien Mairal (Inria) 336/564

Proof (1/3)

Sketch

We need to show that

H is a Hilbert space

∀x ∈ [0, 1], Kx ∈ H,

∀ (x , f) ∈ [0, 1]×H, 〈f ,Kx〉H = f (x).

Julien Mairal (Inria) 337/564

Proof (1/3)

Sketch

We need to show that

H is a Hilbert space

∀x ∈ [0, 1], Kx ∈ H,

∀ (x , f) ∈ [0, 1]×H, 〈f ,Kx〉H = f (x).

Julien Mairal (Inria) 337/564

Proof (2/3)

H is a pre-Hilbert space

f absolutely continuous implies differentiable almost everywhere,
and

∀x ∈ [0, 1], f (x) = f (0) +

∫ x

0
f ′(u)du .

For any f ∈ H, f (0) = 0 implies by Cauchy-Schwarz:

| f (x) | =

∣∣∣∣ ∫ x

0
f ′(u)du

∣∣∣∣ ≤ √x

(∫ 1

0
f ′(u)2du

) 1
2

=
√

x‖ f ‖H .

Therefore, ‖ f ‖H = 0 =⇒ f = 0, showing that 〈., .〉H is an inner
product. H is thus a pre-Hilbert space.

Julien Mairal (Inria) 338/564

Proof (2/3)

H is a Hilbert space

To show that H is complete, let (fn)n∈N a Cauchy sequence in H
(f ′n)n∈N is a Cauchy sequence in L2[0, 1], thus converges to
g ∈ L2[0, 1]

By the previous inequality, (fn(x))n∈N is a Cauchy sequence and
thus converges to a real number f (x), for any x ∈ [0, 1]. Moreover:

f (x) = lim
n

fn(x) = lim
n

∫ x

0
f ′n(u)du =

∫ x

0
g(u)du ,

showing that f is absolutely continuous and f ′ = g almost
everywhere; in particular, f ′ ∈ L2[0, 1].

Finally, f (0) = limn fn(0) = 0, therefore f ∈ H and

lim
n
‖ fn − f ‖H = ‖ f ′ − gn ‖L2[0,1] = 0 .

Julien Mairal (Inria) 339/564

Proof (2/3)

∀x ∈ [0, 1], Kx ∈ H
Let Kx (y) = K (x , y) = min(x , y) sur [0, 1]2:

t
s 1

K(s,t)

Kx is differentiable except at s, has a square integrable derivative, and
Kx (0) = 0, therefore Kx ∈ H for all x ∈ [0, 1]. �

Julien Mairal (Inria) 340/564

Proof (3/3)

For all x , f , 〈f ,Kx〉H = f (x)

For any x ∈ [0, 1] and f ∈ H we have:

〈f ,Kx〉H =

∫ 1

0
f ′(u)K ′x (u)du =

∫ x

0
f ′(u)du = f (x),

which shows that K is the r.k. associated to H. �

Julien Mairal (Inria) 341/564

Generalization

Theorem

Let X = Rd and D a differential operator on a class of functions H such
that, endowed with the inner product:

∀ (f , g) ∈ H2, 〈f , g〉H = 〈Df ,Dg〉L2(X) ,

it is a Hilbert space.
Then H is a RKHS that admits as r.k. the Green function of the
operator D∗D, where D∗ denotes the adjoint operator of D.

Julien Mairal (Inria) 342/564

In case of...

Green functions

Let the differential equation on H:

f = Dg ,

where g is unknown. In order to solve it we can look for g of the form:

g (x) =

∫
X

k (x , y) f (y) dy

for some function k : X 2 7→ R. k must then satisfy, for all x ∈ X ,

f (x) = Dg (x) = 〈Dkx , f 〉L2(X) .

k is called the Green function of the operator D.

Julien Mairal (Inria) 343/564

Proof

Let H be a Hilbert space endowed with the inner product:

〈f , g〉X = 〈Df ,Dg〉L2(X) ,

and K be the Green function of the operator D∗D. For all x ∈ X ,
Kx ∈ H because:

〈DKx ,DKx〉L2(X) = 〈D∗DKx ,Kx〉L2(X) = Kx (x) <∞ .

Moreover, for all f ∈ H and x ∈ X , we have:

f (x) = 〈D∗DKx , f 〉L2(X) = 〈DKx ,Df 〉L2(X) = 〈Kx , f 〉H ,

which shows that H is a RKHS with K as r.k. �

Julien Mairal (Inria) 344/564

Kernel examples: Summary

Many notions of smoothness can be translated as RKHS norms for
particular kernels (eigenvalues convolution operator, Sobolev norms
and Green operators, Fourier transforms...).

There is no “uniformly best kernel”, but rather a large toolbox of
methods and tricks to encode prior knowledge and exploit the
nature or structure of the data.

In the following sections we focus on particular data and
applications to illustrate the process of kernel design.

Julien Mairal (Inria) 345/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

5 Open Problems and Research Topics

Julien Mairal (Inria) 346/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs

Motivation
Explicit enumeration of features
Challenges
Walk-based kernels
Applications

Kernels on graphs

Julien Mairal (Inria) 347/564

Virtual screening for drug discovery

inactive

active

active

active

inactive

inactive

NCI AIDS screen results (from http://cactus.nci.nih.gov).

Julien Mairal (Inria) 348/564

Image retrieval and classification

From Harchaoui and Bach (2007).

Julien Mairal (Inria) 349/564

Our approach

1 Represent each graph x in X by a vector Φ(x) ∈ H, either explicitly
or implicitly through the kernel

K (x, x′) = Φ(x)>Φ(x′) .

2 Use a linear method for classification in H.

X

Julien Mairal (Inria) 350/564

Our approach

1 Represent each graph x in X by a vector Φ(x) ∈ H, either explicitly
or implicitly through the kernel

K (x, x′) = Φ(x)>Φ(x′) .

2 Use a linear method for classification in H.

φ
HX

Julien Mairal (Inria) 350/564

Our approach

1 Represent each graph x in X by a vector Φ(x) ∈ H, either explicitly
or implicitly through the kernel

K (x, x′) = Φ(x)>Φ(x′) .

2 Use a linear method for classification in H.

φ
HX

Julien Mairal (Inria) 350/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs

Motivation
Explicit enumeration of features
Challenges
Walk-based kernels
Applications

Kernels on graphs

Julien Mairal (Inria) 351/564

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
Φ(x) ∈ Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

Julien Mairal (Inria) 352/564

The approach

1 Represent explicitly each graph x by a vector of fixed dimension
Φ(x) ∈ Rp.

2 Use an algorithm for regression or pattern recognition in Rp.

φ
HX

Julien Mairal (Inria) 352/564

Example

2D structural keys in chemoinformatics

Index a molecule by a binary fingerprint defined by a limited set of
predefined structures

O

N

O

O

OO

N N N

O O

O

Use a machine learning algorithm such as SVM, kNN, PLS,
decision tree, etc.

Julien Mairal (Inria) 353/564

Challenge: which descriptors (patterns)?

O

N

O

O

OO

N N N

O O

O

Expressiveness: they should retain as much information as possible
from the graph

Computation: they should be fast to compute

Large dimension of the vector representation: memory storage,
speed, statistical issues

Julien Mairal (Inria) 354/564

Indexing by substructures

O

N

O

O

OO

N N N

O O

O

Often we believe that the presence or absence of particular
substructures may be important predictive patterns

Hence it makes sense to represent a graph by features that indicate
the presence (or the number of occurrences) of these substructures

However, detecting the presence of particular substructures may be
computationally challenging...

Julien Mairal (Inria) 355/564

Subgraphs

Definition

A subgraph of a graph (V ,E) is a graph (V ′,E ′) with V ′ ⊂ V and
E ′ ⊂ E .

A graph and all its connected subgraphs.

Julien Mairal (Inria) 356/564

Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof

The linear graph of size n is a subgraph of a graph X with n
vertices iff X has a Hamiltonian path;

The decision problem whether a graph has a Hamiltonian path is
NP-complete.

Julien Mairal (Inria) 357/564

Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof

The linear graph of size n is a subgraph of a graph X with n
vertices iff X has a Hamiltonian path;

The decision problem whether a graph has a Hamiltonian path is
NP-complete.

Julien Mairal (Inria) 357/564

Indexing by all subgraphs?

Theorem

Computing all subgraph occurrences is NP-hard.

Proof

The linear graph of size n is a subgraph of a graph X with n
vertices iff X has a Hamiltonian path;

The decision problem whether a graph has a Hamiltonian path is
NP-complete.

Julien Mairal (Inria) 357/564

Paths

Definition

A path of a graph (V ,E) is a sequence of distinct vertices
v1, . . . , vn ∈ V (i 6= j =⇒ vi 6= vj) such that (vi , vi+1) ∈ E for
i = 1, . . . , n − 1.

Equivalently the paths are the linear subgraphs.

Julien Mairal (Inria) 358/564

Indexing by all paths?

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Theorem

Computing all path occurrences is NP-hard.

Proof

Same as for subgraphs.

Julien Mairal (Inria) 359/564

Indexing by all paths?

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Theorem

Computing all path occurrences is NP-hard.

Proof

Same as for subgraphs.

Julien Mairal (Inria) 359/564

Indexing by all paths?

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Theorem

Computing all path occurrences is NP-hard.

Proof

Same as for subgraphs.

Julien Mairal (Inria) 359/564

Indexing by what?

Substructure selection

We can imagine more limited sets of substructures that lead to more
computationnally efficient indexing (non-exhaustive list)

substructures selected by domain knowledge (MDL fingerprint)

all paths up to length k (Openeye fingerprint, Nicholls 2005)

all shortest path lengths (Borgwardt and Kriegel, 2005)

all subgraphs up to k vertices (graphlet kernel, Shervashidze et al.,
2009)

all frequent subgraphs in the database (Helma et al., 2004)

Julien Mairal (Inria) 360/564

Example: Indexing by all shortest path lengths and their
endpoint labels

(0,...,0,2,0,...,0,1,0,...)
A

A

B

B
1

AA

3A B

3A A

A

Properties (Borgwardt and Kriegel, 2005)

There are O(n2) shortest paths.

The vector of counts can be computed in O(n3) with the
Floyd-Warshall algorithm.

Julien Mairal (Inria) 361/564

Example: Indexing by all shortest path lengths and their
endpoint labels

(0,...,0,2,0,...,0,1,0,...)
A

A

B

B
1

AA

3A B

3A A

A

Properties (Borgwardt and Kriegel, 2005)

There are O(n2) shortest paths.

The vector of counts can be computed in O(n3) with the
Floyd-Warshall algorithm.

Julien Mairal (Inria) 361/564

Example: Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk).

Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.

Randomly sample subgraphs if enumeration is infeasible.

Julien Mairal (Inria) 362/564

Example: Indexing by all subgraphs up to k vertices

Properties (Shervashidze et al., 2009)

Naive enumeration scales as O(nk).

Enumeration of connected graphlets in O(ndk−1) for graphs with
degree ≤ d and k ≤ 5.

Randomly sample subgraphs if enumeration is infeasible.

Julien Mairal (Inria) 362/564

Summary

Explicit computation of substructure occurrences can be
computationnally prohibitive (subgraphs, paths);

Several ideas to reduce the set of substructures considered;

In practice, NP-hardness may not be so prohibitive (e.g., graphs
with small degrees), the strategy followed should depend on the
data considered.

Julien Mairal (Inria) 363/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs

Motivation
Explicit enumeration of features
Challenges
Walk-based kernels
Applications

Kernels on graphs

Julien Mairal (Inria) 364/564

The idea

1 Represent implicitly each graph x in X by a vector Φ(x) ∈ H
through the kernel

K (x, x′) = Φ(x)>Φ(x′) .

2 Use a kernel method for classification in H.

X

Julien Mairal (Inria) 365/564

The idea

1 Represent implicitly each graph x in X by a vector Φ(x) ∈ H
through the kernel

K (x, x′) = Φ(x)>Φ(x′) .

2 Use a kernel method for classification in H.

φ
HX

Julien Mairal (Inria) 365/564

The idea

1 Represent implicitly each graph x in X by a vector Φ(x) ∈ H
through the kernel

K (x, x′) = Φ(x)>Φ(x′) .

2 Use a kernel method for classification in H.

φ
HX

Julien Mairal (Inria) 365/564

Expressiveness vs Complexity

Definition: Complete graph kernels

A graph kernel is complete if it distinguishes non-isomorphic graphs, i.e.:

∀G1,G2 ∈ X , dK (G1,G2) = 0 =⇒ G1 ' G2 .

Equivalently, Φ(G1) 6= Φ(G2) if G1 and G2 are not isomorphic.

Expressiveness vs Complexity trade-off

If a graph kernel is not complete, then there is no hope to learn all
possible functions over X : the kernel is not expressive enough.

On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical applications.

Can we define tractable and expressive graph kernels?

Julien Mairal (Inria) 366/564

Expressiveness vs Complexity

Definition: Complete graph kernels

A graph kernel is complete if it distinguishes non-isomorphic graphs, i.e.:

∀G1,G2 ∈ X , dK (G1,G2) = 0 =⇒ G1 ' G2 .

Equivalently, Φ(G1) 6= Φ(G2) if G1 and G2 are not isomorphic.

Expressiveness vs Complexity trade-off

If a graph kernel is not complete, then there is no hope to learn all
possible functions over X : the kernel is not expressive enough.

On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical applications.

Can we define tractable and expressive graph kernels?

Julien Mairal (Inria) 366/564

Complexity of complete kernels

Proposition (Gärtner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

Proof

For any kernel K the complexity of computing dK is the same as
the complexity of computing K , because:

dK (G1,G2)2 = K (G1,G1) + K (G2,G2)− 2K (G1,G2) .

If K is a complete graph kernel, then computing dK solves the
graph isomorphism problem (dK (G1,G2) = 0 iff G1 ' G2). �

Julien Mairal (Inria) 367/564

Complexity of complete kernels

Proposition (Gärtner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

Proof

For any kernel K the complexity of computing dK is the same as
the complexity of computing K , because:

dK (G1,G2)2 = K (G1,G1) + K (G2,G2)− 2K (G1,G2) .

If K is a complete graph kernel, then computing dK solves the
graph isomorphism problem (dK (G1,G2) = 0 iff G1 ' G2). �

Julien Mairal (Inria) 367/564

Subgraph kernel

Definition

Let (λG)G∈X be a set or nonnegative real-valued weights

For any graph G ∈ X and any connected graph H ∈ X , let

ΦH(G) =
∣∣ {G ′ is a subgraph of G : G ′ ' H

} ∣∣ .
The subgraph kernel between any two graphs G1 and G2 ∈ X is
defined by:

Ksubgraph(G1,G2) =
∑
H∈X

H connected

λHΦH(G1)ΦH(G2) .

Julien Mairal (Inria) 368/564

Subgraph kernel complexity

Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

Proof (1/2)

Let Pn be the path graph with n vertices.

Subgraphs of Pn are path graphs:

Φ(Pn) = neP1 + (n − 1)eP2 + . . .+ ePn .

The vectors Φ(P1), . . . ,Φ(Pn) are linearly independent, therefore:

ePn =
n∑

i=1

αi Φ(Pi) ,

where the coefficients αi can be found in polynomial time (solving
an n × n triangular system).

Julien Mairal (Inria) 369/564

Subgraph kernel complexity

Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

Proof (1/2)

Let Pn be the path graph with n vertices.

Subgraphs of Pn are path graphs:

Φ(Pn) = neP1 + (n − 1)eP2 + . . .+ ePn .

The vectors Φ(P1), . . . ,Φ(Pn) are linearly independent, therefore:

ePn =
n∑

i=1

αi Φ(Pi) ,

where the coefficients αi can be found in polynomial time (solving
an n × n triangular system).

Julien Mairal (Inria) 369/564

Subgraph kernel complexity

Proposition (Gärtner et al., 2003)

Computing the subgraph kernel is NP-hard.

Proof (2/2)

If G is a graph with n vertices, then it has a path that visits each
node exactly once (Hamiltonian path) if and only if Φ(G)>ePn > 0,
i.e.,

Φ(G)>

(
n∑

i=1

αi Φ(Pi)

)
=

n∑
i=1

αi Ksubgraph(G ,Pi) > 0 .

The decision problem whether a graph has a Hamiltonian path is
NP-complete. �

Julien Mairal (Inria) 370/564

Path kernel

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Definition

The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1,G2) =
∑
H∈P

λHΦH(G1)ΦH(G2) ,

where P ⊂ X is the set of path graphs.

Proposition (Gärtner et al., 2003)

Computing the path kernel is NP-hard.

Julien Mairal (Inria) 371/564

Path kernel

B

A A A AB

(0,...,0,1,0,...,0,1,0,...)
A A

AB

Definition

The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1,G2) =
∑
H∈P

λHΦH(G1)ΦH(G2) ,

where P ⊂ X is the set of path graphs.

Proposition (Gärtner et al., 2003)

Computing the path kernel is NP-hard.

Julien Mairal (Inria) 371/564

Summary

Expressiveness vs Complexity trade-off

It is intractable to compute complete graph kernels.

It is intractable to compute the subgraph kernels.

Restricting subgraphs to be linear does not help: it is also
intractable to compute the path kernel.

One approach to define polynomial time computable graph kernels
is to have the feature space be made up of graphs homomorphic to
subgraphs, e.g., to consider walks instead of paths.

Julien Mairal (Inria) 372/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs

Motivation
Explicit enumeration of features
Challenges
Walk-based kernels
Applications

Kernels on graphs

Julien Mairal (Inria) 373/564

Walks

Definition

A walk of a graph (V ,E) is sequence of v1, . . . , vn ∈ V such that
(vi , vi+1) ∈ E for i = 1, . . . , n − 1.

We note Wn(G) the set of walks with n vertices of the graph G ,
and W(G) the set of all walks.

etc...

Julien Mairal (Inria) 374/564

Walks 6= paths

Julien Mairal (Inria) 375/564

Walk kernel

Definition

Let Sn denote the set of all possible label sequences of walks of
length n (including vertex and edge labels), and S = ∪n≥1Sn.

For any graph X let a weight λG (w) be associated to each walk
w ∈ W(G).

Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG (w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk(G1,G2) =
∑
s∈S

Φs(G1)Φs(G2) .

Julien Mairal (Inria) 376/564

Walk kernel

Definition

Let Sn denote the set of all possible label sequences of walks of
length n (including vertex and edge labels), and S = ∪n≥1Sn.

