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History of the course

A large part of the course material is due to Jean-
Philippe Vert, who gave the course from 2004 to 2015
and who is on sabbatical at UC Berkeley in 2016.

@ Over the years, the course has become more and more exhaustive
and the slides are probably one of the best reference available on
kernels.
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History of the course

A large part of the course material is due to Jean-
Philippe Vert, who gave the course from 2004 to 2015
and who is on sabbatical at UC Berkeley in 2016.

@ Over the years, the course has become more and more exhaustive
and the slides are probably one of the best reference available on
kernels.

@ This is a course with a fairly large amount of math, but still
accessible to computer scientists who have heard what is a Hilbert
space (at least once in their life).
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Starting point: what we know is how to solve
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But real data are often more complicated...
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Main goal of this course

Extend well-understood, linear statistical learning techniques to
real-world, complicated, structured, high-dimensional data (images,
texts, time series, graphs, distributions, permutations...)
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A concrete supervised learning problem

Regularized empirical risk minimization formulation

The goal is to learn a prediction function f : X — ) given labeled
training data (x; € X,y; € V)i=1,.n

1 n
in =S L(y;, f(x; AQ(F
mp 52 L fs) + 30()

m
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_ regularization

empirical risk, data fit
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A concrete supervised learning problem

Regularized empirical risk minimization formulation
The goal is to learn a prediction function f : X — ) given labeled
training data (x; € X,y; € V)i=1,.n

feF n ——

regularization

min EZL(yi, f(x;)) + AQ(f)
i=1

empirical risk, data fit

A simple parametrization when X = RP and ) = {—1, +1}.
o F = {fy:w € RP} where the f,'s are linear: f : x — x"w.

@ The regularization is the simple Euclidean norm Q(f,) = |w||3.

Julien Mairal (Inria) 7/564



A concrete supervised learning problem

This simple setting corresponds to many well-studied formulations.
1 -1

Rid ion: in — —(yi — A
idge regression min, — 2 2(y w %)%+ \wlf3.
=
Li SVM: - (0,1 —y; A
inear Mrlghgp anax yiw ' x;) + Awl3.

Logisti ion: =3 log (14 €)1
ogistic regression n;hgp p Z og(l+e + Aw]|3.

A
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A concrete supervised learning problem

Unfortunately, linear models often perform poorly unless the problem
features are well-engineered or the problem is very simple.

1 n
in = > Ly f(x; AQ(F
min > Llyi, f(xi)) + ()
=1 regularization

~
empirical risk, data fit

First approach to work with a non-linear functional space F
@ The "deep learning” space F is parametrized as follows:

f(X) = Uk(AkO'k—l(Ak—l ce 0'2(A20’1(A1X)) .. ))

e Finding the optimal Aj, Ay, ..., Ay involves solving an (intractable)
non-convex optimization problem in huge dimension.
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A concrete supervised learning problem

C3 1, maps 16@10x10
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Canvolutions Subsampling Cﬂnvo.lutians Subsam
Figure : Exemple of convolutional neural network from LeCun et al. [1998]

What are the main limitations of neural networks?
@ Poor theoretical understanding.
@ They require cumbersome hyper-parameter tuning.

@ They are hard to regularize.

Despite these shortcomings, they have had an enormous success, thanks
to large amounts of labeled data, computational power and engineering.

Julien Mairal (Inria) 10/564



A concrete supervised learning problem

min lE:L(y,',f(xi)) +  AQ(f)

feF n“ ~——

1=

regularization

empirical risk, data fit

Second approach based on kernels
@ Works with possibly infinite-dimensional functional spaces F;
@ Works with non-vectorial structured data sets X such as graphs;

@ Regularization is natural and easy.

Current limitations (and open research topics)

o Lack of scalability with n (traditionally O(n?));
@ Lack of adaptivity to data and task.
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Organization of the course

Contents
@ Present the basic theory of kernel methods.

@ Develop a working knowledge of kernel engineering for specific data
and applications (graphs, biological sequences, images).

© Introduce open research topics related to kernels such as large-scale
learning with kernels and “deep kernel learning”.

Practical

@ Course homepage with slides, schedules, homework etc...:
http://lear.inrialpes.fr/people/mairal/teaching/2015-2016/MVA/.

e Evaluation: 50% homework + 50% data challenge.

Julien Mairal (Inria) 12/564



QOutline

© Kernels and RKHS
@ Positive Definite Kernels
@ Reproducing Kernel Hilbert Spaces (RKHS)
@ My first kernels
@ Smoothness functional
@ The kernel trick
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QOutline

© Kernels and RKHS
@ Positive Definite Kernels
@ Reproducing Kernel Hilbert Spaces (RKHS)
@ My first kernels
@ Smoothness functional
@ The kernel trick

© Kernel Methods: Supervised Learning
@ The representer theorem
@ Kernel ridge regression
o Classification with empirical risk minimization
@ A (tiny) bit of learning theory
@ Foundations of constrained optimization
@ Support vector machines
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QOutline

© Kernel Methods: Unsupervised Learning
@ Kernel K-means and spectral clustering
o Kernel PCA
@ A quick note on kernel CCA
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© Kernel Methods: Unsupervised Learning
@ Kernel K-means and spectral clustering
o Kernel PCA
@ A quick note on kernel CCA

@ The Kernel Jungle

Kernels for probabilistic models

Kernels for biological sequences

Mercer kernels and shift-invariant kernels
Kernels for graphs

Kernels on graphs
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QOutline

© Kernel Methods: Unsupervised Learning
@ Kernel K-means and spectral clustering
o Kernel PCA
@ A quick note on kernel CCA

@ The Kernel Jungle

Kernels for probabilistic models

Kernels for biological sequences

Mercer kernels and shift-invariant kernels
Kernels for graphs

Kernels on graphs

© Open Problems and Research Topics
o Multiple Kernel Learning (MKL)
@ Large-scale learning with kernels
@ “Deep” learning with kernels
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Part 1

Kernels and RKHS
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Overview

Motivations
@ Develop versatile algorithms to process and analyze data...
o ...without making any assumptions regarding the type of data
(vectors, strings, graphs, images, ...)