For any graph X let a weight λG (w) be associated to each walk
w ∈ W(G).

Let the feature vector Φ(G) = (Φs(G))s∈S be defined by:

Φs(G) =
∑

w∈W(G)

λG (w)1 (s is the label sequence of w) .

A walk kernel is a graph kernel defined by:

Kwalk(G1,G2) =
∑
s∈S

Φs(G1)Φs(G2) .

Julien Mairal (Inria) 376/564

Walk kernel examples

Examples

The nth-order walk kernel is the walk kernel with λG (w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

The random walk kernel is obtained with λG (w) = PG (w), where
PG is a Markov random walk on G . In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independent random walks on G1 and
G2, respectively (Kashima et al., 2003).

The geometric walk kernel is obtained (when it converges) with
λG (w) = βlength(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).

Julien Mairal (Inria) 377/564

Walk kernel examples

Examples

The nth-order walk kernel is the walk kernel with λG (w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

The random walk kernel is obtained with λG (w) = PG (w), where
PG is a Markov random walk on G . In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independent random walks on G1 and
G2, respectively (Kashima et al., 2003).

The geometric walk kernel is obtained (when it converges) with
λG (w) = βlength(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).

Julien Mairal (Inria) 377/564

Walk kernel examples

Examples

The nth-order walk kernel is the walk kernel with λG (w) = 1 if the
length of w is n, 0 otherwise. It compares two graphs through their
common walks of length n.

The random walk kernel is obtained with λG (w) = PG (w), where
PG is a Markov random walk on G . In that case we have:

K (G1,G2) = P(label(W1) = label(W2)) ,

where W1 and W2 are two independent random walks on G1 and
G2, respectively (Kashima et al., 2003).

The geometric walk kernel is obtained (when it converges) with
λG (w) = βlength(w), for β > 0. In that case the feature space is of
infinite dimension (Gärtner et al., 2003).

Julien Mairal (Inria) 377/564

Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels) can
be computed efficiently in polynomial time.

Julien Mairal (Inria) 378/564

Product graph

Definition

Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs with labeled vertices.
The product graph G = G1 × G2 is the graph G = (V ,E) with:

1 V = {(v1, v2) ∈ V1 × V2 : v1 and v2 have the same label} ,

2 E =
{((v1, v2), (v ′1, v

′
2)) ∈ V × V : (v1, v

′
1) ∈ E1 and (v2, v

′
2) ∈ E2}.

G1 x G2

c

d e43

2

1 1b 2a 1d

1a 2b

3c

4c

2d

3e

4e

G1 G2

a b

Julien Mairal (Inria) 379/564

Walk kernel and product graph

Lemma

There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 × G2).

Corollary

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .

Julien Mairal (Inria) 380/564

Walk kernel and product graph

Lemma

There is a bijection between:

1 The pairs of walks w1 ∈ Wn(G1) and w2 ∈ Wn(G2) with the same
label sequences,

2 The walks on the product graph w ∈ Wn(G1 × G2).

Corollary

Kwalk (G1,G2) =
∑
s∈S

Φs(G1)Φs(G2)

=
∑

(w1,w2)∈W(G1)×W(G1)

λG1(w1)λG2(w2)1(l(w1) = l(w2))

=
∑

w∈W(G1×G2)

λG1×G2(w) .

Julien Mairal (Inria) 380/564

Computation of the nth-order walk kernel

For the nth-order walk kernel we have λG1×G2(w) = 1 if the length
of w is n, 0 otherwise.

Therefore:
Knth-order (G1,G2) =

∑
w∈Wn(G1×G2)

1 .

Let A be the adjacency matrix of G1 × G2. Then we get:

Knth-order (G1,G2) =
∑
i ,j

[An]i ,j = 1>An1 .

Computation in O(n|V1||V2|d1d2), where di is the maximum degree
of Gi .

Julien Mairal (Inria) 381/564

Computation of random and geometric walk kernels

In both cases λG (w) for a walk w = v1 . . . vn can be decomposed
as:

λG (v1 . . . vn) = λi (v1)
n∏

i=2

λt(vi−1, vi) .

Let Λi be the vector of λi (v) and Λt be the matrix of λt(v , v ′):

Kwalk(G1,G2) =
∞∑

n=1

∑
w∈Wn(G1×G2)

λi (v1)
n∏

i=2

λt(vi−1, vi)

=
∞∑

n=0

Λi Λ
n
t 1

= Λi (I − Λt)−1 1

Computation in O(|V1|3|V2|3).

Julien Mairal (Inria) 382/564

Extensions 1: Label enrichment

Atom relabeling with the Morgan index (Mahé et al., 2004)

Order 2 indices

N

O

O

1

1

1

1

1

1

1

1

1

N

O

O

2

2

2

3

2

3

1

1

2

N

O

O

4

4

5

7

5

5

3

3

4

No Morgan Indices Order 1 indices

Compromise between fingerprints and structural keys.

Other relabeling schemes are possible.

Faster computation with more labels (less matches implies a smaller
product graph).

Julien Mairal (Inria) 383/564

Extension 2: Non-tottering walk kernel

Tottering walks

A tottering walk is a walk w = v1 . . . vn with vi = vi+2 for some i .

Tottering

Non−tottering

Tottering walks seem irrelevant for many applications.

Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).

Julien Mairal (Inria) 384/564

Computation of the non-tottering walk kernel (Mahé et
al., 2005)

Second-order Markov random walk to prevent tottering walks

Written as a first-order Markov random walk on an augmented
graph

Normal walk kernel on the augmented graph (which is always a
directed graph).

Julien Mairal (Inria) 385/564

Extension 3: Subtree kernels

Remark: Here and in subsequent slides by subtree we mean a tree-like
pattern with potentially repeated nodes and edges.

Julien Mairal (Inria) 386/564

Example: Tree-like fragments of molecules

.

.

.

.

.

.

.

.

.
N

N

C

CO

C

.

.

. C

O

C

N

C

N O

C

N CN C C

N

N

Julien Mairal (Inria) 387/564

Computation of the subtree kernel (Ramon and Gärtner,
2003; Mahé and Vert, 2009)

Like the walk kernel, amounts to computing the (weighted) number
of subtrees in the product graph.

Recursion: if T (v , n) denotes the weighted number of subtrees of
depth n rooted at the vertex v , then:

T (v , n + 1) =
∑

R⊂N (v)

∏
v ′∈R

λt(v , v ′)T (v ′, n) ,

where N (v) is the set of neighbors of v .

Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.

Julien Mairal (Inria) 388/564

Back to label enrichment

Link between the Morgan index and subtrees

Recall the Morgan index:

Order 2 indices

N

O

O

1

1

1

1

1

1

1

1

1

N

O

O

2

2

2

3

2

3

1

1

2

N

O

O

4

4

5

7

5

5

3

3

4

No Morgan Indices Order 1 indices

The Morgan index of order k at a node v in fact corresponds to the
number of leaves in the k-th order full subtree pattern rooted at v .

1

2

3

4

5

6

1

1 3 1 51 2 4 5

2 63

A full subtree pattern of order 2 rooted at node 1.

Julien Mairal (Inria) 389/564

Label enrichment via the Weisfeiler-Lehman algorithm

A slightly more involved label enrichment strategy (Weisfeiler and
Lehman, 1968) is exploited in the definition and computation of the
Weisfeiler-Lehman subtree kernel (Shervashidze and Borgwardt, 2009).

1 Multiset-label determination
and sorting

2 Label compression

3 Relabeling

a

cd

b

a

e

a,d

c,bded,aace

b,ce

a,d

e,bcd

b,ce
f
g

a,d

h
id,aace

e,bcd

c,bde

j

c

j

f f

g

i h

d

b
e

Compressed labels represent full subtree patterns.

Julien Mairal (Inria) 390/564

Label enrichment via the Weisfeiler-Lehman algorithm

A slightly more involved label enrichment strategy (Weisfeiler and
Lehman, 1968) is exploited in the definition and computation of the
Weisfeiler-Lehman subtree kernel (Shervashidze and Borgwardt, 2009).

1 Multiset-label determination
and sorting

2 Label compression

3 Relabeling

a

cd

b

a

e

a,d

c,bded,aace

b,ce

a,d

e,bcd

b,ce
f
g

a,d

h
id,aace

e,bcd

c,bde

j

c

j

f f

g

i h

d

b
e

Compressed labels represent full subtree patterns.
Julien Mairal (Inria) 390/564

Weisfeiler-Lehman (WL) subtree kernel

a

cd

b

a

e

a

cd

e

b

b

m

f f

h

k j

m

f g

i

l j

G G’

φ (G) = (2, 1, 1, 1, 1, 2, 0, 1, 0, 1, 1, 0, 1)(1)

WLsubtree

φ (G’) = (

Counts of
original

node labels

Counts of
compressed
node labels

1, 2, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1)(1)

WLsubtree

K (G,G’)=< φ (G), φ (G’) >=11.
(1)

WLsubtree
(1) (1)

WLsubtree WLsubtree

a b c d e f g h i j k l m

a b c d e f g h i j k l m

Properties

The WL features up to the k-th order are computed in O(|E |k).

Similarly to the Morgan index, the WL relabeling can be exploited
in combination with any graph kernel (that takes into account
categorical node labels) to make it more expressive (Shervashidze et
al., 2011).

Julien Mairal (Inria) 391/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs

Motivation
Explicit enumeration of features
Challenges
Walk-based kernels
Applications

Kernels on graphs

Julien Mairal (Inria) 392/564

Application in chemoinformatics (Mahé et al., 2005)

MUTAG dataset

aromatic/hetero-aromatic compounds

high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.

188 compounds: 125 + / 63 -

Results

10-fold cross-validation accuracy

Method Accuracy

Progol1 81.4%
2D kernel 91.2%

Julien Mairal (Inria) 393/564

2D subtree vs walk kernels

70
72

74
76

78
80

A
U

C
Walks
Subtrees

C
C

R
F

−
C

E
M

H
L−

60
(T

B
)

K
−

56
2

M
O

LT
−

4
R

P
M

I−
82

26 S
R

A
54

9/
A

T
C

C
E

K
V

X
H

O
P

−
62

H
O

P
−

92
N

C
I−

H
22

6
N

C
I−

H
23

N
C

I−
H

32
2M

N
C

I−
H

46
0

N
C

I−
H

52
2

C
O

LO
_2

05
H

C
C

−
29

98
H

C
T

−
11

6
H

C
T

−
15

H
T

29
K

M
12

S
W

−
62

0
S

F
−

26
8

S
F

−
29

5
S

F
−

53
9

S
N

B
−

19
S

N
B

−
75

U
25

1
LO

X
_I

M
V

I
M

A
LM

E
−

3M M
14

S
K

−
M

E
L−

2
S

K
−

M
E

L−
28

S
K

−
M

E
L−

5
U

A
C

C
−

25
7

U
A

C
C

−
62

IG
R

−
O

V
1

O
V

C
A

R
−

3
O

V
C

A
R

−
4

O
V

C
A

R
−

5
O

V
C

A
R

−
8

S
K

−
O

V
−

3
78

6−
0

A
49

8
A

C
H

N
C

A
K

I−
1

R
X

F
_3

93
S

N
12

C
T

K
−

10
U

O
−

31
P

C
−

3
D

U
−

14
5

M
C

F
7

N
C

I/A
D

R
−

R
E

S
M

D
A

−
M

B
−

23
1/

A
T

C
C

H
S

_5
78

T
M

D
A

−
M

B
−

43
5

M
D

A
−

N
B

T
−

54
9

T
−

47
D

Screening of inhibitors for 60 cancer cell lines.

Julien Mairal (Inria) 394/564

Comparison of several graph feature extraction
methods/kernels (Shervashidze et al., 2011)

10-fold cross-validation accuracy on garph classification problems in
chemo- and bioinformatics:

NCI1 and NCI109 - active/inactive compounds in an anti-cancer screen

ENZYMES - 6 types of enzymes from the BRENDA database

Method/Data Set NCI1 NCI109 ENZYMES

WL subtree 82.19 (± 0.18) 82.46 (±0.24) 52.22 (±1.26)
WL shortest path 84.55 (±0.36) 83.53 (±0.30) 59.05 (±1.05)
Ramon & Gärtner 61.86 (±0.27) 61.67 (±0.21) 13.35 (±0.87)
Geometric p-walk 58.66 (±0.28) 58.36 (±0.94) 27.67 (±0.95)

Geometric walk 64.34 (±0.27) 63.51 (± 0.18) 21.68 (±0.94)
Graphlet count 66.00 (±0.07) 66.59 (±0.08) 32.70 (±1.20)

Shortest path 73.47 (±0.11) 73.07 (±0.11) 41.68 (±1.79)

Julien Mairal (Inria) 395/564

Image classification (Harchaoui and Bach, 2007)

COREL14 dataset

1400 natural images in 14 classes

Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
(M).

H W TW wTW M

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

T
es

t e
rr

or

Kernels

Performance comparison on Corel14

Julien Mairal (Inria) 396/564

Summary: graph kernels

What we saw

Kernels do not allow to overcome the NP-hardness of subgraph
patterns.

They allow to work with approximate subgraphs (walks, subtrees) in
infinite dimension, thanks to the kernel trick.

However: using kernels makes it difficult to come back to patterns
after the learning stage.

Julien Mairal (Inria) 397/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

5 Open Problems and Research Topics

Julien Mairal (Inria) 398/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Julien Mairal (Inria) 399/564

Graphs

Motivation

Data often come in the form of nodes in a graph for different reasons:

by definition (interaction network, internet...)

by discretization/sampling of a continuous domain

by convenience (e.g., if only a similarity function is available)

Julien Mairal (Inria) 400/564

Example: web

Julien Mairal (Inria) 401/564

Example: social network

Julien Mairal (Inria) 402/564

Example: protein-protein interaction

Julien Mairal (Inria) 403/564

Kernel on a graph

φ

We need a kernel K (x, x′) between nodes of the graph.

Example: predict protein functions from high-throughput
protein-protein interaction data.

Julien Mairal (Inria) 404/564

General remarks

Strategies to design a kernel on a graph

X being finite, any symmetric semi-definite matrix K defines a valid
p.d. kernel on X .

How to “translate” the graph topology into the kernel?

Direct geometric approach: Ki,j should be “large” when xi and xj are
“close” to each other on the graph?
Functional approach: ‖ f ‖K should be “small” when f is “smooth”
on the graph?
Link discrete/continuous: is there an equivalent to the continuous
Gaussian kernel on the graph (e.g., limit by fine discretization)?

Julien Mairal (Inria) 405/564

General remarks

Strategies to design a kernel on a graph

X being finite, any symmetric semi-definite matrix K defines a valid
p.d. kernel on X .

How to “translate” the graph topology into the kernel?

Direct geometric approach: Ki,j should be “large” when xi and xj are
“close” to each other on the graph?
Functional approach: ‖ f ‖K should be “small” when f is “smooth”
on the graph?
Link discrete/continuous: is there an equivalent to the continuous
Gaussian kernel on the graph (e.g., limit by fine discretization)?

Julien Mairal (Inria) 405/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Julien Mairal (Inria) 406/564

Conditionally p.d. kernels

Hilbert distance

Any p.d. kernel is an inner product in a Hilbert space

K
(
x, x′

)
=
〈
Φ (x) ,Φ

(
x′
)〉
H .

It defines a Hilbert distance:

dK

(
x, x′

)2
= K (x, x) + K

(
x′, x′

)
− 2K

(
x, x′

)
.

−d2
K is conditionally positive definite (c.p.d.), i.e.:

∀t > 0 , exp
(
−tdK

(
x, x′

)2
)

is p.d.

Julien Mairal (Inria) 407/564

Example

A direct approach

For X = Rn, the inner product is p.d.:

K (x, x′) = x>x′ .

The corresponding Hilbert distance is the Euclidean distance:

dK

(
x, x′

)2
= x>x + x′>x′ − 2x>x′ = ||x− x′||2 .

−d2
K is conditionally positive definite (c.p.d.), i.e.:

∀t > 0 , exp
(
−t||x− x′||2

)
is p.d.

Julien Mairal (Inria) 408/564

Graph distance

Graph embedding in a Hilbert space

Given a graph G = (V ,E), the graph distance dG (x , x ′) between
any two vertices is the length of the shortest path between x and x ′.

We say that the graph G = (V ,E) can be embedded (exactly) in a
Hilbert space if −dG is c.p.d., which implies in particular that
exp(−tdG (x , x ′)) is p.d. for all t > 0.

Lemma

In general graphs cannot be embedded exactly in Hilbert spaces.

In some cases exact embeddings exist, e.g.:

trees can be embedded exactly,
closed chains can be embedded exactly.

Julien Mairal (Inria) 409/564

Graph distance

Graph embedding in a Hilbert space

Given a graph G = (V ,E), the graph distance dG (x , x ′) between
any two vertices is the length of the shortest path between x and x ′.

We say that the graph G = (V ,E) can be embedded (exactly) in a
Hilbert space if −dG is c.p.d., which implies in particular that
exp(−tdG (x , x ′)) is p.d. for all t > 0.

Lemma

In general graphs cannot be embedded exactly in Hilbert spaces.

In some cases exact embeddings exist, e.g.:

trees can be embedded exactly,
closed chains can be embedded exactly.

Julien Mairal (Inria) 409/564

Example: non-c.p.d. graph distance

1 5

2

3

4

dG =


0 1 1 1 2
1 0 2 2 1
1 2 0 2 1
1 2 2 0 1
2 1 1 1 0


λmin

([
e(−0.2dG (i ,j))

])
= −0.028 < 0 .

Julien Mairal (Inria) 410/564

Graph distances on trees are c.p.d.

Proof

Let G = (V ,E) be a tree;

Fix a root x0 ∈ V ;

Represent any vertex x ∈ V by a vector Φ(x) ∈ R|E |, where
Φ(x)i = 1 if the i-th edge is part of the (unique) path between x
and x0, 0 otherwise.

Then
dG (x , x ′) = ‖Φ(x)− Φ(x ′) ‖2 ,

and therefore −dG is c.p.d., in particular exp(−tdG (x , x ′)) is p.d.
for all t > 0.

Julien Mairal (Inria) 411/564

Example

5
1

3

2
4

[
e−dG (i ,j)

]
=


1 0.14 0.37 0.14 0.05

0.14 1 0.37 0.14 0.05
0.37 0.37 1 0.37 0.14
0.14 0.14 0.37 1 0.37
0.05 0.05 0.14 0.37 1



Julien Mairal (Inria) 412/564

Graph distances on closed chains are c.p.d.