The approach
@ Develop methods based on pairwise comparisons.

@ By imposing constraints on the pairwise comparison function
(positive definite kernels), we obtain a general framework for
learning from data (optimization in RKHS).
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QOutline

© Kernels and RKHS
@ Positive Definite Kernels

© Kernel Methods: Supervised Learning
9 Kernel Methods: Unsupervised Learning
@ The Kernel Jungle

e Open Problems and Research Topics
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Representation by pairwise comparisons

R > (( S) =(aat cgagt cac, at ggacgt ct, t gcact act)

Idea
@ Define a “comparison function”: K : X x X — R.

© Represent a set of n data points & = {x3,X2,...,X,} by the n x n
matrix:

[K]; == K (xi, %))

j -
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Representation by pairwise comparisons

Remarks

@ Always an n X n matrix, whatever the nature of data: the same
algorithm will work for any type of data (vectors, strings, ...).

@ Total modularity between the choice of K and the choice of the
algorithm.

@ Poor scalability w.r.t. the dataset size (n?)

@ We will restrict ourselves to a particular class of pairwise
comparison functions.
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Positive Definite (p.d.) Kernels

Definition
A positive definite (p.d.) kernel on the set X" is a function
K : X x X — R that is symmetric:

V(x,x') € X2, K (x,x') = K (¥,x),

and which satisfies, for all N € N, (x1,x2,...,Xy) € XN and
(31, an, ..., aN) e RN:

ZZan (xi,x;) > 0.

i=1 j=1
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Similarity matrices of p.d. kernels

Remarks

o Equivalently, a kernel K is p.d. if and only if, for any N € N and
any set of points (x1,X2,...,xy) € XN, the similarity matrix
[K]; := K (xi, ;) is positive semidefinite.

o Kernel methods are algorithms that take such matrices as input.
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The simplest p.d. kernel

Lemma

Let X = R?. The function K : X2 — R defined by:
Y (x,x') € X2, K (x,x') = <x,x’>Rd

is p.d. (it is often called the linear kernel).
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The simplest p.d. kernel

Lemma
Let X = R?. The function K : X2 — R defined by:

Y (x,x') € X2, K (x,x') = <x,x’>Rd

is p.d. (it is often called the linear kernel).

Proof
o (x, x/>Rd = (X', X)gd ,
° Z, 124j= 1331 (%i, X)) ga = |l Z, 1 9iX; HRd >0
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A more ambitious p.d. kernel

Lemma

Let X be any set, and ¢ : X — R?. Then, the function K : X2 — R
defined as follows is p.d.:

V(x,x/) eXx? K (x,x/) = <CD (x),® (x’)>Rd .
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A more ambitious p.d. kernel

Lemma
Let X be any set, and ¢ : X — R9. Then, the function K : X2 +— R

defined as follows is p.d.:
Vv (x,x) € X%, K (x,x') = (¢ (x),d (x’)>Rd :
Proof

o (®(x),®(X))gs = (®(x), P (X))ga .
o Ny Y aia (P (%), @ (x)ga = || iy 2 (xi) 12 >0
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Example: polynomial kernel

For X = (x1, x2)| € R2, let (%) = (x2,V2x1x0,x2) € R3:

2! 2. 12 r! 2 12
K(X,X") = xgx1° + 2x1x0X1 X5 + X5 X5

= (X1X{ + szé)2
(

%%)% .

Exercise: show that (%.¥')? is p.d. for any d € N.
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Conversely: Kernels as inner products

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert space
‘H and a mapping
P X —H

such that, for any x,x" in X:

K (x,x') = (®(x),® (X)), -
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In case of ...

Definitions

@ An inner product on an R-vector space H is a mapping
(f,g) — (f,g)4y from 2 to R that is bilinear, symmetric and such
that (f,f),, > 0 for all f € H\{0}.

@ A vector space endowed with an inner product is called pre-Hilbert.
1
It is endowed with a norm defined as || f ||z = (f, f)7,.

@ A Hilbert space is a pre-Hilbert space complete for the norm ||.||%.
That is, any Cauchy sequence in H converges in H.

o A Cauchy sequence (fp)n>0 is a sequence whose elements become
progressively arbitrarily close to each other:

lim  sup ||fp — fm|l% =0.

—+00 nm>N

Completeness is necessary to keep “good” convergence properties of
Euclidean spaces in an infinite-dimensional context.
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Proof: finite case

Proof

@ Assume X = {x1,X2,...,Xn} is finite of size N.

o Any p.d. kernel K : X x X — R is entirely defined by the N x N
symmetric positive semidefinite matrix [K]; := K (x;, ;).

@ It can therefore be diagonalized on an orthonormal basis of

eigenvectors (ug,uy,...,uy), with non-negative eigenvalues
0< M <...< A\, ie,

N
XHXJ [Z)\/U/UI ] :Z)‘/u/(i)u/(j): <¢(xi)7¢(xj)>RN’
i I=1

y

with
VAru (1)
(D(X,') = . ]
VAnup(i)
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Proof: general case

@ Mercer (1909) for X = [a, b] C R (more generally X compact) and
K continuous.

e Kolmogorov (1941) for X' countable.
@ Aronszajn (1944, 1950) for the general case.