Proof: case |V | = 2p

Let G = (V ,E) be a directed cycle with an even number of vertices
|V | = 2p.

Fix a root x0 ∈ V , number the 2p edges from x0 to x0;

Label the 2p edges with e1, . . . , ep,−e1, . . . ,−ep (vectors in Rp);

For a vertex v , take Φ(v) to be the sum of the labels of the edges
in the shortest directed path between x0 and v .

Julien Mairal (Inria) 413/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Julien Mairal (Inria) 414/564

Functional approach

Motivation

How to design a p.d. kernel on general graphs?

Designing a kernel is equivalent to defining an RKHS.

There are intuitive notions of smoothness on a graph.

Idea

Define a priori a smoothness functional on the functions f : X → R;

Show that it defines an RKHS and identify the corresponding kernel.

Julien Mairal (Inria) 415/564

Notations

X = (x1, . . . , xm) is finite.

For x, x′ ∈ X , we note x ∼ x′ to indicate the existence of an edge
between x and x′

We assume that there is no self-loop x ∼ x, and that there is a
single connected component.

The adjacency matrix is A ∈ Rm×m:

Ai ,j =

{
1 if i ∼ j ,

0 otherwise.

D is the diagonal matrix where Di ,i is the number of neighbors of xi

(Di ,i =
∑m

i=1 Ai ,j).

Julien Mairal (Inria) 416/564

Example

5
1

3

2
4

A =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

 , D =


1 0 0 0 0
0 1 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1



Julien Mairal (Inria) 417/564

Graph Laplacian

Definition

The Laplacian of the graph is the matrix L = D − A.

5
1

3

2
4

L = D − A =


1 0 −1 0 0
0 1 −1 0 0
−1 −1 3 −1 0
0 0 −1 2 −1
0 0 0 −1 1



Julien Mairal (Inria) 418/564

Properties of the Laplacian

Lemma

Let L = D − A be the Laplacian of a connected graph:

For any f : X → R,

Ω(f) :=
∑
i∼j

(f (xi)− f (xj))2 = f >Lf

L is a symmetric positive semi-definite matrix

0 is an eigenvalue with multiplicity 1 associated to the constant
eigenvector 1 = (1, . . . , 1)

The image of L is

Im(L) =

{
f ∈ Rm :

m∑
i=1

fi = 0

}

Julien Mairal (Inria) 419/564

Proof: link between Ω(f) and L

Ω (f) =
∑
i∼j

(f (xi)− f (xj))2

=
∑
i∼j

(
f (xi)

2 + f (xj)
2 − 2f (xi) f (xj)

)
=

m∑
i=1

Di ,i f (xi)
2 − 2

∑
i∼j

f (xi) f (xj)

= f >Df − f >Af

= f >Lf

Julien Mairal (Inria) 420/564

Proof: eigenstructure of L

L is symmetric because A and D are symmetric.

For any f ∈ Rm, f >Lf = Ω(f) ≥ 0, therefore the (real-valued)
eigenvalues of L are ≥ 0 : L is therefore positive semi-definite.

f is an eigenvector associated to eigenvalue 0
iff f >Lf = 0
iff
∑

i∼j (f (xi)− f (xj))2 = 0 ,
iff f (xi) = f (xj) when i ∼ j ,
iff f is constant (because the graph is connected).

L being symmetric, Im(L) is the orthogonal supplement of Ker(L),
that is, the set of functions orthogonal to 1. �

Julien Mairal (Inria) 421/564

Our first graph kernel

Theorem

The set H = {f ∈ Rm :
∑m

i=1 fi = 0} endowed with the norm

Ω (f) =
∑
i∼j

(f (xi)− f (xj))2

is a RKHS whose reproducing kernel is L∗, the pseudo-inverse of the
graph Laplacian.

Julien Mairal (Inria) 422/564

In case of...

Pseudo-inverse of L

Remember the pseudo-inverse L∗ of L is the linear application that is
equal to:

0 on Ker(L)

L−1 on Im(L), that is, if we write:

L =
m∑

i=1

λi ui u
>
i

the eigendecomposition of L:

L∗ =
∑
λi 6=0

(λi)
−1 ui u

>
i .

In particular it holds that L∗L = LL∗ = ΠH, the projection onto
Im(L) = H.

Julien Mairal (Inria) 423/564

Proof (1/2)

Resticted to H, the symmetric bilinear form:

〈f , g〉 = f >Lg

is positive definite (because L is positive semi-definite, and
H = Im(L)). It is therefore a scalar product, making of H a Hilbert
space (in fact Euclidean).

The norm in this Hilbert space H is:

‖ f ‖2 = 〈f , f 〉 = f >Lf = Ω(f) .

Julien Mairal (Inria) 424/564

Proof (2/2)

To check that H is a RKHS with reproducing kernel K = L∗, it suffices
to show that: {

∀x ∈ X , Kx ∈ H ,

∀ (x, f) ∈ X ×H, 〈f ,Kx〉 = f (x) .

Ker(K) = Ker (L∗) = Ker (L), implying K1 = 0. Therefore, each
row/column of K is in H.

For any f ∈ H, if we note gi = 〈K (i , ·), f 〉 we get:

g = KLf = L∗Lf = ΠH(f) = f .

As a conclusion K = L∗ is the reproducing kernel of H. �

Julien Mairal (Inria) 425/564

Example

5
1

3

2
4

L∗ =


0.88 −0.12 0.08 −0.32 −0.52
−0.12 0.88 0.08 −0.32 −0.52

0.08 0.08 0.28 −0.12 −0.32
−0.32 −0.32 −0.12 0.48 0.28
−0.52 −0.52 −0.32 0.28 1.08



Julien Mairal (Inria) 426/564

Interpretation of the Laplacian

dx

f

i−1 i i+1

∆f (x) = f ′′(x)

∼ f ′(x + dx/2)− f ′(x − dx/2)

dx

∼ f (x + dx)− f (x)− f (x) + f (x − dx)

dx2

=
fi−1 + fi+1 − 2f (x)

dx2

= −Lf (i)

dx2
.

Julien Mairal (Inria) 427/564

Interpretation of regularization

For f = [0, 1]→ R and xi = i/m, we have:

Ω(f) =
m∑

i=1

(
f

(
i + 1

m

)
− f

(
i

m

))2

∼
m∑

i=1

(
1

m
× f ′

(
i

m

))2

=
1

m
× 1

m

m∑
i=1

f ′
(

i

m

)2

∼ 1

m

∫ 1

0
f ′(t)2dt.

Julien Mairal (Inria) 428/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Julien Mairal (Inria) 429/564

Motivation

Consider the normalized Gaussian kernel on Rd :

Kt

(
x, x′

)
=

1

(4πt)
d
2

exp

(
−‖ x− x′ ‖2

4t

)
.

In order to transpose it to the graph, replacing the Euclidean
distant by the shortest-path distance does not work.

In this section we provide a characterization of the Gaussian kernel
as the solution of a partial differential equation involving the
Laplacian, which we can transpose to the graph: the diffusion
equation.

The solution of the discrete diffusion equation will be called the
diffusion kernel or heat kernel.

Julien Mairal (Inria) 430/564

The diffusion equation

Lemma

For any x0 ∈ Rd , the function:

Kx0 (x, t) = Kt (x0, x) =
1

(4πt)
d
2

exp

(
−‖ x− x0 ‖2

4t

)
is solution of the diffusion equation:

∂

∂t
Kx0 (x, t) = ∆Kx0 (x, t)

with initial condition Kx0 (x, 0) = δx0(x)

(proof by direct computation).

Julien Mairal (Inria) 431/564

Discrete diffusion equation

For finite-dimensional ft ∈ Rm, the diffusion equation becomes:

∂

∂t
ft = −Lft

which admits the following solution:

ft = f0e−tL

with

etL = I − tL +
t2

2!
L2 − t3

3!
L3 + . . .

Julien Mairal (Inria) 432/564

Diffusion kernel (Kondor and Lafferty, 2002)

This suggest to consider:
K = e−tL

which is indeed symmetric positive semi-definite because if we write:

L =
m∑

i=1

λi ui u
>
i (λi ≥ 0)

we obtain:

K = e−tL =
m∑

i=1

e−tλi ui u
>
i

Julien Mairal (Inria) 433/564

Example: complete graph

Ki ,j =

{
1+(m−1)e−tm

m for i = j ,
1−e−tm

m for i 6= j .

Julien Mairal (Inria) 434/564

Example: closed chain

Ki ,j =
1

m

m−1∑
ν=0

exp

[
−2t

(
1− cos

2πν

m

)]
cos

2πν(i − j)

m
.

Julien Mairal (Inria) 435/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Julien Mairal (Inria) 436/564

Motivation

In this section we show that the diffusion and Laplace kernels can
be interpreted in the frequency domain of functions

This shows that our strategy to design kernels on graphs was based
on (discrete) harmonic analysis on the graph

This follows the approach we developed for semigroup kernels!

Julien Mairal (Inria) 437/564

Spectrum of the diffusion kernel

Let 0 = λ1 < λ2 ≤ . . . ≤ λm be the eigenvalues of the Laplacian:

L =
m∑

i=1

λi ui u
>
i (λi ≥ 0)

The diffusion kernel Kt is an invertible matrix because its
eigenvalues are strictly positive:

Kt =
m∑

i=1

e−tλi ui u
>
i

Julien Mairal (Inria) 438/564

Norm in the diffusion RKHS

Any function f ∈ Rm can be written as f = K
(
K−1f

)
, therefore its

norm in the diffusion RKHS is:

‖ f ‖2
Kt

=
(

f >K−1
)

K
(
K−1f

)
= f >K−1f .

For i = 1, . . . ,m, let:
f̂i = u>i f

be the projection of f onto the eigenbasis of K .

We then have:

‖ f ‖2
Kt

= f >K−1f =
m∑

i=1

etλi f̂ 2
i .

This looks similar to
∫ ∣∣∣ f̂ (ω)

∣∣∣2 eσ
2ω2

dω ...

Julien Mairal (Inria) 439/564

Discrete Fourier transform

Definition

The vector f̂ =
(

f̂1, . . . , f̂m

)>
is called the discrete Fourier transform of

f ∈ Rn

The eigenvectors of the Laplacian are the discrete equivalent to the
sine/cosine Fourier basis on Rn.

The eigenvalues λi are the equivalent to the frequencies ω2

Successive eigenvectors “oscillate” increasingly as eigenvalues get
more and more negative.

Julien Mairal (Inria) 440/564

Example: eigenvectors of the Laplacian

Julien Mairal (Inria) 441/564

Generalization

This observation suggests to define a whole family of kernels:

Kr =
m∑

i=1

r(λi)ui u
>
i

associated with the following RKHS norms:

‖ f ‖2
Kr

=
m∑

i=1

f̂ 2
i

r(λi)

where r : R+ → R+
∗ is a non-increasing function.

Julien Mairal (Inria) 442/564

Example : regularized Laplacian

r(λ) =
1

λ+ ε
, ε > 0

K =
m∑

i=1

1

λi + ε
ui u
>
i = (L + εI)−1

‖ f ‖2
K = f >K−1f =

∑
i∼j

(f (xi)− f (xj))2 + ε

m∑
i=1

f (xi)
2 .

Julien Mairal (Inria) 443/564

Example

5
1

3

2
4

(L + I)−1 =


0.60 0.10 0.19 0.08 0.04
0.10 0.60 0.19 0.08 0.04
0.19 0.19 0.38 0.15 0.08
0.08 0.08 0.15 0.46 0.23
0.04 0.04 0.08 0.23 0.62



Julien Mairal (Inria) 444/564

Outline

4 The Kernel Jungle
Kernels for probabilistic models
Kernels for biological sequences
Mercer kernels and shift-invariant kernels
Kernels for graphs
Kernels on graphs

Motivation
Graph distance and p.d. kernels
Construction by regularization
The diffusion kernel
Harmonic analysis on graphs
Applications

Julien Mairal (Inria) 445/564

Applications 1: graph partitioning

A classical relaxation of graph partitioning is:

min
f ∈RX

∑
i∼j

(fi − fj)
2 s.t.

∑
i

f 2
i = 1

This can be rewritten

max
f

∑
i

f 2
i s.t. ‖ f ‖H ≤ 1

This is principal component analysis in the RKHS (“kernel PCA”)

PC1PC2

Julien Mairal (Inria) 446/564

Applications 2: search on a graph

Let x1, . . . , xq be a set of q nodes (the query). How to find
“similar” nodes (and rank them)?

One solution:

min
f
‖ f ‖H s.t. f (xi) ≥ 1 for i = 1, . . . , q.

Julien Mairal (Inria) 447/564

Application 3: Semi-supervised learning

Julien Mairal (Inria) 448/564

Application 3: Semi-supervised learning

Julien Mairal (Inria) 449/564

Application 4: Tumor classification from microarray data
(Rapaport et al., 2006)

Data available

Gene expression measures for more than 10k genes

Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal

Design a classifier to automatically assign a class to future samples
from their expression profile

Interpret biologically the differences between the classes

Julien Mairal (Inria) 450/564

Application 4: Tumor classification from microarray data
(Rapaport et al., 2006)

Data available

Gene expression measures for more than 10k genes

Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal

Design a classifier to automatically assign a class to future samples
from their expression profile

Interpret biologically the differences between the classes

Julien Mairal (Inria) 450/564

Linear classifiers

The approach

Each sample is represented by a vector x = (x1, . . . , xp) where
p > 105 is the number of probes

Classification: given the set of labeled sample, learn a linear
decision function:

f (x) =

p∑
i=1

βi xi + β0 ,

that is positive for one class, negative for the other

Interpretation: the weight βi quantifies the influence of gene i for
the classification

Julien Mairal (Inria) 451/564

Linear classifiers

Pitfalls

No robust estimation procedure exist for 100 samples in 105

dimensions!

It is necessary to reduce the complexity of the problem with prior
knowledge.

Julien Mairal (Inria) 452/564

Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high
dimension is to constrain the norm of β, e.g.:

Euclidean norm (support vector machines, ridge regression):
‖β ‖2 =

∑p
i=1 β

2
i

L1-norm (lasso regression) : ‖β ‖1 =
∑p

i=1 |βi |

Pros

Good performance in
classification

Cons

Limited interpretation
(small weights)

No prior biological
knowledge

Julien Mairal (Inria) 453/564

Example 2: Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes (< 20) whose
expression are enough for classification. Interpretation is then about the
selected genes.

Pros

Good performance in
classification

Useful for biomarker
selection

Apparently easy
interpretation

Cons

The gene selection
process is usually not
robust

Wrong interpretation is
the rule (too much
correlation between
genes)

Julien Mairal (Inria) 454/564

Pathway interpretation

Motivation

Basic biological functions are usually expressed in terms of
pathways and not of single genes (metabolic, signaling, regulatory)

Many pathways are already known

How to use this prior knowledge to constrain the weights to have an
interpretation at the level of pathways?

Solution (Rapaport et al., 2006)

Constrain the diffusion RKHS norm of β

Relevant if the true decision function is indeed smooth w.r.t. the
biological network

Julien Mairal (Inria) 455/564

Pathway interpretation

N

-

Glycan
biosynthesis

Protein
kinases

DNA
and
RNA
polymerase
subunits

Glycolysis /
Gluconeogenesis

Sulfur
metabolism

Porphyrin
and
chlorophyll
metabolism

Riboflavin metabolism

Folate
biosynthesis

Biosynthesis of steroids,
ergosterol metabolism

Lysine
biosynthesis

Phenylalanine, tyrosine and
tryptophan biosynthesis Purine

metabolism

Oxidative
phosphorylation,
TCA cycle

Nitrogen,
asparagine
metabolism

Bad example

The graph is the
complete known
metabolic network of the
budding yeast (from
KEGG database)

We project the classifier
weight learned by a SVM

Good classification
accuracy, but no possible
interpretation!

Julien Mairal (Inria) 456/564

Pathway interpretation

Good example

The graph is the complete
known metabolic network
of the budding yeast
(from KEGG database)

We project the classifier
weight learned by a
spectral SVM

Good classification
accuracy, and good
interpretation!

Julien Mairal (Inria) 457/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle

5 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels
“Deep” learning with kernels

Julien Mairal (Inria) 458/564

Motivation

We have seen how to make learning algorithms given a kernel K on
some data space X
Often we may have several possible kernels:

by varying the kernel type or parameters on a given description of the
data (eg, linear, polynomial, Gaussian kernels with different
bandwidths...)
because we have different views of the same data, eg, a protein can
be characterized by its sequence, its structure, its mass spectrometry
profile...

How to choose or integrate different kernels in a learning task?

Julien Mairal (Inria) 459/564

Setting: learning with one kernel

For any f : X → R, let f n = (f (x1), . . . , f (xn)) ∈ Rn

Given a p.d. kernel K : X × X → R, we learn with K by solving:

min
f ∈HK

R(f n) + λ‖ f ‖2
HK

, (4)

where λ > 0 and R : Rn → R is an closed1 and convex empirical
risk:

R(u) = 1
n

∑n
i=1(ui − yi)

2 for kernel ridge regression
R(u) = 1

n

∑n
i=1 max(1− yi ui , 0) for SVM

R(u) = 1
n

∑n
i=1 log (1 + exp (−yi ui)) for kernel logistic regression

1R is closed if, for each A ∈ R, the sublevel set {u ∈ Rn : R(u) ≤ A} is closed.
For example, if R is continuous then it is closed.

Julien Mairal (Inria) 460/564

Sum kernel

Definition

Let K1, . . . ,KM be M kernels on X . The sum kernel KS is the kernel on
X defined as

∀x, x′ ∈ X , KS (x, x′) =
M∑

i=1

Ki (x, x′) .

Julien Mairal (Inria) 461/564

Sum kernel and vector concatenation

Theorem

For i = 1, . . . ,M, let Φi : X → Hi be a feature map such that

Ki (x, x′) =
〈
Φi (x) ,Φi

(
x′
)〉
Hi
.

Then KS =
∑M

i=1 Ki can be written as:

KS (x, x′) =
〈
ΦS (x) ,ΦS

(
x′
)〉
HS

,

where ΦS : X → HS = H1 ⊕ . . .⊕HM is the concatenation of the
feature maps Φi :

ΦS (x) = (Φ1 (x) , . . . ,ΦM (x))> .