We will go through the proof of the general case by introducing the
concept of Reproducing Kernel Hilbert Spaces (RKHS).
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QOutline

o Kernels and RKHS

@ Reproducing Kernel Hilbert Spaces (RKHS)

© Kernel Methods: Supervised Learning
9 Kernel Methods: Unsupervised Learning
@ The Kernel Jungle

e Open Problems and Research Topics
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RKHS Definition

Definition

Let X be a set and H C R¥ be a class of functions forming a (real)
Hilbert space with inner product (.,.);,. The function K : X2 Ris
called a reproducing kernel (r.k.) of H if

@ ?H contains all functions of the form

Vx e X, Ki:t— K(x,t).

@ For every x € X and f € H the reproducing property holds:

f(x)=(f,Ka)y -

If a r.k. exists, then # is called a reproducing kernel Hilbert space
(RKHS).
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An equivalent definition of RKHS

Theorem

The Hilbert space H C R* is a RKHS if and only if for any x € X, the
mapping:

F: H —R
f = f(x)

is continuous.
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An equivalent definition of RKHS

Theorem

The Hilbert space H C R* is a RKHS if and only if for any x € X, the
mapping:

F: H —R
f — f(x)

is continuous.

Corollary

Convergence in a RKHS implies pointwise convergence, i.e., if (f;),cn
converges to f in H, then (f, (x)),cy converges to f (x) for any x € X'
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Proof

If H is a RKHS then f — f (x) is continuous
If a rk. K exists, then for any (x,f) € X x H:

[ F(x) | = | {f, Ka)y |
< |I'f ||l Kx || (Cauchy-Schwarz)
1
< | flloe-K (x,%)2
because || Kx [|3, = (Kx, Kx)5, = K (x,x). Therefore f € 1 f (x) € R
is a continuous linear mapping. [

Since F is linear, it is indeed sufficient to show that f — 0 = f(x) — 0.
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Proof (Converse)

If f— f(x) is continuous then H is a RKHS

Conversely, let us assume that for any x € X’ the linear form

f € H — f(x) is continuous.

Then by Riesz representation theorem (general property of Hilbert
spaces) there exists a unique gx € H such that:

F(x) = (. 8x)y -

The function K (x,y) = gx(y) is then a r.k. for H. O
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Unicity of r.k. and RKHS

Theorem
o If H is a RKHS, then it has a unique r.k.

@ Conversely, a function K can be the r.k. of at most one RKHS.
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Unicity of r.k. and RKHS

Theorem
o If H is a RKHS, then it has a unique r.k.

@ Conversely, a function K can be the r.k. of at most one RKHS.

Consequence

This shows that we can talk of "the" kernel of a RKHS, or "the” RKHS
of a kernel.
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Proof

If a r.k. exists then it is unique
Let K and K’ be two r.k. of a RKHS #H. Then for any x € X

H KX - K)ﬁ H%{ = <KX - K)ﬁ’ KX - K)€>7.[
= (Kx — K} Ke)gy — (Kx — KL KL,
= K (x) — K (x) — Kx (x) + Ky (x)
=0.

This shows that Ky = K], as functions, i.e., Kx(y) = K(y) for any
y € X. In other words, K=K'. [
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Proof

If a r.k. exists then it is unique
Let K and K’ be two r.k. of a RKHS #H. Then for any x € X

H KX - K)ﬁ H%{ = <KX - K)ﬁ’ KX - K)€>7.[
= (Kx — K} Ke)gy — (Kx — KL KL,
= K (x) — K (x) — Kx (x) + Ky (x)
=0.

This shows that Ky = K], as functions, i.e., Kx(y) = K(y) for any
y € X. In other words, K=K'. [

The RKHS of a r.k. K is unique

Left as exercise.
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An important result

Theorem
A function K : X x X = R is p.d. if and only if it is a r.k.

Julien Mairal (Inria) 36/564



Proof

A rk. is p.d.
@ A rk. is symmetric because, for any (x,y) € X?:

K(Xay) = <KX? Ky)% = <Ky7 KX>'H = K(y,X) .

@ It is p.d. because for any N € N,(x1,x2,...,xy) € XN, and
(a1,a,...,an) € RN:

N N
Z a,-ajK(x,-,xJ-) = Z ajaj <KX,'a KXJ>H

ij=1 ij=1

N
= > aik II%
i=1

>0. 0O
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Proof

A p.d. kernel is a r.k. (1/4)

o Let Hg be the vector subspace of RY spanned by the functions
{KX}XEX'
e For any f, g € Ho, given by:

m n
F=>Y aKy, &= biKy,
i=1 j=1

let:
(f, 8)p, = Z aibjK (x;,y;) -
ij
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Proof

A p.d. kernel is a r.k. (2/4)

o (f,g)qy, does not depend on the expansion of f and g because:
m n
(F,8)3, = Y aig (xi) = >_ bif (y))-
i=1 j=1

o This also shows that (.,.);, is a symmetric bilinear form.

@ This also shows that for any x € X and f € Hj:

(f, K)oy = f (x) -
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Proof

A p.d. kernel is a r.k. (3/4)

@ K is assumed to be p.d., therefore:
| 13, = Zaaj (xi,%;) > 0.
ij=1

In particular Cauchy-Schwarz is valid with (.,.)q, .
@ By Cauchy-Schwarz we deduce that Vx € X

1
[F ()| = [ (F, Kxdagy | < I Ilao-K (x,%)7

therefore || f ||y, =0 = f =0.
@ Hp is therefore a pre-Hilbert space endowed with the inner product
<.7 .>Ho.
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Proof

A p.d. kernel is a r.k. (4/4)

e For any Cauchy sequence (f,)n>0 in (Ho, (-, '>Ho)' we note that:

V(x,m,n) € X x N2 [ fin (%) = oy (%) | < || Fin — For [l 340K (%, %)2 .

Therefore for any x the sequence (f,(x)),~q is Cauchy in R and has
therefore a limit. N

o If we add to Hg the functions defined as the pointwise limits of
Cauchy sequences, then the space becomes complete and is
therefore a Hilbert space, with K as r.k. (up to a few technicalities,
left as exercise). O
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Application: back to Aronzsajn’s theorem

Theorem (Aronszajn, 1950)

K is a p.d. kernel on the set X if and only if there exists a Hilbert space
H and a mapping
S X —H,

such that, for any x,x" in X:

K (x,x') = (®(x),® (X)), -
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Proof of Aronzsajn’s theorem

Proof

o If Kis p.d. over a set X then it is the r.k. of a Hilbert space
H CRY.
o Let the mapping ® : X — H defined by:

Vx e X, &(x)= K.
@ By the reproducing property we have:

V(x,y) € Xza <¢(X)v¢(Y)>H = <KX> KY>’H =K (X, Y) . O
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QOutline

o Kernels and RKHS

o My first kernels

© Kernel Methods: Supervised Learning
9 Kernel Methods: Unsupervised Learning
@ The Kernel Jungle

e Open Problems and Research Topics
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The linear kernel

Take X = RY and the linear kernel:

K (Xa Y) = <X7y>]Rd :

Theorem
The RKHS of the linear kernel is the set of linear functions of the form

fw (X) = (W,X)ps  for weRY,
endowed with the norm

w2 = [lwl2-
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Proof

@ The RKHS of the linear kernel consists of functions:

X € Rd = f(x) - Zai <xivx>]Rd = <W7X>Rd 5

with w = ). aix;.
@ The RKHS is therefore the set of linear forms endowed with the
following inner product:

<fag>7-LK = <W7V>Rd )

when f (x) = w.x and g (x) = v.x.

Julien Mairal (Inria) 46/564



RKHS of the linear kernel (cont.)

Kiin (%, ") =x"x".
f(x) =w'x,
1l =lwl2.
[If[I=2 - [[fll=1 [IfI=0.5
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The polynomial kernel

We have already mentioned a generalization of the linear kernel: the
polynomial kernel of degree p:

Kpoly (X, y) = (<X, y>Rd + C)p :

Let us find its RKHS for p =2 and ¢ = 0.
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The polynomial kernel

We have already mentioned a generalization of the linear kernel: the
polynomial kernel of degree p:

Kpoly (X, Y) = (<X, y>Rd + C)p .
Let us find its RKHS for p =2 and ¢ = 0.

First step: Look for an inner-product.

K (x,y) = trace (xTy xTy>
= trace (yTx xTy)
= trace (xxTny>
_ T ooT
= <XX »YY >F,

where F is the Froebenius norm for matrices in R9>9.
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The polynomial kernel

Second step: propose a candidate RKHS.
We know that H contains all the functions

Fx) =) aiK(xi,x) = a <x,-x,-T,xxT>F = <Z a,-x,-x,-T,xxT> .

i

Any symmetric matrix in RY*? may be decomposed as I a,-x,-x,-T. Our
candidate RKHS #H will be the set of quadratic functions

fs(x) = <S,xxT>F =x'Sx for Se 899

where S9%9 is the set of symmetric matrices in R¥*9  endowed with
the inner-product (fs,, fs;),, = (S1,S2)f-
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The polynomial kernel

Third step: check that the candidate is a Hilbert space.

This step is trivial in the present case since it is easy to see that H a
Euclidean space. Sometimes, things are not so simple and we need to
prove the completeness explicitly.

Fourth step: check that # is the RKHS.
‘H contains all the functions Ky : t — K(x,t) = <xxT,ttT>F.
Moreover, we have for all fg in H and x in X,

() = (S0 ) = (fs, fyr)yy = (s, Ky O

Remark

All points x in X are mapped to a rank-one matrix xx . Most of points
in 4 do not admit a pre-image.

Exercise: what is the RKHS of the general polynomial kernel?
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Combining kernels

Theorem
o If K1 and K5 are p.d. kernels, then:

K1 + Ko,
KlKQ, and
cKi, for ¢ > 0,

are also p.d. kernels

o If (Kj);~; is a sequence of p.d. kernels that converges pointwisely
to a function K:

! 2 N _ . /
V(x,x)eX, K(x,x)—nILrQOK,(x,x),

then K is also a p.d. kernel.