Therefore, summing kernels amounts to concatenating their feature
space representations, which is a quite natural way to integrate different
features.

Julien Mairal (Inria) 462/564

Proof

For ΦS (x) = (Φ1 (x) , . . . ,ΦM (x))>, we easily compute:

〈
ΦS (x) ,ΦS

(
x′
)〉
Hs

=
M∑

i=1

〈
Φi (x) ,Φi

(
x′
)〉
Hi

=
M∑

i=1

Ki (x, x′)

= KS (x, x′) .

Julien Mairal (Inria) 463/564

Example: data integration with the sum kernel

BIOINFORMATICS Vol. 20 Suppl. 1 2004, pages i363–i370
DOI: 10.1093/bioinformatics/bth910

Protein network inference from multiple
genomic data: a supervised approach
Y. Yamanishi1,∗, J.-P. Vert2 and M. Kanehisa1

1Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho,
Uji, Kyoto 611-0011, Japan and 2Computational Biology group, Ecole des Mines de
Paris, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France

Received on January 15, 2004; accepted on March 1, 2004

ABSTRACT
Motivation:An increasing number of observations support the
hypothesis that most biological functions involve the interac-
tions between many proteins, and that the complexity of living
systems arises as a result of such interactions. In this context,
the problem of inferring a global protein network for a given
organism, using all available genomic data about the organ-
ism, is quickly becoming one of the main challenges in current
computational biology.
Results: This paper presents a new method to infer protein
networks from multiple types of genomic data. Based on a
variant of kernel canonical correlation analysis, its originality
is in the formalization of the protein network inference problem
as a supervised learning problem, and in the integration of het-
erogeneous genomic data within this framework. We present
promising results on the prediction of the protein network for
the yeast Saccharomyces cerevisiae from four types of widely
available data: gene expressions, protein interactions meas-
ured by yeast two-hybrid systems, protein localizations in the
cell and protein phylogenetic profiles. The method is shown
to outperform other unsupervised protein network inference
methods. We finally conduct a comprehensive prediction of
the protein network for all proteins of the yeast, which enables
us to propose protein candidates for missing enzymes in a
biosynthesis pathway.
Availability: Softwares are available upon request.
Contact yoshi@kuicr.kyoto-u.ac.jp

INTRODUCTION
An increasing number of observations support the hypothesis
thatmost biological functions involve the interactions between
manyproteins, and that the complexity of living systems arises
as a result of such interactions. In this context, the problem
of inferring a global protein network for a given organism,
using all available genomic data about the organism, is quickly
becoming one of the main challenges addressed in current

∗To whom correspondence should be addressed.

computational biology. By protein network we mean, in this
paper, a graph with proteins as vertices and edges that corres-
pond to various binary relationships between proteins. More
precisely, we consider below the protein network with edges
between two proteins if (i) the proteins interact physically,
or (ii) the proteins are enzymes that catalyze two successive
chemical reactions in a pathway or (iii) one of the proteins
regulates the expression of the other. This definition of pro-
tein network involves various forms of interactions between
proteins, which should be taken into account for the study of
the behavior of biological systems.
Unfortunately, the experimental determination of this pro-

tein network remains very challenging nowadays, even for
the most basic organisms. The lack of reliable informa-
tion contrasts with the wealth of genomic data generated by
high-throughput technologies such as gene expression data
(Eisen et al., 1998), physical protein interactions (Ito et al.,
2001), protein localization (Huh et al., 2003), phylogen-
etic profiles (Pellegrini et al., 1999) or pathway knowledge
(Kanehisa et al., 2004). There is therefore an incentive
to develop methods to predict the protein network from
such data.
A variety of computational methods for this problem have

been investigated so far. Some methods perform the protein
network inference from a single type of genomic data, such
as Bayesian networks (Friedman et al., 2000) and Boolean
networks (Akutsu et al., 2000), which aim at inferring gene
regulation networks from gene expression data, or the mirror
tree method (Pazos et al., 2001), which predicts protein inter-
actions from evolutionary similarities. Other methods com-
bine different sources of data to infer the network: this is for
example, the case in the joint graph method (Marcotte et al.,
1999), where graphs representing similarities with respect to
various types of genomic information are overlapped in order
to detect strong associations between proteins.
These methods share the particularity of being unsuper-

vised, in the sense that the whole protein network is inferred
from the data. Inference typically relies on the assumption
that proteins sharing similarity according to a dataset (e.g.

Bioinformatics 20(Suppl. 1) © Oxford University Press 2004; all rights reserved. i363

Protein network inference

Equation (2) with decreasing eigenvalue ρ. This problem is
usually called kernel canonical correlation analysis (CCA)
(Akaho, 2001). If one now focuses on the first L solutions
α

(1)
1 , . . . ,α

(L)
1 of Equation (2) (sorted by decreasing value of

ρ), then they define L features of interest by f (l) = K1α
(l)
1 ,

for l = 1, . . . ,L. These features are built from the genomic
dataset kernel K1 only, and are expected to fit the ideal fea-
tures on the gold standard set of proteins. These features
can now be generalized to any protein x by the following
equation:

f (l) (x) =
n∑

k=1
α

(l)
1 (xk) K (xk , x) . (3)

This is the set of features we propose to map the proteins to
before inferring protein interactions.
In both the spectral method and this supervised

method, each protein x is mapped to a feature space
as an L-dimensional vector u = (u1, . . . , uL)! =
[f (1)(x), . . . , f (L)(x)]!. To assess the similarity of protein x
and protein y in this feature space, we simply follow the spirit
of the direct approach and quantify the similarity between
points u = (u1, . . . , uL)! and v = (v1, . . . , vL)! by their
correlation:

ĉorr (u, v) = ĉov(u, v)
√
v̂ar(u)

√
v̂ar(v)

= (1/L)
∑L

l=1 (ul − ū) (vl − v̄)
√

(1/L)
∑L

l=1(ul − ū)2
√

(1/L)
∑L

l=1(vl − v̄)2
,

(4)

where ū and v̄ are the averages of u and v.

RESULTS
All genomic datasets are transformed into kernels as fol-
lows. The gold standard protein network and the noisy protein
interaction datasets are represented by a diffusion kernel
with parameter β = 1, and respectively denoted Kgold and
Kppi. For the gene expression data, we used the Gaussian
RBF kernel with σ = 5, and denote the resulting kernel
Kexp. For both localization data and the phylogenetic pro-
files, a simple linear kernel, is denoted respectively Kloc
and Kphy. All kernels are then normalized to 1 on the diag-
onal and centered in the feature space (Schölkopf and Smola,
2002).
We tested the direct and spectral approaches either on single

types of genomic datasets, or on the integrated kernel repres-
enting all datasets. For the spectral approach, we arbitrarily
kept the first L = 50 principal components to define the fea-
ture space. The accuracy of both methods is assessed on the
gold standard dataset, by their capacity to recover the pro-
tein network. Starting from isolated nodes, each method can

Table 1. List of experiments of direct approach, spectral approach based on
kernel PCA, and supervised approach based on kernel CCA

Approach Kernel (Predictor) Kernel (Target)

Direct Kexp (Expression)
Kppi (Protein interaction)
Kloc (Localization)
Kphy (Phylogenetic profile)
Kexp + Kppi + Kloc + Kphy
(Integration)

Spectral Kexp (Expression)
Kppi (Protein interaction)
Kloc (Localization)
Kphy (Phylogenetic profile)
Kexp + Kppi + Kloc + Kphy
(Integration)

Supervised Kexp (Expression) Kgold (Protein network)
Kppi (Protein interaction) Kgold (Protein network)
Kloc (Localization) Kgold (Protein network)
Kphy (Phylogenetic profile) Kgold (Protein network)
Kexp + Kppi + Kloc + Kphy Kgold (Protein network)
(Integration)

be used to build progressively a network by adding edges
between pairs of proteins sorted by decreasing similarity. At
each addition, we recorded the number of true positives (pre-
dicted edges that indeed are present in the gold standard) and
false positives (predicted edges that are absent from the gold
standard). Figures 3 and 4 show the ROC curves representing
the numbers of true positives as a function of the number of
false positives for the two methods. In both cases, the over-
all accuracy of the inference method is very limited. Little
information seems to be caught by the direct approach, while
the spectral approach gives slightly better results, in particular,
when used in combination with the kernel that integrates all
genomic datasets, but remains useless in practice due to the
large rate of false positives at any rate of true positives. These
negative results, in particular for the direct approach, confirm
that the problem of protein network reconstruction is far from
trivial.
We then tested the supervised approach. The parameters λ1

and λ2 were set to 0.1, and again we kept L = 50 features
to define the feature space. We tested various combinations
of dataset kernels to be fitted to the gold standard kernel, as
described in Table 1. In order to assess the accuracy of the
method, we carried out a 10-fold cross-validation experiment
as follows. In each out of 10 iterations, the set of 769 proteins
in the gold standard is split into a training set and a test set in
the proportion 9/1. The feature space is trained on the train-
ing set, and the inference of interaction is performed on the
possible interactions involving the proteins in the test set (the
gray part in Fig. 1). Once again a graph is built progressively
and we record the number of true positive interactions as a

i367

Protein network inference

Fig. 5. ROC curves: supervised approach.

enables us to make new biological inferences for unknown
protein–protein interactions.
This method is a supervised approach, while most meth-

ods which have been proposed so far are unsupervised. The
motivation to use a supervised approach is to explicitly learn
the correlation between known networks and genomic data in
the algorithm. It should be pointed out that in this supervised
framework, different networks can be inferred from the same
data, by changing the partial network used in the learning step.
Another strength of this method is the possibility to naturally
integrate heterogeneous data. Experimental results confirmed
that this integration is beneficial for the prediction accuracy
of the method. Moreover, other sorts of genomic data can
be integrated, as long as kernels can be derived from them.
As the list of kernels for genomic data keeps increasing fast
(Schölkopf et al., 2004), new opportunities might be worth
investigating.
A drawback of our method is that in its current form, it is

limited to the prediction of undirected interactions between
proteins, which might be insufficient for example in the case
of gene regulatory networks. The incorporation of directional
information is a topic we are currently investigating, through
which we expect to bring about more biologically interesting
findings.

ACKNOWLEDGMENTS
The computational resourcewas provided by theBioinformat-
ics Center, Institute for Chemical Research, Kyoto University.
This work was supported by grants from the Ministry of

Fig. 6. Effect of number of features L in spectral and supervised
approaches.

Fig. 7. N -Glycan biosynthesis pathway: EC:2.4.1.141 is a missing
enzyme.

Education, Culture, Sports, Science and Technology of
Japan, the Japan Society for the Promotion of Science,
the Japan Science and Technology Corporation and by a
French-Japanese Sakura grant.

i369

Julien Mairal (Inria) 464/564

The sum kernel: functional point of view

Theorem

The solution f ∗ ∈ HKS
when we learn with KS =

∑M
i=1 Ki is equal to:

f ∗ =
M∑

i=1

f ∗i ,

where (f ∗1 , . . . , f
∗

M) ∈ HK1 × . . .×HKM
is the solution of:

min
f1,...,fM

R

(
M∑

i=1

f n
i

)
+ λ

M∑
i=1

‖ fi ‖2
HKi

.

Julien Mairal (Inria) 465/564

Generalization: The weighted sum kernel

Theorem

The solution f ∗ when we learn with Kη =
∑M

i=1 ηi Ki , with
η1, . . . , ηM ≥ 0, is equal to:

f ∗ =
M∑

i=1

f ∗i ,

where (f ∗1 , . . . , f
∗

M) ∈ HK1 × . . .×HKM
is the solution of:

min
f1,...,fM

R

(
M∑

i=1

f n
i

)
+ λ

M∑
i=1

‖ fi ‖2
HKi

ηi
.

Julien Mairal (Inria) 466/564

Proof (1/4)

min
f1,...,fM

R

(
M∑

i=1

f n
i

)
+ λ

M∑
i=1

‖ fi ‖2
HKi

ηi
.

R being convex, the problem is strictly convex and has a unique
solution (f ∗1 , . . . , f

∗
M) ∈ HK1 × . . .×HKM

.

By the representer theorem, there exists α∗1, . . . ,α
∗
M ∈ Rn such that

f ∗i (x) =
n∑

j=1

α∗ij Ki (xj , x) .

(α∗1, . . . ,α
∗
M) is the solution of

min
α1,...,αM∈Rn

R

(
M∑

i=1

Kiαi

)
+ λ

M∑
i=1

α>i Kiαi

ηi
.

Julien Mairal (Inria) 467/564

Proof (2/4)

This is equivalent to

min
u,α1,...,αM∈Rn

R (u) + λ

M∑
i=1

α>i Kiαi

ηi
s.t. u =

M∑
i=1

Kiαi .

This is equivalent to the saddle point problem:

min
u,α1,...,αM∈Rn

max
γ∈Rn

R (u) + λ

M∑
i=1

α>i Kiαi

ηi
+ 2λγ>(u−

M∑
i=1

Kiαi) .

By Slater’s condition, strong duality holds, meaning we can invert
min and max:

max
γ∈Rn

min
u,α1,...,αM∈Rn

R (u) + λ

M∑
i=1

α>i Kiαi

ηi
+ 2λγ>(u−

M∑
i=1

Kiαi) .

Julien Mairal (Inria) 468/564

Proof (3/4)

Minimization in u:

min
u

R(u) + 2λγ>u = −max
u

{
−2λγ>u− R(u)

}
= −R∗(−2λγ) ,

where R∗ is the Fenchel dual of R:

∀v ∈ Rn R∗(v) = sup
u∈Rn

u>v − R(u) .

Minimization in αi for i = 1, . . . ,M:

min
αi

{
λ
α>i Kiαi

ηi
− 2λγ>Kiαi

}
= −ληiγ

>Kiγ ,

where the minimum in αi is reached for α∗i = ηiγ.

Julien Mairal (Inria) 469/564

Proof (4/4)

The dual problem is therefore

max
γ∈Rn

{
−R∗(−2λγ)− λγ>

(
M∑

i=1

ηi Ki

)
γ

}
.

Note that if learn from a single kernel Kη, we get the same dual
problem

max
γ∈Rn

{
−R∗(−2λγ)− λγ>Kηγ

}
.

If γ∗ is a solution of the dual problem, then α∗i = ηiγ
∗ leading to:

∀x ∈ X , f ∗i (x) =
n∑

j=1

α∗ij Ki (xj , x) =
n∑

j=1

ηiγ
∗
j Ki (xj , x)

Therefore, f ∗ =
∑M

i=1 f ∗i satisfies

f ∗ (x) =
M∑

i=1

n∑
j=1

ηiγ
∗
j Ki (xj , x) =

n∑
j=1

γ∗j Kη (xj , x) . �

Julien Mairal (Inria) 470/564

Learning the kernel

Motivation

If we know how to weight each kernel, then we can learn with the
weighted kernel

Kη =
M∑

i=1

ηi Ki

However, usually we don’t know...

Perhaps we can optimize the weights ηi during learning?

Julien Mairal (Inria) 471/564

An objective function for K

Theorem

For any p.d. kernel K on X , let

J(K) = min
f ∈HK

{
R(f n) + λ‖ f ‖2

HK

}
.

The function K 7→ J(K) is convex.

This suggests a principled way to ”learn” a kernel: define a convex set of
candidate kernels, and minimize J(K) by convex optimization.

Julien Mairal (Inria) 472/564

Proof

We have shown by strong duality that

J(K) = max
γ∈Rn

{
−R∗(−2λγ)− λγ>Kγ

}
.

For each γ fixed, this is an affine function of K , hence convex

A supremum of convex functions is convex. �

Julien Mairal (Inria) 473/564

MKL (Lanckriet et al., 2004)

We consider the set of convex combinations

Kη =
M∑

i=1

ηi Ki with η ∈ ΣM =

{
ηi ≥ 0 ,

M∑
i=1

ηi = 1

}

We optimize both η and f ∗ by solving:

min
η∈ΣM

J (Kη) = min
η∈ΣM

min
f ∈HKη

{
R(f n) + λ‖ f ‖2

HKη

}
The problem is jointly convex in (η,α) and can be solved efficiently.

The output is both a set of weights η, and a predictor
corresponding to the kernel method trained with kernel Kη.

This method is usually called Multiple Kernel Learning (MKL).

Julien Mairal (Inria) 474/564

Example: protein annotation

BIOINFORMATICS Vol. 20 no. 16 2004, pages 2626–2635
doi:10.1093/bioinformatics/bth294

A statistical framework for genomic data fusion
Gert R. G. Lanckriet1, Tijl De Bie3, Nello Cristianini4,
Michael I. Jordan2 and William Stafford Noble5,∗

1Department of Electrical Engineering and Computer Science, 2Division of Computer
Science, Department of Statistics, University of California, Berkeley 94720, USA,
3Department of Electrical Engineering, ESAT-SCD, Katholieke Universiteit Leuven 3001,
Belgium, 4Department of Statistics, University of California, Davis 95618, USA and
5Department of Genome Sciences, University of Washington, Seattle 98195, USA

Received on January 29, 2004; revised on April 7, 2004; accepted on April 23, 2004
Advance Access publication May 6, 2004

ABSTRACT
Motivation: During the past decade, the new focus on
genomics has highlighted a particular challenge: to integrate
the different views of the genome that are provided by various
types of experimental data.
Results: This paper describes a computational framework
for integrating and drawing inferences from a collection of
genome-wide measurements. Each dataset is represented via
a kernel function, which defines generalized similarity relation-
ships between pairs of entities, such as genes or proteins.The
kernel representation is both flexible and efficient, and can be
applied to many different types of data. Furthermore, kernel
functions derived from different types of data can be combined
in a straightforward fashion. Recent advances in the theory
of kernel methods have provided efficient algorithms to per-
form such combinations in a way that minimizes a statistical
loss function. These methods exploit semidefinite program-
ming techniques to reduce the problem of finding optimiz-
ing kernel combinations to a convex optimization problem.
Computational experiments performed using yeast genome-
wide datasets, including amino acid sequences, hydropathy
profiles, gene expression data and known protein–protein
interactions, demonstrate the utility of this approach. A stat-
istical learning algorithm trained from all of these data to
recognize particular classes of proteins—membrane proteins
and ribosomal proteins—performs significantly better than the
same algorithm trained on any single type of data.
Availability:Supplementary data at http://noble.gs.washington.
edu/proj/sdp-svm
Contact: noble@gs.washington.edu

INTRODUCTION
The recent availability of multiple types of genome-wide data
provides biologistswith complementary views of a single gen-
omeandhighlights the need for algorithms capable of unifying

∗To whom correspondence should be addressed at: Health Sciences Center,
Box 357730, 1705 NE Pacific Street, Seattle, WA 98195, USA.

these views. In yeast, for example for a given gene we typ-
ically know the protein it encodes, that protein’s similarity to
other proteins, its hydrophobicity profile, the mRNA expres-
sion levels associated with the given gene under hundreds of
experimental conditions, the occurrences of known or inferred
transcription factor binding sites in the upstream region of
that gene and the identities ofmany of the proteins that interact
with the given gene’s protein product. Each of these distinct
data types provides one view of the molecular machinery of
the cell. In the near future, research in bioinformatics will
focus more and more heavily on methods of data fusion.
Different data sources are likely to contain different and

thus partly independent information about the task at hand.
Combining those complementary pieces of information can be
expected to enhance the total information about the problem at
hand. One problem with this approach, however, is that gen-
omic data come in a wide variety of data formats: expression
data are expressed as vectors or time series; protein sequence
data as strings from a 20-symbol alphabet; gene sequences are
strings from a different (4-symbol) alphabet; protein–protein
interactions are best expressed as graphs and so on.
This paper presents a computational and statistical frame-

work for integrating heterogeneous descriptions of the same
set of genes. The approach relies on the use of kernel-based
statistical learningmethods that have already proven to be very
useful tools in bioinformatics (Noble, 2004). These methods
represent the data bymeans of a kernel function, which defines
similarities between pairs of genes, proteins and so on. Such
similarities can be quite complex relations, implicitly cap-
turing aspects of the underlying biological machinery. One
reason for the success of kernel methods is that the kernel
function takes relationships that are implicit in the data and
makes them explicit, so that it is easier to detect patterns. Each
kernel function thus extracts a specific type of information
from a given dataset, thereby providing a partial description
or view of the data. Our goal is to find a kernel that best
represents all the information available for a given statistical
learning task. Given many partial descriptions of the data, we

2626 Bioinformatics vol. 20 issue 16 © Oxford University Press 2004; all rights reserved.

G.R.G.Lanckriet et al.