Proof: left as exercise
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Examples

Theorem

If K is a kernel, then e is a kernel too.
Proof: )
n NI
eK(x,x’) — lim 2 : K(X,X)

n—r+00 4 /!
=
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Quizz : which of the following are p.d. kernels?
o X =(-1,1), K(x,x)= L

1—xx’
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Quizz : which of the following are p.d. kernels?
o X =(-1,1), K(x,x)= L

1—xx’

o X =N, K(x,x)=2t
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Quizz : which of the following are p.d. kernels?
° X:(_171)7 K(val): L

1—xx’

o X =N, K(x,x)=2t
e X=N, K(x,x)=2%
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Quizz : which of the following are p.d. kernels?

o X=(-1,1), K(x,x)= 171xx/

o X =N, K(x,x)=2t

e X=N, K(x,x)=2%

e XY =Ry, K(x,x')=log(1l-+xx')
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Quizz : which of the following are p.d. kernels?
X = (_17 1)7 K(val) = L

1—xx’
X =N, K(x,x)=2t
X =N, K(xx)=2%
X =Ry, K(x,x)=log(l+ xx)
X =R, K(x,x)=exp(—|x—x?
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Quizz : which of the following are p.d. kernels?

o X=(-1,1), K(x,x)= 171xx/

o X =N, K(x,x)=2t

e X=N, K(x,x)=2%

e XY =Ry, K(x,x')=log(1l-+xx')
o XY =R, K(x,x)=exp(—|x—x]?)
e X¥=R, K(x,x')=cos(x+x)
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Quizz : which of the following are p.d. kernels?

o X=(-1,1), K(xx)=11
o X =N, K(x,x)=2t

o X =N, K(x,x)=2¥

e XY=R,;, K(x,X)= Ig(1+xx’)
o XY =R, K(x,x)=exp(—|x—x]?)
e ¥=R, K(x,x')=cos (+x’)

e X¥=R, K(x,x')=cos(x—x)
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Quizz : which of the following are p.d. kernels?

o X=(-1,1), K(x,x)= 171xx/

o X =N, K(x,x)=2t

e X=N, K(x,x)=2%

e XY =Ry, K(x,x')=log(1l-+xx')
o XY =R, K(x,x)=exp(—|x—x]?)
e X¥=R, K(x,x')=cos(x+x)

e X¥=R, K(x,x')=cos(x—x)

e XY =R,;, K(x,x')=min(x,x)
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Quizz : which of the following are p.d. kernels?
X = (_17 1)7 K(val) = L

T—xx
X =N, K(x,x)=2t
X =N, K(xx)=2%
X =Ry, K(x,x)=log(l+ xx)
X =R, K(x,x)=exp(—|x—x?
X =R, K(x,x')=cos(x+x)
X =R, K(x,x')=cos(x—x)
X =Ry, K(x,x')=min(x,x)
X =R;, K(x,x")=max(x,x’)
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Quizz : which of the following are p.d. kernels?
X = (_17 1)7 K(val) = L

T—xx'
o X =N, K(x,x)=2t
e X=N, K(x,x)=2%
e XY =Ry, K(x,x')=log(1l-+xx')
o XY =R, K(x,x)=exp(—|x—x]?)
e X¥=R, K(x,x')=cos(x+x)
e X¥=R, K(x,x')=cos(x—x)
e XY =R,;, K(x,x')=min(x,x)
e XY =Ry, K(x,x')=max(x,x)
o XY =Ry, K(x,x')=min(x,x)/ max(x,x")
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Quizz : which of the following are p.d. kernels?

o X=(-1,1), K(x,x)= 171xx/

o X =N, K(x,x)=2t

e X=N, K(x,x)=2%

e XY =Ry, K(x,x')=log(1l-+xx')
o XY =R, K(x,x)=exp(—|x—x]?)
e X¥=R, K(x,x')=cos(x+x)

e X¥=R, K(x,x')=cos(x—x)

e XY =R,;, K(x,x')=min(x,x)

e XY =Ry, K(x,x')=max(x,x)

o XY =Ry, K(x,x')=min(x,x)/ max(x,x")
e XY=N, K(x,x')=GCD(x,x')
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Quizz : which of the following are p.d. kernels?
X = (_17 1)7 K(val) = L

1—xx’
X =N, K(x,x)=2t
X =N, K(xx)=2%
X =Ry, K(x,x)=log(l+ xx)
X =R, K(x,x)=exp(—|x—x?
X =R, K(x,x')=cos(x+x)

(x,x") = cos (x — x)

X

|
]
5

(x,x’) = min(x,x")

I
]
¥

K
K (x,x") = max(x,x’)

K (x,x") = min(x, x")/ max(x, x")
(x

(

x') = GCD (x,x')
x') = LCM (x,x")

© ©6 6 6 6 06 6 6 0 © ©
=
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2 7=
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Quizz : which of the following are p.d. kernels?
X = (_17 1)7 K(val) = L

T—xx
o X =N, K(x,x)=2t
o X =N, K(x,x)=2¥
e XY =Ry, K(x,x')=log(1l-+xx')
o XY =R, K(x,x)=exp(—|x—x]?)
e X¥=R, K(x,x')=cos(x+x)
e X¥=R, K(x,x')=cos(x—x)
e XY =R,;, K(x,x')=min(x,x)
e XY =Ry, K(x,x')=max(x,x)
o XY =Ry, K(x,x')=min(x,x)/ max(x,x")
e XY=N, K(x,x')=GCD(x,x')
e XY=N, K(x,x')=LCM(x,x)
e XY=N, K(x,x')=GCD(x,x")/LCM (x,x")
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Remember the RKHS of the linear kernel

Kiin (X, X/) =x'x .
f(x) =w'x,
[RAEY =|lwlz.
flI=2  |Ifjl=1 IIf|[=0.5
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Smoothness functional

A simple inequality
@ By Cauchy-Schwarz we have, for any function f € H and any two
points x,x’ € X:
‘f(x)—f(x’) ‘ :|<f,Kx—KX/>H|
Sl x N K = Kl
= || Il x dic (x,X) -
@ The norm of a function in the RKHS controls how fast the function

varies over X with respect to the geometry defined by the kernel
(Lipschitz with constant || f ||3).