Table 1. Kernel functions

Kernel Data Similarity measure

KSW protein sequences Smith-Waterman
KB protein sequences BLAST
KPfam protein sequences Pfam HMM
KFFT hydropathy profile FFT
KLI protein interactions linear kernel
KD protein interactions diffusion kernel
KE gene expression radial basis kernel
KRND random numbers linear kernel

The table lists the seven kernels used to compare proteins, the data on which they are
defined, and the method for computing similarities. The final kernel, KRND, is included
as a control. All kernel matrices, along with the data from which they were generated,
are available at noble.gs.washington.edu/proj/sdp-svm.

the membrane, and similarly for the ribosome. Therefore,
we define three kernel matrices based upon standard homo-
logy detection methods. The first two sequence-based kernel
matrices (KSW and KB) are generated using the BLAST
(Altschul et al., 1990) and Smith–Waterman (SW) (Smith and
Waterman, 1981) pairwise sequence comparison algorithms,
as described previously (Liao and Noble, 2002). Both
algorithms use gap opening and extension penalties of 11 and
1, and the BLOSUM 62 matrix. As matrices of BLAST or
Smith–Waterman scores are not necessarily positive semidef-
inite, we represent each protein as a vector of scores against all
other proteins. Defining the similarity between proteins as the
inner product between the score vectors (the so-called empir-
ical kernel map, Tsuda 1999) leads to valid kernel matrices,
one for the BLAST score and one for the SW score. Note that
including in the comparison set proteins with unknown labels
allows the kernel to exploit this unlabeled data. The third ker-
nel matrix (KPfam) is a generalization of the previous pairwise
comparison-based matrices in which the pairwise comparison
scores are replaced by expectation values derived from hidden
Markov models (HMMs) in the Pfam database (Sonnhammer
et al., 1997).

Fast Fourier Transform (FFT) kernel The fourth sequence-
based kernelmatrix (KFFT) is specific to themembrane protein
recognition task. This kernel directly incorporates information
about hydrophobicity patterns, which are known to be useful
in identifying membrane proteins. Generally, each mem-
brane protein passes through themembrane several times. The
transmembrane regions of the amino acid sequence are typ-
ically hydrophobic, whereas the non-membrane portions are
hydrophilic. This specific hydrophobicity profile of the pro-
tein allows it to anchor itself in the cell membrane. Because
the hydrophobicity profile of a membrane protein is critical
to its function, this profile is better conserved in evolution
than the specific amino acid sequence. Therefore, classical
methods for determining whether a protein pi (consisting of
|pi | amino acids) spans a membrane (Chen and Rost, 2002),

depend upon its hydropathy profile h(pi) ∈ R|pi |: a vector
containing the hydrophobicities of the amino acids along the
protein (Engleman et al., 1986; Black andMould, 1991; Hopp
and Woods, 1981). The FFT kernel uses hydropathy profiles
generated from the Kyte–Doolittle index (Kyte and Doolittle,
1982). This kernel compares the frequency content of the
hydropathy profiles of the two proteins. First, the hydropathy
profiles are pre-filtered with a low-pass filter to reduce noise:

hf (pi) = f ⊗ h(pi),

where f = 1
4 (1 2 1) is the impulse response of the filter

and ⊗ denotes convolution with that filter. After pre-filtering
the hydropathy profiles (and if necessary appending zeros to
make them equal in length—a commonly used technique not
altering the frequency content), their frequency contents are
computed with the FFT algorithm:

Hf (pi) = FFT[hf (pi)].

The FFT kernel between proteinspi andpj is then obtained by
applying a Gaussian kernel function to the frequency contents
of their hydropathy profiles:

KFFT(pi ,pj) = exp[−‖Hf (pi) − Hf (pj)‖2/2σ]

with width σ = 10. This kernel detects periodicities in the
hydropathy profile, a feature that is relevant to the identifica-
tionofmembraneproteins and complementary to the previous,
homology-based kernels.

Protein interactions: linear and diffusion kernels For the
recognition of ribosomal proteins, protein–protein interac-
tions are clearly informative, since all ribosomal proteins
interact with other ribosomal proteins. For membrane pro-
tein recognition, we expect information about protein–protein
interactions to be informative for two reasons. First, hydro-
phobic molecules or regions of molecules are probably more
likely to interact with each other than with hydrophilic
molecules or regions. Second, transmembrane proteins are
often involved in signaling pathways, and therefore, differ-
ent membrane proteins are likely to interact with a similar
class of molecules upstream and downstream in these path-
ways (e.g. hormones upstream or kinases downstream). The
two protein interaction kernels are generated using medium-
and high-confidence interactions from a database of known
interactions (von Mering et al., 2002). These interactions can
be represented as an interaction matrix, in which rows and
columns correspond to proteins, and binary entries indicate
whether the two proteins interact.
The first interaction kernel matrix (KLI) is comprised of

linear interactions, i.e. inner products of rows and columns
from the centered, binary interactionmatrix. Themore similar
the interaction pattern (corresponding to a rowor column from
the interaction matrix) for a pair of proteins, the larger the
inner product will be.

2628

A statistical framework for genomic data fusion

B SW Pfam LI D E all

RO
C

B SW Pfam LI D E all

TP
1F
P

W
ei
gh
ts

B SW Pfam FFT LI D E all

RO
C

B SW Pfam FFT LI D E all
TP

1F
P

W
ei
gh
ts

(A) Ribosomal proteins (B) Membrane proteins

0.80
0.85
0.90
0.95
1.00

0

50

100

0

0.5

1

0.7

0.8

0.9

1.0

0
10
20
30
40

0

0.5

1

Fig. 1. Combining datasets yields better classification performance. The height of the bars in the upper two plots are proportional to the ROC
score (top) and the percentage of true positives at one percent false positives (middle), for the SDP/SVM method using the given kernel. Error
bars indicate standard error across 30 random train/test splits. In the lower plots, the heights of the colored bars indicate the relative weights
of the different kernel matrices in the optimal linear combination. These results in tabular form, along with percent accuracy measurements,
are given in the online supplement.

hydrophobicity, normalized by the length of the protein. We
will compare the classification performance of our statistical
learning algorithm with this metric.

However, clearly, f1 is too simplistic. For example, protein
regions that are not transmembrane only induce noise in f1.
Therefore, an alternative metric filters the hydrophobicity plot
with a low-pass filter and then computes the number, the height
and the width of those peaks above a certain threshold (Chen
and Rost, 2002). The filter is intended to smooth out periodic
effects. We implement two such filters, choosing values for the
filter order and the threshold based on Chen and Rost (2002).
In particular, we define f2 as the area under the 7th-order
low-pass filtered Kyte–Doolittle plot and above a threshold
value 2, normalized by the length of the protein. Similarly,
f3 is the corresponding area using a 20th-order filter and a
threshold of 1.6.

Finally, the transmembrane HMM (TMHMM) Web server
(www.cbs.dtu.dk/services/TMHMM) is used to make predic-
tions for each protein. In Krogh et al. (2001), transmembrane
proteins are identified by TMHMM using three different met-
rics: the expected number of amino acids in transmembrane
helices, the number of transmembrane helices predicted by
the N -best algorithm, and the expected number of transmem-
brane helices. Only the first two of these metrics are provided
in the TMHMM output. Accordingly, we produce two lists
of proteins, ranked by the number of predicted transmem-
brane helices (TPH) and by the expected number of residues
in transmembrane helices (TENR).

Each algorithm’s performance is measured by randomly
splitting the data (without stratifying) into a training and
test set in a ratio of 80/20. We report the receiver operating

characteristic (ROC) score, which is the area under a curve that
plots true positive rate as a function of false positive rate for
differing classification thresholds (Hanley and McNeil, 1982;
Gribskov and Robinson, 1996). The ROC score measures the
overall quality of the ranking induced by the classifier, rather
than the quality of a single point in that ranking. An ROC
score of 0.5 corresponds to random guessing, and an ROC
score of 1.0 implies that the algorithm succeeded in putting
all of the positive examples before all of the negatives. In
addition, we select the point on the ROC curve that yields a
1% false positive rate, and we report the rate of true positives
at this point (TP1FP). Each experiment is repeated 30 times
with different random splits in order to estimate the variance
of the performance values.

RESULTS
We performed computational experiments that study the per-
formance of the SDP/SVM approach as a function of the
number of data sources, compare the approach to a simpler
approach using an unweighted combination of kernels, study
the robustness of the method to the presence of noise, and for
membrane protein classification, compare the performance of
the method to classical biological methods and state-of-the-art
techniques for membrane protein classification.

Ribosomal protein classification
Figure 1A shows the results of training an SVM to recognize
the cytoplasmic ribosomal proteins, using various kernel func-
tions. Very good recognition performance can be achieved
using several types of data individually: the Smith–Waterman
kernel yields an ROC of 0.9903 and a TP1FP of 86.23%,

2631

Julien Mairal (Inria) 475/564

Example: Image classification (Harchaoui and Bach, 2007)

COREL14 dataset

1400 natural images in 14 classes

Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
by MKL (M).

H W TW wTW M

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

T
es

t e
rr

or

Kernels

Performance comparison on Corel14

Julien Mairal (Inria) 476/564

MKL revisited (Bach et al., 2004)

Kη =
M∑

i=1

ηi Ki with η ∈ ΣM =

{
ηi ≥ 0 ,

M∑
i=1

ηi = 1

}

Theorem

The solution f ∗ of

min
η∈ΣM

min
f ∈HKη

{
R(f n) + λ‖ f ‖2

HKη

}
is f ∗ =

∑M
i=1 f ∗i , where (f ∗1 , . . . , f

∗
M) ∈ HK1 × . . .×HKM

is the solution
of:

min
f1,...,fM

R

(
M∑

i=1

f n
i

)
+ λ

(
M∑

i=1

‖ fi ‖HKi

)2
 .

Julien Mairal (Inria) 477/564

Proof (1/2)

min
η∈ΣM

min
f ∈HKη

{
R(f n) + λ‖ f ‖2

HKη

}
= min
η∈ΣM

min
f1,...,fM

{
R

(
M∑

i=1

f n
i

)
+ λ

M∑
i=1

‖ fi ‖2
HKi

ηi

}

= min
f1,...,fM

{
R

(
M∑

i=1

f n
i

)
+ λ min

η∈ΣM

{
M∑

i=1

‖ fi ‖2
HKi

ηi

}}

= min
f1,...,fM

R

(
M∑

i=1

f n
i

)
+ λ

(
M∑

i=1

‖ fi ‖HKi

)2
 ,

Julien Mairal (Inria) 478/564

Proof (2/2)

where the last equality results from:

∀a ∈ RM
+ ,

(
M∑

i=1

ai

)2

= inf
η∈ΣM

M∑
i=1

a2
i

ηi
,

which is a direct consequence of the Cauchy-Schwarz inequality:

M∑
i=1

ai =
M∑

i=1

ai√
ηi
×√ηi ≤

(
M∑

i=1

a2
i

ηi

) 1
2
(

M∑
i=1

ηi

) 1
2

.

Julien Mairal (Inria) 479/564

Algorithm: simpleMKL (Rakotomamonjy et al., 2008)

We want to minimize in η ∈ ΣM :

min
η∈ΣM

J (Kη) = min
η∈ΣM

max
γ∈Rn

{
−R∗(−2λγ)− λγ>Kηγ

}
.

For a fixed η ∈ ΣM , we can compute f (η) = J (Kη) by using a
standard solver for a single kernel to find γ∗:

J (Kη) = −R∗(−2λγ∗)− λγ∗>Kηγ
∗ .

From γ∗ we can also compute the gradient of J (Kη) with respect
to η:

∂J (Kη)

∂ηi
= −λγ∗>Kiγ

∗ .

J (Kη) can then be minimized on ΣM by a projected gradient or
reduced gradient algorithm.

Julien Mairal (Inria) 480/564

Sum kernel vs MKL

Learning with the sum kernel (uniform combination) solves

min
f1,...,fM

{
R

(
M∑

i=1

f n
i

)
+ λ

M∑
i=1

‖ fi ‖2
HKi

}
.

Learning with MKL (best convex combination) solves

min
f1,...,fM

R

(
M∑

i=1

f n
i

)
+ λ

(
M∑

i=1

‖ fi ‖HKi

)2
 .

Although MKL can be thought of as optimizing a convex
combination of kernels, it is more correct to think of it as a
penalized risk minimization estimator with the group lasso penalty:

Ω(f) = min
f1+...+fM =f

M∑
i=1

‖ fi ‖HKi
.

Julien Mairal (Inria) 481/564

Example: ridge vs LASSO regression

Take X = Rd , and for x = (x1, . . . , xd)> consider the rank-1
kernels:

∀i = 1, . . . , d , Ki

(
x, x′

)
= xi x

′
i .

A function fi ∈ HKi
has the form fi (x) = βi xi , with ‖ fi ‖HKi

= |βi |
The sum kernel is KS (x, x′) =

∑d
i=1 xi x

′
i = x>x, a function HKS

is
of the form f (x) = β>x, with norm ‖ f ‖HKS

= ‖β ‖Rd .

Learning with the sum kernel solves a ridge regression problem:

min
β∈Rd

{
R(Xβ) + λ

d∑
i=1

β2
i

}
.

Learning with MKL solves a LASSO regression problem:

min
β∈Rd

R(Xβ) + λ

(
d∑

i=1

|βi |
)2
 .

Julien Mairal (Inria) 482/564

Extensions (Micchelli et al., 2005)

For r > 0 , Kη =
M∑

i=1

ηi Ki with η ∈ Σr
M =

{
ηi ≥ 0 ,

M∑
i=1

ηr
i = 1

}

Theorem

The solution f ∗ of

min
η∈Σr

M

min
f ∈HKη

{
R(f n) + λ‖ f ‖2

HKη

}
is f ∗ =

∑M
i=1 f ∗i , where (f ∗1 , . . . , f

∗
M) ∈ HK1 × . . .×HKM

is the solution
of:

min
f1,...,fM

R

(
M∑

i=1

f n
i

)
+ λ

(
M∑

i=1

‖ fi ‖
2r

r+1

HKi

) r+1
r

 .

Julien Mairal (Inria) 483/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle

5 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels
“Deep” learning with kernels

Julien Mairal (Inria) 484/564

Outline

5 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels

Motivation
Large-scale learning with linear models
Nyström approximations
Random Fourier features
New challenges

“Deep” learning with kernels

Julien Mairal (Inria) 485/564

Motivation

Main problem

All methods we have seen require computing the n × n Gram matrix,
which is infeasible when n is significantly greater than 100 000 both in
terms of memory and computation.

Solutions

low-rank approximation of the kernel;

random Fourier features.

The goal is to find an approximate embedding ψ : X → Rd such that

K (x, x′) ≈ 〈ψ(x), ψ(x′)〉Rd .

Julien Mairal (Inria) 486/564

Motivation

Then, functions f in H may be approximated by linear ones in Rd , e.g.,.

f (x) =
n∑

i=1

αi K (xi , x) ≈ 〈
n∑

i=1

αiψ(xi), ψ(x)〉Rd = 〈w, ψ(x)〉Rd .

Then, the ERM problem

min
f ∈H

1

n

n∑
i=1

L(yi , f (xi)) + λ‖f ‖2
H,

becomes, approximately,

min
w∈Rd

1

n

n∑
i=1

L(yi ,w
>xi) + λ‖w‖2

2,

which we know how to solve when n is large.

Julien Mairal (Inria) 487/564

Outline

5 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels

Motivation
Large-scale learning with linear models
Nyström approximations
Random Fourier features
New challenges

“Deep” learning with kernels

Julien Mairal (Inria) 488/564

Large-scale learning with linear models

Let us study for a while optimization techniques for minimizing large
sums of functions

min
w∈Rd

1

n

n∑
i=1

fi (w).

Good candidates are

stochastic optimization techniques;

randomized incremental optimization techniques;

We will see a couple of such algorithms with their convergence rates and
start with the (batch) gradient descent method.

Julien Mairal (Inria) 489/564

Introduction of a few optimization principles

Why do we care about convexity?

Local observations give information about the global optimum

w

f(w)

w⋆

b

b

b

∇f (w) = 0 is a necessary and sufficient optimality condition for
differentiable convex functions;

it is often easy to upper-bound f (w)− f ?.

Julien Mairal (Inria) 490/564

Introduction of a few optimization principles

Why do we care about convexity?
Local observations give information about the global optimum

w

f(w)

w⋆

b

b

b

∇f (w) = 0 is a necessary and sufficient optimality condition for
differentiable convex functions;

it is often easy to upper-bound f (w)− f ?.

Julien Mairal (Inria) 490/564

Introduction of a few optimization principles
An important inequality for smooth convex functions

If f is convex

w⋆

w

f(w)

b

b

b

b
w0

f (w) ≥ f (w0) +∇f (w0)>(w −w0)︸ ︷︷ ︸
linear approximation

;

this is an equivalent definition of convexity for smooth functions.
Julien Mairal (Inria) 491/564

Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

w⋆

w

f(w)g(w)

b

b

b

bb

b

w0w1

f (w) ≤ g(w) = f (w0) +∇f (w0)>(w −w0) + L
2‖w −w0‖2

2;

g(w) = Cw0 + L
2‖w0 − (1/L)∇f (w0)−w‖2

2.

Julien Mairal (Inria) 492/564

Introduction of a few optimization principles
An important inequality for smooth functions

If ∇f is L-Lipschitz continuous (f does not need to be convex)

w⋆

w

f(w)g(w)

b

b

b

bb

b

w0w1

f (w) ≤ g(w) = f (w0) +∇f (w0)>(w −w0) + L
2‖w −w0‖2

2;

w1 = w0 − 1
L∇f (w0) (gradient descent step).

Julien Mairal (Inria) 492/564

Introduction of a few optimization principles
Gradient Descent Algorithm

Assume that f is convex and differentiable, and that ∇f is L-Lipschitz.

Theorem

Consider the algorithm

wt ← wt−1 − 1
L∇f (wt−1).

Then,

f (wt)− f ? ≤ L‖w0 −w?‖2
2

2t
.

Remarks

the convergence rate improves under additional assumptions on f
(strong convexity);

some variants have a O(1/t2) convergence rate [Nesterov, 2004].

Julien Mairal (Inria) 493/564

Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all w and z,

f (w) ≤ f (z) +∇f (z)>(w − z) +
L

2
‖w − z‖2

2.

By using Taylor’s theorem with integral form,

f (w)− f (z) =

∫ 1

0

∇f (tw + (1− t)z)>(w − z)dt.

Then,

f (w)−f (z)−∇f (z)>(w−z) ≤
∫ 1

0

(∇f (tw+(1−t)z)−∇f (z))>(w−z)dt

≤
∫ 1

0

|(∇f (tw+(1−t)z)−∇f (z))>(w−z)|dt

≤
∫ 1

0

‖∇f (tw+(1−t)z)−∇f (z)‖2‖w−z‖2dt (C.-S.)

≤
∫ 1

0

Lt‖w−z‖2
2dt =

L

2
‖w−z‖2

2.

Julien Mairal (Inria) 494/564

Proof (2/2)
Proof of the theorem

We have shown that for all w,

f (w) ≤ gt(w) = f (wt−1) +∇f (wt−1)>(w − wt−1) +
L

2
‖w − wt−1‖2

2.

gt is minimized by wt ; it can be rewritten gt(w) = gt(wt) + L
2
‖w − wt‖2

2. Then,

f (wt) ≤ gt(wt) = gt(w?)− L

2
‖w? − wt‖2

2

= f (wt−1) +∇f (wt−1)>(w? − wt−1) +
L

2
‖w? − wt−1‖2

2 −
L

2
‖w? − wt‖2

2

≤ f ? +
L

2
‖w? − wt−1‖2

2 −
L

2
‖w? − wt‖2

2.

By summing from t = 1 to T , we have a telescopic sum

T (f (wT)− f ?) ≤
T∑

t=1

f (wt)− f ? ≤ L

2
‖w? − w0‖2

2 −
L

2
‖w? − wT‖2

2.

Julien Mairal (Inria) 495/564

Introduction of a few optimization principles
An important inequality for smooth and µ-strongly convex functions

If ∇f is L-Lipschitz continuous and f µ-strongly convex

w⋆

w

f(w)

b

b

b

b
w0

f (w) ≤ f (w0) +∇f (w0)>(w −w0) + L
2‖w −w0‖2

2;

f (w) ≥ f (w0) +∇f (w0)>(w −w0) + µ
2‖w −w0‖2

2;

Julien Mairal (Inria) 496/564

Introduction of a few optimization principles

Proposition

When f is µ-strongly convex, differentiable and ∇f is L-Lipschitz, the
gradient descent algorithm with step-size 1/L produces iterates such that

f (wt)− f ? ≤
(

1− µ

L

)t L‖w0 −w?‖2
2

2
.

We call that a linear convergence rate (even though it has an
exponential form).

Julien Mairal (Inria) 497/564

Proof

We start from an inequality from the previous proof

f (wt) ≤ f (wt−1) +∇f (wt−1)>(w? − wt−1) +
L

2
‖w? − wt−1‖2

2 −
L

2
‖w? − wt‖2

2

≤ f ? +
L− µ

2
‖w? − wt−1‖2

2 −
L

2
‖w? − wt‖2

2.

In addition, we have that f (wt) ≥ f ? + µ
2
‖wt − w?‖2

2, and thus

‖w? − wt‖2
2 ≤

L− µ
L + µ

‖w? − wt−1‖2
2

≤
(

1− µ

L

)
‖w? − wt−1‖2

2.

Finally,

f (wt)− f ? ≤ L

2
‖wt − w?‖2

2

≤
(

1− µ

L

)t L‖w? − w0‖2
2

2

Julien Mairal (Inria) 498/564

The stochastic (sub)gradient descent algorithm

Consider now the minimization of an expectation

min
w∈Rp

f (w) = Ex[`(x,w)],

To simplify, we assume that for all x, w 7→ `(x,w) is differentiable, but
everything here is true for nonsmooth functions.

Algorithm

At iteration t,

Randomly draw one example xt from the training set;

Update the current iterate

wt ← wt−1 − ηt∇w`(xt ,wt−1).

Perform online averaging of the iterates (optional)

w̃t ← (1− γt)w̃t−1 + γtwt .

Julien Mairal (Inria) 499/564

The stochastic (sub)gradient descent algorithm

There are various learning rates strategies (constant, varying step-sizes),
and averaging strategies. Depending on the problem assumptions and
choice of ηt , γt , classical convergence rates may be obtained (see
Nemirovsky et al., 2009)

f (w̃t)− f ? = O(1/
√

t) for convex problems;

f (w̃t)− f ? = O(1/t) for strongly-convex ones;

Remarks

The convergence rates are not that great, but the complexity
per-iteration is small (1 gradient evaluation for minimizing an
empirical risk versus n for the batch algorithm).

When the amount of data is infinite, the method minimizes the
expected risk.

Choosing a good learning rate automatically is an open problem.

Julien Mairal (Inria) 500/564

Randomized incremental algorithms (1/3)

Consider now the minimization of a large finite sum of smooth convex
functions:

min
w∈Rp

1

n

n∑
i=1

fi (w),

A class of algorithms with low per-iteration complexity have been
recently introduced that enjoy exponential (aka, linear) convergence
rates for strongly-convex problems, e.g., SAG (Schmidt et al., 2013)

SAG algorithm

wt ← wt−1 − γ

Ln

n∑
i=1

y t
i with y t

i =

{ ∇fi (wt−1) if i = it
y t−1

i otherwise
.

Julien Mairal (Inria) 501/564

Randomized incremental algorithms (2/3)

Consider now the minimization of a large finite sum of smooth convex
functions:

min
w∈Rp

1

n

n∑
i=1

fi (w) +
µ

2
‖w‖2

2,

A class of algorithms with low per-iteration complexity have been
recently developed that enjoy exponential convergence rates for
strongly-convex problems, e.g., MISO/Finito (Mairal, 2015; Defazio et
al., 2015; Lin et al., 2015)

Basic MISO/Finito algorithm (requires n ≥ 2L/µ)

wt ← wt−1 − 1

µn
(y t

it − y t−1
it

) with y t
i =

{ ∇fi (wt−1) if i = it
y t−1

i otherwise
.

see also SDCA (Shalev-Shwartz and Zhang, 2012).

Julien Mairal (Inria) 502/564

Randomized incremental algorithms (3/3)

Many of these techniques are in fact performing SGD-types of steps

wt ← wt−1 − ηtgt ,

where E[gt |wt−1] = ∇f (wt−1), but where the estimator of the gradient
has lower variance than in SGD (see SVRG [Johnson and Zhang, 2013]).

Typically, these methods have the convergence rate

f (wt)− f ? = O

((
1− C max

(
1

n
,
µ

L

))t)
and their complexity per-iteration is independent of n! In addition, they
are often almost parameter-free (theoretical values for their learning
rates work in practice).

Julien Mairal (Inria) 503/564

Large-scale learning with linear models

Conclusion

we know how to deal with huge-scale problems when the models are
linear;

significant progress has been made during the last 3-4 years;

all of this is also useful to learn with kernels!

Julien Mairal (Inria) 504/564

Outline

5 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels

Motivation
Large-scale learning with linear models
Nyström approximations
Random Fourier features
New challenges

“Deep” learning with kernels

Julien Mairal (Inria) 505/564

Nyström approximations [Williams and Seeger, 2002] (1/14)

Consider a dataset x1, . . . , xn in X with a p.d. kernel K : X × X → R.
Call H its RKHS and ϕ : X → H the mapping such that

K (x, x′) = 〈ϕ(x), ϕ(x′)〉H.
A natural approximation consists of representing each data point xi as a
linear combination of a few anchor points fj in H:

ϕ(x) ≈
d∑

j=1

βj (x)fj .

Then,

〈ϕ(x), ϕ(x′)〉H ≈
〈

d∑
j=1

βj (x)fj ,

d∑
j=1

βj (x′)fj

〉
H

=
d∑

j ,l=1

βj (x)βl (x′)〈fj , fl〉H = β(x)>Gβ(x′).

Julien Mairal (Inria) 506/564

Nyström approximations (2/14)

Then, we have

〈ϕ(x), ϕ(x′)〉H ≈ β(x)>Gβ(x′) = 〈ψ(x), ψ(x′)〉Rd ,

with
ψ(x) = G1/2β(x).

In practice, the anchor points fj in H and the coordinates β are learned
by minimizing the least square error in H

min
f1,...,fd∈H
βij∈R

n∑
i=1

∥∥∥∥∥∥ϕ(xi)−
d∑

j=1

βij fj

∥∥∥∥∥∥
2

H

.

Julien Mairal (Inria) 507/564

Nyström approximations (3/14)

Note that the problem

min
f1,...,fd∈H
βij∈R

n∑
i=1

∥∥∥∥∥∥ϕ(xi)−
d∑

j=1

βij fj

∥∥∥∥∥∥
2

H

,

is equivalent, after developing the quadratic function, to

min
f1,...,fd∈H
βij∈R

n∑
i=1

−2
d∑

j=1

βij〈fj , ϕ(xi)〉H +
d∑

j ,l=1

βijβil〈fj , fl〉H,

or also

min
f1,...,fd∈H
βij∈R

n∑
i=1

−2
d∑

j=1

βij fj (xi) +
d∑

j ,l=1

βijβil〈fj , fl〉H.

Julien Mairal (Inria) 508/564

Nyström approximations (4/14)

Then, call [Kf]jl = 〈fj , fl〉H and f (xi) = [f1(xi), . . . , fd (xi)] in Rd . The
problem may be rewritten as

min
f1,...,fd∈H
βi∈Rd

n∑
i=1

−2β>i f (xi) + β>i Kf βi ,

and by minimizing with respect to all βi with f fixed, we have that
βi = K−1

f f (xi) (assuming Kf to be invertible to simplify), which leads to

max
f1,...,fd∈H

n∑
i=1

f (xi)
>K−1

f f (xi).

Consider an optimal solution f ? and perform the eigenvalue
decomposition of Kf ? = U∆U>. Then, define the functions
[g?1 (x), . . . , g?d (x)] = ∆−1/2U>f ?(x). The functions g?j are points in the
RKHS H (as linear combinations of entries of f ?).

Julien Mairal (Inria) 509/564

Nyström approximations (5/14)

By construction

[Kg?]jl = 〈g?j , g?l 〉H

=

〈
1√
∆jj

d∑
k=1

[U]kj f
?

k ,
1√
∆ll

d∑
k=1

[U]kl f
?

k

〉
H

=
1√
∆jj

1√
∆ll

d∑
k,k ′=1

[U]kj [U]k ′l 〈f ?k , f ?k ′〉H

=
1√
∆jj

1√
∆ll

d∑
k,k ′=1

[U]kj [U]k ′l [Kf ?]kk ′

=
1√
∆jj

1√
∆ll

u>j Kf ?ul

= δj=l .

Julien Mairal (Inria) 510/564

Nyström approximations (6/14)

Then, Kg? = I and g? is also a solution of the problem

max
f1,...,fd∈H

n∑
i=1

f (xi)
>K−1

f f (xi),

since

f ?(xi)
>K−1

f ? f ?(xi) = f ?(xi)
>U∆−1U>f ?(xi)

= g?(xi)
>g?(xi) = g?(xi)

>K−1
g? g?(xi),

and also a solution of the problem

max
g1,...,gd∈H

d∑
j=1

n∑
i=1

gj (xi)
2 s.t. gj ⊥ gk for k 6= j .

This is the kernel PCA formulation!

Julien Mairal (Inria) 511/564

Nyström approximations (6/14)

Then, Kg? = I and g? is also a solution of the problem

max
f1,...,fd∈H

n∑
i=1

f (xi)
>K−1

f f (xi),

since

f ?(xi)
>K−1

f ? f ?(xi) = f ?(xi)
>U∆−1U>f ?(xi)

= g?(xi)
>g?(xi) = g?(xi)

>K−1
g? g?(xi),

and also a solution of the problem

max
g1,...,gd∈H

d∑
j=1

n∑
i=1

gj (xi)
2 s.t. gj ⊥ gk for k 6= j .

This is the kernel PCA formulation!

Julien Mairal (Inria) 511/564

Nyström approximations (7/14)

First recipe with kernel PCA

Given a dataset of n training points x1, . . . , xn in X ,

randomly choose a subset Z = [xz1 , . . . , xzm] of m ≤ n training
points;

compute the m ×m kernel matrix KZ ,Z .

perform kernel PCA to find the d ≤ m largest principal directions
(parametrized by d vectors αj in Rm);

Then, every point x in X may be approximated by

ψ(x) = β(x) = [g?1 (x), . . . , g?d (x)]>

=

[
m∑

i=1

α1i K (xzi , x), . . . ,
m∑

i=1

αmi K (xzi , x)

]>
.

Julien Mairal (Inria) 512/564

Nyström approximations (8/14)

The complexity of training is O(m3) (eig decomposition) + O(m2)
kernel evaluations.

The complexity of encoding a point x is O(md) (matrix vector
multiplication) + O(m) kernel evaluations.

Images courtesy of Vedaldi and Zisserman [2012]

Julien Mairal (Inria) 513/564

Nyström approximations (9/14)

The main issue with kernel PCA is the encoding time, which depends
linearly of m. A popular alternative is instead to select the anchor points
among the training data points x1, . . . , xn. Then, choose
f1 = ϕ(xz1), . . . , fd = ϕ(xzd

).

Second recipe with random point sampling

Given a dataset of n training points x1, . . . , xn in X ,

randomly choose a subset Z = [xz1 , . . . , xzd
] of d training points;

compute the d × d kernel matrix KZ ,Z .

Then, a new point x is encoded as

ψ(x) = K
1/2
Z ,Zβ(x) = K

1/2
Z ,Z K−1

Z ,Z f (x)

= K
−1/2
Z ,Z [K (xz1 , x), . . . ,K (xzd

, x)]>

= K
−1/2
Z ,Z KZ ,x.

Julien Mairal (Inria) 514/564

Nyström approximations (10/14)

The complexity of training is O(d3) (eig decomposition) + O(d2)
kernel evaluations.

The complexity of encoding a point x is O(d2) (matrix vector
multiplication) + O(d) kernel evaluations.

Images courtesy of Vedaldi and Zisserman [2012]

Julien Mairal (Inria) 515/564

Nyström approximations (11/14)

The encoding time is now low, but the (random) choice of anchor points
is not clever. Better approximation can be obtained with a greedy
algorithm that iteratively selects one column at a time with largest
residual (Bach and Jordan, 2002; Smola and Shölkopf, 2000).

At iteration k , assume that Z = [z1, . . . , zk]; then, the residual for a
data point x encoded with k anchor points f1, . . . , fk is

min
β∈Rk

‖ϕ(x)−
k∑

j=1

βj fj‖2
H,

which is equal to
‖ϕ(x)‖2

H − f (x)>K−1
f f (x),

and since fj = ϕ(xzj) for all j , the data point xi with largest residual is
the one that maximizes

K (xi , xi)−Kxi ,Z K−1
Z ,Z KZ ,xi

.

Julien Mairal (Inria) 516/564

Nyström approximations (12/14)

This brings us to the following algorithm

Third recipe with greedy anchor point selection

Initialize Z = ∅. For k = 1, . . . , d do

data point selection

zk ← argmax
i∈{1,...,n}

K (xi , xi)−Kxi ,Z K−1
Z ,Z KZ ,xi

;

update the set Z
Z ← [Z , zk].

A naive implementation is slow (O(j2n + j3) at every iteration). To get
a reasonable complexity, one has to use simple linear algebra tricks (see
next slide).

Julien Mairal (Inria) 517/564

Nyström approximations (13/14)

K−1
[Z ,z],[Z ,z] =

[
KZ ,Z KZ ,z

Kz,Z Kz,z

]−1

=

[
K−1

Z ,Z + 1
s bb> −1

s b

−1
s b> 1

s

]
,

s is the Schur complement s = Kz,z −Kz,Z K−1
Z ,Z KZ ,z , and

b = K−1
Z ,Z KZ ,z .

the matrix K−1
[Z ,z],[Z ,z] can be obtained from K−1

Z ,Z and KZ ,z in

O(j2) float operations; for that we need to always keep into
memory the j × n matrix KZ ,X .

computing the matrix K[Z ,z],X from KZ ,X requires n kernel
evaluations;

the quantity Kxi ,[Z ,z]K
−1
[Z ,z],[Z ,z]K[Z ,z],xi

can be computed from

Kxi ,Z K−1
Z ,Z KZ ,xi

in O(j) float operations.