Important message

Small norm = slow variations.
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Kernels and RKHS : Summary

@ P.d. kernels can be thought of as inner product after embedding
the data space X in some Hilbert space. As such a p.d. kernel
defines a metric on X.

@ A realization of this embedding is the RKHS, valid without
restriction on the space X nor on the kernel.

@ The RKHS is a space of functions over X. The norm of a function
in the RKHS is related to its degree of smoothness w.r.t. the metric
defined by the kernel on X.

@ We will now see some applications of kernels and RKHS in
statistics, before coming back to the problem of choosing (and
eventually designing) the kernel.
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The kernel trick

@ Choosing a p.d. kernel K on a set X amounts to embedding the
data in a Hilbert space: there exists a Hilbert space H and a
mapping ® : X’ — # such that, for all x,x’ € X,

V(x,x') e X2, K(x,x') = <¢(X)’¢(X/)>H i

@ However this mapping might not be explicitly given, nor convenient
to work with in practice (e.g., large or even infinite dimensions).

@ A solution is to work implicitly in the feature space!

Kernel trick

Any algorithm to process finite-dimensional vectors that can be
expressed only in terms of pairwise inner products can be applied to
potentially infinite-dimensional vectors in the feature space of a p.d.
kernel by replacing each inner product evaluation by a kernel evaluation.
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Kernel trick Summary

Summary
@ The kernel trick is a trivial statement with important applications.

@ It can be used to obtain nonlinear versions of well-known linear
algorithms, e.g., by replacing the classical inner product by a
Gaussian kernel.

@ It can be used to apply classical algorithms to non vectorial data
(e.g., strings, graphs) by again replacing the classical inner product
by a valid kernel for the data.

o It allows in some cases to embed the initial space to a larger feature
space and involve points in the feature space with no pre-image
(e.g., barycenter).
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Example 1: computing distances in the feature space

d(xl,y. PO(x1 .

| T%002)

di (x1,%2)% = || ® (x1) — @ (x2) |13,

= (P (x1) = ®(x2) , P (x1) — P (x2))

= (P (x1), P (x1))y + (P (x2) , P (x2))3 — 2(P (x1), P (x2))
di(x1,%2)? = K(x1,%x1) + K(x2,%2) — 2K(x1,%2)
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Distance for the Gaussian kernel

@ The Gaussian kernel with
bandwidth o on RY is:

2
_lix=yl

Kx,y)=e 27", i

1.2
|

o K(x,x)=1=[®(x) |3, so all
points are on the unit sphere in the
feature space.

d(x.y)
0.8

0.4

0.0
|

@ The distance between the images ' ——
of two points x and y in the feature 4 2 0o 2 4
space is given by: lIx=yl|

dk (x,y) = \/2 [1 - exzay2|2}
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Example 2: distance between a point and a set

Problem
o Let S =(x1, -+ ,x,) be a finite set of points in X

@ How to define and compute the similarity between any point x in X
and the set §?
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Example 2: distance between a point and a set

Problem
o Let S =(x1, - ,X,) be a finite set of points in X.

@ How to define and compute the similarity between any point x in X
and the set §?

A solution
o Map all points to the feature space.

@ Summarize S by the barycenter of the points:
1 n
= - O] i) -
o= ; (x7)

@ Define the distance between x and S by:
di (x,8) = [| ®(x) — |3 .
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Computation

®
—
o
@]
Kernel trick
1 n
dx (x,5) = || ®(x) — ~ > o(xi) I
i=1
2 n 1 n n
= $ K(x,x) — EZK(X7X,-)+ ﬁZZK(X”Xf)'
i=1 i=1 j=1
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Remarks

Remarks

@ The barycentre p only exists in the feature space in general: it does
not necessarily have a pre-image xy such that ® (xy) = p.

@ The distance obtained is a Hilbert metric (e.g., Pythagoras theorem
holds etc..)
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1D illustration

e S={2,3}
e Plot f(x) = d(x,S)
_ (y)? x—y)?
k(x,y) = xy. Ky)=e 58 . k(xy)=e =t
(linear) with o = 1. with ¢ = 0.2.

66/564
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2D illustration

o S={(1,1),(1,2),(2,2)}
e Plot f(x) = d(x,S)

/ """""""""""" ~
2
k(x,y) = xy. k(xy) = e 57
(linear) with o = 1.

Julien Mairal (Inria)

with ¢ = 0.2.
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Application in discrimination

o S ={(1,1),(1,2)} and S, = {(1,3)’,(2,2)"}
e Plot f(x) = d (x,81)% — d (x,52)?