The total training complexity is O(d2n) float operations and O(dn)
kernel evaluations

Julien Mairal (Inria) 518/564

Nyström approximations (14/14)

Concluding remarks

The last technique is equivalent to computing an incomplete
Cholesky factorization of the kernel matrix (Bach and Jordan, 2002;
Fine and Scheinberg, 2001);

The techniques we have seen produce low-rank approximations of
the kernel matrix K ≈ LL>;

When X = Rd , it is also possible to synthesize training points
z1, . . . , zd and use anchor points ϕ(z1), . . . , ϕ(zd), e.g., with a
K-means algorithms.

Julien Mairal (Inria) 519/564

Outline

5 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels

Motivation
Large-scale learning with linear models
Nyström approximations
Random Fourier features
New challenges

“Deep” learning with kernels

Julien Mairal (Inria) 520/564

Random Fourier features [Rahimi and Recht, 2007] (1/5)

A large class of approximations for shift-invariant kernels are based on
sampling techniques. Consider a real-valued positive-definite continuous
translation-invariant kernel K (x, y) = κ(x− y) with κ : Rd → R. Then,
if κ(0) = 1, Bochner theorem tells us that κ is a valid characteristic
function for some probability measure

κ(z) = Ew[e iw>z].

Remember indeed that, with the right assumptions on κ,

κ(x− y) =
1

(2π)d

∫
Rd

κ̂(w)e iw>xe−iw>ydw,

and the probability measure admits a density p(w) = 1
(2π)d κ̂(w)

(non-negative, real-valued, sum to 1 since κ(0) = 1).

Julien Mairal (Inria) 521/564

Random Fourier features (2/5)

Then,

κ(x− y) =
1

(2π)d

∫
Rd

κ̂(w)e iw>xe−iw>ydw

=

∫
Rd

p(w) cos(w>x−w>y)dw

=

∫
Rd

p(w)
(

cos(w>x) cos(w>y) + sin(w>x) sin(w>y)
)

dw

=

∫
Rd

∫ 2π

b=0

p(w)

2π
2 cos(w>x + b) cos(w>y + b)dwdb (exercise)

= Ew∼p(w),b∼U [0,2π]

[√
2 cos(w>x + b)

√
2 cos(w>y + b)

]

Julien Mairal (Inria) 522/564

Random Fourier features (3/5)

Random Fourier features recipe

Compute the Fourier transform of the kernel κ̂ and define the
probability density p(w) = κ̂(w)/(2π)d ;

Draw d i.i.d. samples w1, . . . ,wd from p and d i.i.d. samples
b1, . . . , bd from the uniform distribution on [0, 2π];

define the mapping

x 7→ ψ(x) =

√
2

d

[
cos(w>1 x + b1), . . . , cos(w>d x + bd)

]>
.

Then, we have that

κ(x− y) ≈ 〈ψ(x), ψ(y)〉Rd .

The two quantities are equal in expectation.

Julien Mairal (Inria) 523/564

Random Fourier features (4/5)

Theorem, [Rahimi and Recht, 2007]

On any compact subset X of Rm, for all ε > 0,

P

[
sup

x,y∈X
|κ(x− y)− 〈ψ(x), ψ(y)〉Rd | ≥ ε

]
≤ 28

(
σpdiam(X)

ε

)2

e
− dε2

4(m+2) ,

where σ2
p = Ew∼p(w)[w>w] is the second moment of the Fourier

transform of κ.

Remarks

The convergence is uniform, not data dependent;

Take the sequence εd =
√

log(d)
d σpdiam(X); Then the term on the

right converges to zero when d grows to infinity;

Prediction functions with Random Fourier features are not in H.

Julien Mairal (Inria) 524/564

Random Fourier features (5/5)

Ingredients of the proof

For a fixed pair of points x, y, Hoeffding’s inequality says that

P
[
|κ(x− y)− 〈ψ(x), ψ(y)〉Rd |︸ ︷︷ ︸

f (x,y)

≥ ε
]
≤ 2e−

dε2

4 .

Consider a net (set of balls of radius r) that covers
X∆ = {x− y : (x, y) ∈ X} with at most T = (4diam(X)/r)m balls.

Apply the Hoeffding’s inequality to the centers xi − yi of the balls;

Use a basic union bound

P
[

sup
i

f (xi , yi) ≥
ε

2

]
≤
∑

i

P
[
f (xi , yi) ≥

ε

2

]
≤ 2Te−

dε2

8 .

Glue things together: control the probability for points (x, y) inside
each ball, and adjust the radius r (a bit technical).

Julien Mairal (Inria) 525/564

Outline

5 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels

Motivation
Large-scale learning with linear models
Nyström approximations
Random Fourier features
New challenges

“Deep” learning with kernels

Julien Mairal (Inria) 526/564

New challenges

We have seen two classes of kernel approximation techniques. Several
challenges remain

make random Fourier features data dependent (e.g., Bach, 2015);

make these approximation techniques data and task dependent;

reduce the number of dimensions;

find more explicit approximate feature maps dedicated to useful
kernel [e.g., Vedaldi and Zisserman, 2012];

Julien Mairal (Inria) 527/564

Outline

1 Kernels and RKHS

2 Kernel Methods: Supervised Learning

3 Kernel Methods: Unsupervised Learning

4 The Kernel Jungle

5 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels
“Deep” learning with kernels

Julien Mairal (Inria) 528/564

Outline

5 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels
“Deep” learning with kernels

Motivation
“Deep” feature maps
Convolutional kernel networks

Julien Mairal (Inria) 529/564

Deep learning with kernels

Main question

in some fields producing large amounts of labeled data (notably in
computer vision), kernel methods are not performing as well as
multilayer neural networks. Why? How to improve kernel methods?

Possible angles of attack

are multilayer neural networks close to a kernel machine?

building multilayer kernels with successful principles from multilayer
neural networks (successful=“convolutional” or “recurrent”).

perform end-to-end-learning with kernels (crafting the kernel);

Perspectives

build multilayer architectures that are easy to regularize and that
may work without (or with less) supervision.

build versatile architectures to process structured data.

Julien Mairal (Inria) 530/564

Classical criticisms of kernel methods

lack of adaptivity to data?

if necessary, use kernels for probabilistic models;

lack of adaptivity to the task (end-to-end learning)?
most critical point, important open problem;

kernel methods are glorified template matching algorithms?
irrelevant, only true for Gaussian kernel with σ too small;

f (x) =
n∑

i=1

αi K (xi , x)
???≈

n∑
i=1

yi∑n
l=1 K (xl , x)

K (xi , x).

The representer theorem simply tells us that the prediction function f
lies in a subspace spanned by the data (nothing to do with the
“template-matching” Nadaraya-Watson estimator on the right).

The αi ’s do not have the same sign as the yi ’s in general.

The theorem also applies to the last layer of neural networks...

Julien Mairal (Inria) 531/564

Classical criticisms of kernel methods

lack of adaptivity to data?
if necessary, use kernels for probabilistic models;

lack of adaptivity to the task (end-to-end learning)?

most critical point, important open problem;

kernel methods are glorified template matching algorithms?
irrelevant, only true for Gaussian kernel with σ too small;

f (x) =
n∑

i=1

αi K (xi , x)
???≈

n∑
i=1

yi∑n
l=1 K (xl , x)

K (xi , x).

The representer theorem simply tells us that the prediction function f
lies in a subspace spanned by the data (nothing to do with the
“template-matching” Nadaraya-Watson estimator on the right).

The αi ’s do not have the same sign as the yi ’s in general.

The theorem also applies to the last layer of neural networks...

Julien Mairal (Inria) 531/564

Classical criticisms of kernel methods

lack of adaptivity to data?
if necessary, use kernels for probabilistic models;

lack of adaptivity to the task (end-to-end learning)?
most critical point, important open problem;

kernel methods are glorified template matching algorithms?

irrelevant, only true for Gaussian kernel with σ too small;

f (x) =
n∑

i=1

αi K (xi , x)
???≈

n∑
i=1

yi∑n
l=1 K (xl , x)

K (xi , x).

The representer theorem simply tells us that the prediction function f
lies in a subspace spanned by the data (nothing to do with the
“template-matching” Nadaraya-Watson estimator on the right).

The αi ’s do not have the same sign as the yi ’s in general.

The theorem also applies to the last layer of neural networks...

Julien Mairal (Inria) 531/564

Classical criticisms of kernel methods

lack of adaptivity to data?
if necessary, use kernels for probabilistic models;

lack of adaptivity to the task (end-to-end learning)?
most critical point, important open problem;

kernel methods are glorified template matching algorithms?
irrelevant, only true for Gaussian kernel with σ too small;

f (x) =
n∑

i=1

αi K (xi , x)
???≈

n∑
i=1

yi∑n
l=1 K (xl , x)

K (xi , x).

The representer theorem simply tells us that the prediction function f
lies in a subspace spanned by the data (nothing to do with the
“template-matching” Nadaraya-Watson estimator on the right).

The αi ’s do not have the same sign as the yi ’s in general.

The theorem also applies to the last layer of neural networks...

Julien Mairal (Inria) 531/564

Outline

5 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels
“Deep” learning with kernels

Motivation
“Deep” feature maps
Convolutional kernel networks

Julien Mairal (Inria) 532/564

Links between kernels and neural networks

A large class of kernels on Rp may be defined as an expectation

K (x, y) = Ew[s(w>x)s(w>y)],

where s : R→ R is a nonlinear function. Then, approximating the
expectation by a finite sum yields

K (x, y) ≈ 1

d

d∑
j=1

s(w>j x)s(w>j y) = 〈ψ(x), ψ(y)〉Rd ,

where ψ(x) may be interpreted as a one-layer neural network.

Example

Any shift-invariant kernel with random Fourier features!

ψ(x) =

√
2

d

[
cos(w>1 x + b1), . . . , cos(w>d x + bd)

]>
.

Julien Mairal (Inria) 533/564

Links between kernels and neural networks

A large class of kernels on Rp may be defined as an expectation

K (x, y) = Ew[s(w>x)s(w>y)],

where s : R→ R is a nonlinear function.

Example

The Gaussian kernel on the hypersphere:

e−
1

2σ2 ‖x−y‖2
2 =

(
2

πσ2

)m
2
∫

w∈Rm

e−
1
σ2 ‖x−w‖2

2e−
1
σ2 ‖y−w‖2

2dw

=

∫
w∈Rm

p(w)e−
1
σ2 + 2

σ2 w>xe−
1
σ2 + 2

σ2 w>ydw,

where p(w) is the density of the multivariate normal distribution
N (0, σ2/4I).

Julien Mairal (Inria) 534/564

Links between kernels and neural networks

Example, arc-cosine kernels

Cho and Saul, 2009 have proposed a collection of kernels defined as

K (x, y) = 2

∫
w∈Rm

p(w)s(w>x)s(w>y)dw,

for x, y on the hyper-sphere Sm−1 and p(w) is the density of the
multivariate normal distribution N (0, I). Interestingly, the non-linearity s
are typical ones from the neural network literature.

s(u) = max(0, u) (rectified linear units) leads to
K1(x, y) = sin(θ) + (π − θ) cos(θ) with θ = cos−1(x>y);

s(u) = max(0, u)2 (squared rectified linear units) leads to
K2(x, y) = 3 sin(θ) cos(θ) + (π − θ)(1 + 2 cos2(θ));

and also a general formula for s(u) = max(0, u)p, with d ≥ 0.

Julien Mairal (Inria) 535/564

Links between kernels and neural networks

-1 -0.5 0 0.5 1
u

0

0.2

0.4

0.6

0.8

1

s(
u)

arc-cosine1
arc-cosine2
RBF sigma=0.5
RBF sigma=1

Julien Mairal (Inria) 536/564

Links between kernels and neural networks

We have seen that some kernels admit an interpretation as one-layer
neural networks with random weights and infinite number of neurons.

Another common features between neural networks and kernel method is
the composition of feature maps [Cho and Saul, 2009].

Consider kernels with the form

K1(x, y) = κ (‖ϕ0(x)‖H0 , ‖ϕ0(y)‖H0 , 〈ϕ0(x), ϕ0(y)〉H0) = 〈ϕ1(x), ϕ1(y)〉H1 ,

e.g., linear, polynomial, Gaussian, arc-cosine with ϕ0(x) = x.
Then, it is easy to obtain a new kernel K2 by composition:

K2(x, y) = κ (‖ϕ1(x)‖H1 , ‖ϕ1(y)‖H1 , 〈ϕ1(x), ϕ1(y)〉H1) = 〈ϕ2(x), ϕ2(y)〉H2 ,

and recursively build multilayer kernels.

Julien Mairal (Inria) 537/564

Outline

5 Open Problems and Research Topics
Multiple Kernel Learning (MKL)
Large-scale learning with kernels
“Deep” learning with kernels

Motivation
“Deep” feature maps
Convolutional kernel networks

Julien Mairal (Inria) 538/564

Motivation

We have made explicit some links between neural networks
(approximation by linear operations followed by pointwise non-linearities,
and composition of feature maps leading to multilayer kernels).

However, one important ingredient in the kernel world is still missing:
The main deep learning success, convolutional neural networks, is able to

learn local structures in images (local stationarity);

learn how to combine these local structures into mid and high-level
ones (spatial composition).

From a tutorial of Y. LeCun, quoting Stuart Geman “the world is
compositional or there is a God”.

Julien Mairal (Inria) 539/564

Motivation

We have made explicit some links between neural networks
(approximation by linear operations followed by pointwise non-linearities,
and composition of feature maps leading to multilayer kernels).

However, one important ingredient in the kernel world is still missing:
The main deep learning success, convolutional neural networks, is able to

learn local structures in images (local stationarity);

learn how to combine these local structures into mid and high-level
ones (spatial composition).

From a tutorial of Y. LeCun, quoting Stuart Geman “the world is
compositional or there is a God”.

Julien Mairal (Inria) 539/564

Motivation

Figure : Picture from Yann Lecun’s tutorial, based on [Zeiler and Fergus, 2013].

Julien Mairal (Inria) 540/564

Convolutional kernel networks

A few words about convolutional kernel networks [Mairal et al., 2014]

Unsupervised representation of images based on a multilayer kernel,
along with a finite-dimensional embedding ψ, which is a new type
of convolutional neural network;

State-of-the-art results for image retrieval [Paulin et al., 2016];

New principles to perform end-to-end supervised learning with
multilayer kernels (unpublished yet).

Julien Mairal (Inria) 541/564

Convolutional kernel networks

Ω0ϕ0(z0) ∈ H0

{z1}+ P1

ϕ1(z1) ∈ H1
Ω1

{z2}+ P2

Ω2

ϕ2(z2) ∈ H2

Julien Mairal (Inria) 542/564

Main properties of CKNs

CKNs are organized in a multi-layer fashion.

Each layer produces an image feature map.

An image feature map ϕ is a function ϕ : Ω→ H, where Ω ⊆ [0, 1]2

is a set of “coordinates” and H is a Hilbert space.

Concretely, these are similar to feature maps of CNNs.

Each layer defines a kernel between patches of the previous layer.

The approximation scheme requires learning each layer sequentially,
and can be interpreted as a CNN layer with a different objective.

Julien Mairal (Inria) 543/564

Image feature maps and convolutional kernels

An image feature map ϕ is a function ϕ : Ω→ H, where Ω ⊆ [0, 1]2 is a
set of “coordinates” in the image and H is a Hilbert space.

It is possible to define a convolutional kernel between ϕ and ϕ′

K (ϕ,ϕ′) :=
∑
z∈Ω

∑
z′∈Ω

‖ϕ(z)‖H
∥∥ϕ′(z′)

∥∥
H e
− 1

2β2 ‖z−z′‖2
2e−

1
2σ2 ‖ϕ̃(z)−ϕ̃′(z′)‖2

H ,

when β is large, K is invariant to the positions z and z′.

when β is small, only features placed at the same location z = z′

are compared to each other.

The kernel is inspired from the kernel descriptors of Bo et al., 2011.

Julien Mairal (Inria) 544/564

Image feature maps and convolutional kernels

An image feature map ϕ is a function ϕ : Ω→ H, where Ω ⊆ [0, 1]2 is a
set of “coordinates” in the image and H is a Hilbert space.

It is possible to define a convolutional kernel between ϕ and ϕ′

K (ϕ,ϕ′) :=
∑
z∈Ω

∑
z′∈Ω

‖ϕ(z)‖H
∥∥ϕ′(z′)

∥∥
H e
− 1

2β2 ‖z−z′‖2
2e−

1
2σ2 ‖ϕ̃(z)−ϕ̃′(z′)‖2

H ,

The kernel can be defined on patches∑
z∈P

∑
z′∈P
‖ϕ(u + z)‖H

∥∥ϕ′(u′ + z′)
∥∥
H e
− 1

2β2 ‖z−z′‖2
2e−

1
2σ2 ‖ϕ̃(u+z)−ϕ̃′(u′+z′)‖2

H ,

where P is a patch shape and u,u′ are locations in Ω.

Julien Mairal (Inria) 544/564

Zoom on the zero-th layer

Before we build a hierarchy, we can specify two simple zero-th layer
feature maps ϕ0.

Gradient map

H0 =R2 and ϕ0(z) is the two-dimensional gradient of the image at
pixel z. Then, the quantity ‖ϕ0(z)‖H0

is the gradient intensity,
and ϕ̃0(z) is its orientation [cos(θ), sin(θ)].

Patch map

ϕ0 associates to a location z an image patch of size m ×m centered
at z. Then, H0 = Rm2

, and ϕ̃0(z) is a contrast-normalized version of
the patch.

Julien Mairal (Inria) 545/564

Multilayer kernels

Let us consider a set of coordinates Ωk–1 and a Hilbert space Hk–1. We
build a new set Ωk and a new Hilbert space Hk as follows:

choose a patch shape Pk and a set of coordinates Ωk such that for
each zk in Ωk corresponds to a patch in Ωk–1 centered at zk .

call Kk the kernel of the previous slide on the “patch” feature
maps Pk → Hk–1 (with parameters βk , σk). We denote by Hk the
Hilbert space for which the p.d. kernel Kk is reproducing.

An image represented by a feature map ϕk–1 : Ωk–1 → Hk–1 at layer k–1
is now encoded in the k-th layer as ϕk : Ωk → Hk , where ϕk (zk) is the
representation in Hk of the patch of ϕk–1 centered at zk .

Julien Mairal (Inria) 546/564

Convolutional kernel networks

Ω0ϕ0(z0) ∈ H0

{z1}+ P1

ϕ1(z1) ∈ H1
Ω1

{z2}+ P2

Ω2

ϕ2(z2) ∈ H2

Julien Mairal (Inria) 547/564

Optimization

Key approximation

When x and y are on the sphere,

e−
1

2α2 ‖x−y‖2
2 = Ez∼p(z)[s(z>x)s(z>y)],

where s(u) ∝ e−
1
α2 + 2u

α2 and p(z) is the density of the multivariate
normal distribution N (0, (α2/4)I). Then,

e−
1

2α2 ‖x−y‖2
2 ≈ 1

p

p∑
j=1

ηj s(z>j x)s(z>j y).

Instead of random sampling, zj and ηj are learned on training data:

min
Z,η

n∑
i=1

e−
1

2α2 ‖xi−yi‖2
2 − 1

p

p∑
j=1

ηj s(z>j xi)s(z>j yi)

2

.

Julien Mairal (Inria) 548/564

Approximation principles

We proceed by recursion, with the approximation holding for k = 0.

Main ingredients for approximating K (ϕk–1, ϕ
′
k–1).

replace ϕk–1 by its finite-dimensional approximation ψk–1;

≈
∑

z,z′∈Ωk–1

‖ψk–1(z)‖2

∥∥ψ′k–1(z′)
∥∥

2
e
− 1

2β2
k

‖z−z′‖2
2
e
− 1

2σ2
k
‖ψ̃k–1(z)−ψ̃′k–1(z′)‖2

2 ;

use the finite-dimensional approximation of the Gaussian kernel

≈
∑

z,z′∈Ωk–1

ζk (z)>ζ ′k (z′)e
− 1

2β2
k

‖z−z′‖2
2
;

approximate the remaining Gaussian kernel

≈ 2

π

∑
u∈Ω′k

(∑
z∈Ωk–1

e
− 1

β2
k

‖z−u‖2
2
ζk (z)

)>(∑
z′∈Ωk–1

e
− 1

β2
k

‖z′−u‖2
2
ζ ′k (z′)

)
;

Julien Mairal (Inria) 549/564

Zoom between layers k–1 and k

Ω′
k–1

ξk–1(z)
ψk–1(zk–1)

(patch extraction)

{zk–1}+P ′
k–1

convolution
+ non-linearity

pk
ζk(zk–1)

Ωk–1

Gaussian filtering
+ downsampling
= pooling

Ω′
k

ξk(z)

Julien Mairal (Inria) 550/564

Application to image retrieval

Encoding of interest points with CKN + VLAD.

Possible inputs:

Results (mAP or true positives in top-4 for UKB)

Method \ Dataset Holidays UKB Oxford
VLAD+SIFT [Jegou et al., 2012] 63.4 3.47 -
VLAD++ [Arandjelovic and Zissermann, 2013] 64.6 - 55.5
CNN [Babenko et al., 2014] 79.3 3.56 54.5
CNN2 [Gong et al., 2014] 80.2 - -
Sum-pooling VGG [Babenko et al., 2015] 80.2 3.65 53.1

Ours (vanilla, high-dimensional) 79.3 3.76 49.8

Ours + PCA 4096 + whitening 82.9 3.77 47.2

Julien Mairal (Inria) 551/564

What about image classification?

First proof of concept was evaluated on classical “deep learning”
datasets. without data augmentation or data pre-processing;

Tr. CNN Scat-1 Scat-2 CKN-GM1 CKN-GM2 CKN-PM1 CKN-PM2
[32] [18] [19]

size [25] [8] [8] (12/50) (12/400) (200) (50/200)

300 7.18 4.7 5.6 4.39 4.24 5.98 4.15 NA
1K 3.21 2.3 2.6 2.60 2.05 3.23 2.76 NA
2K 2.53 1.3 1.8 1.85 1.51 1.97 2.28 NA
5K 1.52 1.03 1.4 1.41 1.21 1.41 1.56 NA

10K 0.85 0.88 1 1.17 0.88 1.18 1.10 NA
20K 0.76 0.79 0.58 0.89 0.60 0.83 0.77 NA
40K 0.65 0.74 0.53 0.68 0.51 0.64 0.58 NA

60K 0.53 0.70 0.4 0.58 0.39 0.63 0.53 0.47 0.45 0.53

Table : Test error in % for various approaches on the MNIST dataset.

Method [12] [27] [18] [13] [4] [17] [32] CKN-GM CKN-PM CKN-CO

CIFAR-10 82.0 82.2 88.32 79.6 NA 83.96 84.87 74.84 78.30 82.18

STL-10 60.1 58.7 NA 51.5 64.5 62.3 NA 60.04 60.25 62.32

Table : Classification accuracy in % on CIFAR-10 and STL-10.

Julien Mairal (Inria) 552/564

Current Perspectives

Engineering effort helps

higher (huge)-dimensional models may be learned; they give about
86% on CIFAR-10 (≈ 88% with data augmentation);

Supervision helps

preliminary supervised models are already close to 90% (single
model, no data augmentation);

Future challenges

video data;

structured data, sequences, graphs;

theory and faster algorithms;

finish supervision.

Julien Mairal (Inria) 553/564

Conclusion of the course

Julien Mairal (Inria) 554/564

What we saw

Basic definitions of p.d. kernels and RKHS

How to use RKHS in machine learning

The importance of the choice of kernels, and how to include “prior
knowledge” there.

Several approaches for kernel design (there are many!)

Review of kernels for strings and on graphs

Recent research topics about kernel methods

Julien Mairal (Inria) 555/564

What we did not see

How to automatize the process of kernel design (kernel selection?
kernel optimization?)

How to deal with non p.d. kernels

Bayesian view of kernel methods, called Gaussian processes.

Julien Mairal (Inria) 556/564

References I

N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc., 68:337 – 404, 1950.
URL http://www.jstor.org/stable/1990404.

F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and
the SMO algorithm. In Proceedings of the Twenty-First International Conference on
Machine Learning, page 6, New York, NY, USA, 2004. ACM. doi:
http://doi.acm.org/10.1145/1015330.1015424.

C. Berg, J. P. R. Christensen, and P. Ressel. Harmonic analysis on semigroups.
Springer-Verlag, New-York, 1984.

K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In ICDM ’05:
Proceedings of the Fifth IEEE International Conference on Data Mining, pages 74–81,
Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2278-5. doi:
http://dx.doi.org/10.1109/ICDM.2005.132.

M. Cuturi and J.-P. Vert. The context-tree kernel for strings. Neural Network., 18(4):
1111–1123, 2005. doi: 10.1016/j.neunet.2005.07.010. URL
http://dx.doi.org/10.1016/j.neunet.2005.07.010.

M. Cuturi, K. Fukumizu, and J.-P. Vert. Semigroup kernels on measures. J. Mach. Learn.
Res., 6:1169–1198, 2005. URL
http://jmlr.csail.mit.edu/papers/v6/cuturi05a.html.

Julien Mairal (Inria) 557/564

http://www.jstor.org/stable/1990404
http://dx.doi.org/10.1016/j.neunet.2005.07.010
http://jmlr.csail.mit.edu/papers/v6/cuturi05a.html

References II
T. Gärtner, P. Flach, and S. Wrobel. On graph kernels: hardness results and efficient

alternatives. In B. Schölkopf and M. Warmuth, editors, Proceedings of the Sixteenth
Annual Conference on Computational Learning Theory and the Seventh Annual Workshop
on Kernel Machines, volume 2777 of Lecture Notes in Computer Science, pages 129–143,
Heidelberg, 2003. Springer. doi: 10.1007/b12006. URL
http://dx.doi.org/10.1007/b12006.

Z. Harchaoui and F. Bach. Image classification with segmentation graph kernels. In 2007
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR
2007), pages 1–8. IEEE Computer Society, 2007. doi: 10.1109/CVPR.2007.383049. URL
http://dx.doi.org/10.1109/CVPR.2007.383049.

D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10,
UC Santa Cruz, 1999.

C. Helma, T. Cramer, S. Kramer, and L. De Raedt. Data mining and machine learning
techniques for the identification of mutagenicity inducing substructures and structure
activity relationships of noncongeneric compounds. J. Chem. Inf. Comput. Sci., 44(4):
1402–11, 2004. doi: 10.1021/ci034254q. URL http://dx.doi.org/10.1021/ci034254q.

T. Jaakkola, M. Diekhans, and D. Haussler. A Discriminative Framework for Detecting
Remote Protein Homologies. J. Comput. Biol., 7(1,2):95–114, 2000. URL
http://www.cse.ucsc.edu/research/compbio/discriminative/Jaakola2-1998.ps.

Julien Mairal (Inria) 558/564

http://dx.doi.org/10.1007/b12006
http://dx.doi.org/10.1109/CVPR.2007.383049
http://dx.doi.org/10.1021/ci034254q
http://www.cse.ucsc.edu/research/compbio/discriminative/Jaakola2-1998.ps

References III
T. S. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In

Proc. of Tenth Conference on Advances in Neural Information Processing Systems, 1999.
URL http://www.cse.ucsc.edu/research/ml/papers/Jaakola.ps.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled graphs. In
T. Faucett and N. Mishra, editors, Proceedings of the Twentieth International Conference
on Machine Learning, pages 321–328, New York, NY, USA, 2003. AAAI Press.

T. Kin, K. Tsuda, and K. Asai. Marginalized kernels for RNA sequence data analysis. In
R. Lathtop, K. Nakai, S. Miyano, T. Takagi, and M. Kanehisa, editors, Genome
Informatics 2002, pages 112–122. Universal Academic Press, 2002. URL
http://www.jsbi.org/journal/GIW02/GIW02F012.html.

R. I. Kondor and J. Lafferty. Diffusion kernels on graphs and other discrete input. In
Proceedings of the Nineteenth International Conference on Machine Learning, pages
315–322, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.

G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. Jordan. Learning the kernel
matrix with semidefinite programming. J. Mach. Learn. Res., 5:27–72, 2004a. URL
http://www.jmlr.org/papers/v5/lanckriet04a.html.

G. R. G. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan, and W. S. Noble. A statistical
framework for genomic data fusion. Bioinformatics, 20(16):2626–2635, 2004b. doi:
10.1093/bioinformatics/bth294. URL
http://bioinformatics.oupjournals.org/cgi/content/abstract/20/16/2626.

Julien Mairal (Inria) 559/564

http://www.cse.ucsc.edu/research/ml/papers/Jaakola.ps
http://www.jsbi.org/journal/GIW02/GIW02F012.html
http://www.jmlr.org/papers/v5/lanckriet04a.html
http://bioinformatics.oupjournals.org/cgi/content/abstract/20/16/2626

References IV
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

C. Leslie and R. Kuang. Fast string kernels using inexact matching for protein sequences. J.
Mach. Learn. Res., 5:1435–1455, 2004.

C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: a string kernel for SVM protein
classification. In R. B. Altman, A. K. Dunker, L. Hunter, K. Lauerdale, and T. E. Klein,
editors, Proceedings of the Pacific Symposium on Biocomputing 2002, pages 564–575,
Singapore, 2002. World Scientific.

L. Liao and W. Noble. Combining Pairwise Sequence Similarity and Support Vector Machines
for Detecting Remote Protein Evolutionary and Structural Relationships. J. Comput. Biol.,
10(6):857–868, 2003. URL
http://www.liebertonline.com/doi/abs/10.1089/106652703322756113.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification
using string kernels. J. Mach. Learn. Res., 2:419–444, 2002. URL
http://www.ai.mit.edu/projects/jmlr/papers/volume2/lodhi02a/abstract.html.

B. Logan, P. Moreno, B. Suzek, Z. Weng, and S. Kasif. A Study of Remote Homology
Detection. Technical Report CRL 2001/05, Compaq Cambridge Research laboratory, June
2001.

P. Mahé and J. P. Vert. Graph kernels based on tree patterns for molecules. Mach. Learn., 75
(1):3–35, 2009. doi: 10.1007/s10994-008-5086-2. URL
http://dx.doi.org/10.1007/s10994-008-5086-2.

Julien Mairal (Inria) 560/564

http://www.liebertonline.com/doi/abs/10.1089/106652703322756113
http://www.ai.mit.edu/projects/jmlr/papers/volume2/lodhi02a/abstract.html
http://dx.doi.org/10.1007/s10994-008-5086-2

References V
P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Extensions of marginalized graph

kernels. In R. Greiner and D. Schuurmans, editors, Proceedings of the Twenty-First
International Conference on Machine Learning (ICML 2004), pages 552–559. ACM Press,
2004.

P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, and J.-P. Vert. Graph kernels for molecular
structure-activity relationship analysis with support vector machines. J. Chem. Inf. Model.,
45(4):939–51, 2005. doi: 10.1021/ci050039t. URL
http://dx.doi.org/10.1021/ci050039t.

C. Micchelli and M. Pontil. Learning the kernel function via regularization. J. Mach. Learn.
Res., 6:1099–1125, 2005. URL http://jmlr.org/papers/v6/micchelli05a.html.

Y. Nesterov. Introductory lectures on convex optimization: a basic course. Kluwer Academic
Publishers, 2004.

A. Nicholls. Oechem, version 1.3.4, openeye scientific software. website, 2005.

F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for image categorization. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2007.

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. J. Mach. Learn. Res.,
9:2491–2521, 2008. URL http://jmlr.org/papers/v9/rakotomamonjy08a.html.

J. Ramon and T. Gärtner. Expressivity versus efficiency of graph kernels. In T. Washio and
L. De Raedt, editors, Proceedings of the First International Workshop on Mining Graphs,
Trees and Sequences, pages 65–74, 2003.

Julien Mairal (Inria) 561/564

http://dx.doi.org/10.1021/ci050039t
http://jmlr.org/papers/v6/micchelli05a.html
http://jmlr.org/papers/v9/rakotomamonjy08a.html

References VI
F. Rapaport, A. Zynoviev, M. Dutreix, E. Barillot, and J.-P. Vert. Classification of microarray

data using gene networks. BMC Bioinformatics, 8:35, 2007. doi:
10.1186/1471-2105-8-35. URL http://dx.doi.org/10.1186/1471-2105-8-35.

H. Saigo, J.-P. Vert, N. Ueda, and T. Akutsu. Protein homology detection using string
alignment kernels. Bioinformatics, 20(11):1682–1689, 2004. URL
http://bioinformatics.oupjournals.org/cgi/content/abstract/20/11/1682.

B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2002. URL
http://www.learning-with-kernels.org.

B. Schölkopf, K. Tsuda, and J.-P. Vert. Kernel Methods in Computational Biology. MIT
Press, The MIT Press, Cambridge, Massachussetts, 2004.

M. Seeger. Covariance Kernels from Bayesian Generative Models. In Adv. Neural Inform.
Process. Syst., volume 14, pages 905–912, 2002.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, New York, NY, USA, 2004a.

J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge
University Press, 2004b.

N. Shervashidze and K. M. Borgwardt. Fast subtree kernels on graphs. In Advances in Neural
Information Processing Systems, pages 1660–1668, 2009.

Julien Mairal (Inria) 562/564

http://dx.doi.org/10.1186/1471-2105-8-35
http://bioinformatics.oupjournals.org/cgi/content/abstract/20/11/1682
http://www.learning-with-kernels.org

References VII
N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt. Efficient

graphlet kernels for large graph comparison. In 12th International Conference on Artificial
Intelligence and Statistics (AISTATS), pages 488–495, Clearwater Beach, Florida USA,
2009. Society for Artificial Intelligence and Statistics.

N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M. Borgwardt.
Weisfeiler-lehman graph kernels. The Journal of Machine Learning Research, 12:
2539–2561, 2011.

T. Smith and M. Waterman. Identification of common molecular subsequences. J. Mol. Biol.,
147:195–197, 1981.

K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.-R. Müller. A new discriminative
kernel from probabilistic models. Neural Computation, 14(10):2397–2414, 2002a. doi:
10.1162/08997660260293274. URL http://dx.doi.org/10.1162/08997660260293274.

K. Tsuda, T. Kin, and K. Asai. Marginalized Kernels for Biological Sequences.
Bioinformatics, 18:S268–S275, 2002b.

V. N. Vapnik. Statistical Learning Theory. Wiley, New-York, 1998.

A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 34(3):480–492, 2012.

J.-P. Vert, H. Saigo, and T. Akutsu. Local alignment kernels for biological sequences. In
B. Schölkopf, K. Tsuda, and J. Vert, editors, Kernel Methods in Computational Biology,
pages 131–154. MIT Press, The MIT Press, Cambridge, Massachussetts, 2004.

Julien Mairal (Inria) 563/564

http://dx.doi.org/10.1162/08997660260293274

References VIII
J.-P. Vert, R. Thurman, and W. S. Noble. Kernels for gene regulatory regions. In Y. Weiss,

B. Schölkopf, and J. Platt, editors, Adv. Neural. Inform. Process Syst., volume 18, pages
1401–1408, Cambridge, MA, 2006. MIT Press.

G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional
Conference Series in Applied Mathematics. SIAM, Philadelphia, 1990.

B. Weisfeiler and A. A. Lehman. A reduction of a graph to a canonical form and an algebra
arising during this reduction. Nauchno-Technicheskaya Informatsia, Ser. 2, 9, 1968.

Y. Yamanishi, J.-P. Vert, and M. Kanehisa. Protein network inference from multiple genomic
data: a supervised approach. Bioinformatics, 20:i363–i370, 2004. URL
http://bioinformatics.oupjournals.org/cgi/reprint/19/suppl_1/i323.

Julien Mairal (Inria) 564/564

http://bioinformatics.oupjournals.org/cgi/reprint/19/suppl_1/i323

	Kernels and RKHS
	Positive Definite Kernels
	Reproducing Kernel Hilbert Spaces (RKHS)
	My first kernels
	Smoothness functional
	The kernel trick

	Kernel Methods: Supervised Learning
	The representer theorem
	Kernel ridge regression
	Classification with empirical risk minimization
	A (tiny) bit of learning theory
	Foundations of constrained optimization
	Support vector machines

	Kernel Methods: Unsupervised Learning
	Kernel K-means and spectral clustering
	Kernel PCA
	A quick note on kernel CCA

	The Kernel Jungle
	Kernels for probabilistic models
	Kernels for biological sequences
	Mercer kernels and shift-invariant kernels
	Kernels for graphs
	Kernels on graphs

	Open Problems and Research Topics
	Multiple Kernel Learning (MKL)
	Large-scale learning with kernels
	``Deep'' learning with kernels