@

N FTNT
~~~~~~~~~ = 5 [

(x—y)? (x—y)?
k (x7 Y) = Xy. k (X, y) frd ei 2G'y2 . k (X7 y) —= ei 2Uy2 .
(linear) with o = 1. with o = 0.2.

Julien Mairal (Inria)
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Example 3: Centering data in the feature space

Problem

o Let S =(x1,---,Xp) be a finite set of points in & endowed with a
p.d. kernel K. Let K be their n x n Gram matrix:
[Klj = K (xi %)) -

o Let p=1/n>"" ; ®(x;) their barycenter, and u; = ® (x;) — p for
i=1,...,n be centered data in H.

@ How to compute the centered Gram matrix [K¢]; ; = (uj, uj>H?

()
— F
o B
>y
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Computation

Kernel trick
@ A direct computation gives, for 0 < /,j < n:

Kij = (P (xi) — p, (X)) — )y
= (®(x;), (Xj)> —(u,®(x;) + ¢ (xj)> + (1, 1) gy

Z(K,k-FKJk)-i-* Z K-

k,I=1

@ This can be rewritten in matricial form:
=K-UK-KU+UKU=(I-U)K(I-U),

where U;; =1/nfor 1 <i,j < n.
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Part 2

Kernel Methods

Supervised Learning
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Back to classifying cats and dogs

Regularized empirical risk formulation

The goal is to learn a prediction function f : X — ) given labeled
training data (x; € X,y; € V)i=1,.n

1 n
in =S L(y;, f(x; AQ(F
mp 52 L fs) + 30()

m
R

_ regularization

empirical risk, data fit
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Back to classifying cats and dogs

Regularized empirical risk formulation
The goal is to learn a prediction function f : X — ) given labeled
training data (x; € X,y; € V)i=1,.n

feF n ——

regularization

min EZL(yi, f(x;)) + AQ(f)
i=1

empirical risk, data fit

A simple parametrization when X = RP and ) = {—1, +1}.
o F = {fy:w € RP} where the f,'s are linear: f : x — x"w.

@ The regularization is the simple Euclidean norm Q(f,) = |w||3.
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Back to classifying cats and dogs

Regularized empirical risk formulation

The goal is to learn a prediction function f : X — ) given labeled
training data (x; € X,y; € V)i=1...n

L(yi, f(x/) AQ(f
rfT"]:'IJD: nZ yi RE—Z

regularization

empirical risk, data fit

A simple parametrization when X = RP and ) = {—1, +1}.

This is equivalent to using a linear kernel K(x,x') = x"x’.

In that case, F is the Hilbert space  of linear functions f, : x — x'w
and Q(f) = [[fullF, = Iwlf3-
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Back to classifying cats and dogs

Regularized empirical risk formulation
The goal is to learn a prediction function f : X — ) given labeled
training data (x; € X,y; € V)i=1,.n

1 n
in =S L(y;, f(x; \Q(F
min ”,-5_1 (yi, f(xi)) + (f)

regularization

empirical risk, data fit

What are the new perspectives with kernel methods?
@ being able to deal with non-linear functional spaces endowed with a
natural regularization function |.||3,.
@ being able to deal with non-vectorial data (graphs, trees).
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Motivations

Two theoretical results underpin a family of powerful algorithms for data
analysis using positive definite kernels, collectively known as kernel
methods:

@ The kernel trick, based on the representation of p.d. kernels as
inner products,

@ the representer theorem, based on some properties of the
regularization functional defined by the RKHS norm.

An important property

When needed, the RKHS norm acts as a natural regularization function
that penalizes variations of functions.
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@ The representer theorem
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Back to classifying cats and dogs

Regularized empirical risk formulation with kernels

The goal is to learn a prediction function f : X — ) given labeled
training data (x; € X,y; € V)i=1,.n

1 n
[ - L f7f i Allf 5 : 1
min ;—1 (yi, f(xi)) +  Allfll3 (1)

regularization

empirical risk, data fit

Question: how to solve the above minimization problem?

@ A simple theorem, called “representer theorem” can turn (1) into a
concrete optimization problem in R".
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The Theorem

Representer Theorem

o Let X be a set endowed with a p.d. kernel K, Hk the corresponding
RKHS, and § = {x1, -+ ,x,} C X a finite set of points in X.

o Let W :R™! 5 R be a function of n+ 1 variables, strictly
increasing with respect to the last variable.

@ Then, any solution to the optimization problem:

frg;{nK\U(f(xl)a"' ,f(Xn),H f”HK) ) (2)

admits a representation of the form:

VxEX, f(x)=) aiK(xix). (3)
i=1
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Proof (1/2)
o Let £(f,S) be the functional that is minimized in the statement of

the representer theorem, and ’H‘f( the linear span in Hy of the
vectors K, i.e.,

’HS:{fEHK f(x ZaK xi,x), (a1, -,an)ER"}.

° Hﬁ finite-dimensional subspace, therefore any function f € Hy can
be uniquely decomposed as:

f="fs+f,

with fs € ’H‘f( and f| L ’Hﬁ (by orthogonal projection).
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Proof (2/2)
o Hy being a RKHS it holds that:
Vi=1,---,n,  fL(x;)=(fL,K(xi,.))n. =0,
because K (x;,.) € Hk, therefore:
Vi=1,---,n,  f(x;)="s(x;).
o Pythagoras’ theorem in Hy then shows that:
1 130, = Il 5 30, + 11 £ 113, -

@ As a consequence, & (f,S) > £(fs,S) , with equality if and only if
| L |l#, = 0. The minimum of W is therefore necessarily in H3.
[
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Remarks

Practical and theoretical consequences
Often the function W has the form:

V() F (%) [ Flla) = € (F(xa) -5 £ (xn)) + A2 )

where ¢(.) measures the “fit" of f to a given problem (regression,
classification, dimension reduction, ...) and € is strictly increasing. This
formulation has two important consequences:

@ Theoretically, the minimization will enforce the norm || f ||4, to be
“small”, which can be beneficial by ensuring a sufficient level of
smoothness for the solution (regularization effect).

@ Practically, we know by the representer theorem that the solution
lives in a subspace of dimension n, which can lead to efficient
algorithms although the RKHS itself can be of infinite dimension.
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Remarks

Dual interpretations of kernel methods
Most kernel methods have two complementary interpretations:
@ A geometric interpretation in the feature space, thanks to the kernel

trick. Even when the feature space is “large”, most kernel methods
work in the linear span of the embeddings of the points available.

@ A functional interpretation, often as an optimization problem over
(subsets of) the RKHS associated to the kernel.

The representer theorem has important consequences, but it is in fact
rather trivial. We are looking for a function f in H such that for all x
in X, f(x) = (Kx, f),. The part f* that is orthogonal to the Ky,'s is
thus “useless” to explain the training data.
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Regression

Setup
o Let S ={x1,...,Xp} € X" be a set of points
o Lety={y1,...,¥n} € R" be real numbers attached to the points
@ Regression = find a function f : X — R to predict y by f (x)

4

3

2
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Least-square regression

o Let us quantify the error if f predicts f (x) instead of y by:

2
L(f(x),y)=(y—f(x)".
@ Fix a set of functions H.
@ least-square regression amounts to solving:

n

R 1 5
f € argmin— vi—f(xj)).
gming 32 0= £ )

@ Issues: unstable (especially in large dimensions), overfitting if H is
too “large”.
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Regularized least-square

@ Let us consider a RKHS H, RKHS associated to a p.d. kernel K
on X.

@ Let us regularize the functional to be minimized by:

. 1w )
f = argmin— yi— F(xi))*+ M| 2.
gmint 30— F () + 3111

o Ist effect = prevent overfitting by penalizing non-smooth functions.
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Representation of the solution

@ By the representer theorem, any solution of:

?—argmm— yi—F(xi)) + Al f 2 .
g mi ,Z( 0?4 Al 13,

can be expanded as:
n
= Z a,-K (X,', X)
i=1

o 2nd effect = simplifying the solution.
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Dual formulation

o Let a = (aq,...,a,) €R”,
o Let K be the n x n Gram matrix: K;; = K (x;,x;) .

@ We can then write:

N N T
(Foxa)or s (xn) =Ka,
@ The following holds as usual:

I ?H%K = a' Ka.
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Dual formulation
@ The problem is therefore equivalent to:

1
argmin— (Ka —y)' (Ka —y) + AaKea.
aeRrn N

@ This is a convex and differentiable function of c. Its minimum can
therefore be found by setting the gradient in a to zero:

2
0="K(Ka—y) +2\Ka

=K[(K+Anl)a —y].
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Dual formulation

o K being a symmetric matrix, it can be diagonalized in an
orthonormal basis and Ker(K) L Im(K).

o In this basis we see that (K + Anl) ! leaves Im(K) and Ker(K)
invariant.

@ The problem is therefore equivalent to:

(K+ Anl)a —y € Ker(K)
sa— (K+Anl)ty e Ker(K)
sa = (K+Anl)ly+ e with Ke =0.
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Kernel ridge regression

o However, if &' = o + € with Ke = 0, then:
If =3 = (a-a) K(a—a)=0,

therefore f = f'.

@ One solution to the initial problem is therefore:

n

?: Z(,Y,‘K(X,‘,X)7

i=1

with
a=(K+nl)lty.
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Remarks

e The matrix (K + nAl)™! is invertible when A > 0.

@ When A — 0, the method converges towards the solution of the
classical unregularized least-square solution. When A\ — oo, the
solution converges to f = 0.

@ In practice the symmetric matrix K + nAl is inverted with specific
algorithms (e.g., Cholevsky decomposition).

@ This method becomes difficult to use when the number of points
becomes large.
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Example
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Kernel methods: Summary

@ The kernel trick allows to extend many linear algorithms to
non-linear settings and to general data (even non-vectorial).

@ The representer theorem shows that that functional optimization
over (subsets of) the RKHS is feasible in practice.

@ We will see next a particularly successful applications of kernel
methods, pattern recognition.
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Pattern recognition

APPLE

@ Input variables x € X.
@ Outputy € {—1,1}.
e Training set S = {(x1,¥1),.--,(Xn,¥n)}-

94/564
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Or again the cats and dogs example...

Regularized empirical risk formulation

The goal is to learn a prediction function f : X — ) given labeled
training data (x; € X,y; € V)i=1,.n

feF

m
R

RS
min n;L(Yhf(xi)) + Q)

_ regularization

empirical risk, data fit
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...which we may reformulate with kernels

Regularized empirical risk formulation

The goal is to learn a prediction function f : X — ) given labeled
training data (x; € X,y; € V)i=1,.n

feH N——

regularization

1 n
in  — if (x; f||2
iy 5 2o eifa) + A7

empirical risk, data fit

By the representer theorem, the solution of the unconstrained problem
can be expanded as:

n

f(x)= Z(X,’K(X,‘,X).

i=1
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Optimization in RKHS

@ Plugging into the original problem we obtain the following
unconstrained and convex optimization problem in R":

1 n n n
i - i iK iy Rj A i K iy Rj
min n;‘ﬂ y ;O‘J (xi,%j) | + Z i K (xi, X))

QER?
ij=1

@ which in matrix notation gives

1 < T
in - [Kal; Kab,.
o@&ﬂ{ngw(w[ al;) + Ao a},

@ This can be implemented using general packages for convex
optimization or specific algorithms (e.g., for SVM).
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Loss function examples

<o
o™
o
« = 1-SVM
o — 2-SVM
o —— Logistic
E w | —— Boosting

e
v
o
<
° T T T T I

-2 -1 0 1 2

u
Method o(u)
Kernel logistic regression log (1+e7Y)

Support vector machine (1-SVM) | max (1 — u,0)
Support vector machine (2-SVM) | max (1 — u, 0)?
Boosting e Y
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Formalization

Definition of the risk and notation
@ Let P be an (unknown) distribution on X' x ).

o Observation: S = (X, Y;j);_; ., i-i.d. random variables according

n

to P.

@ Loss function L(f (x),y) € R small when f (x) is a good predictor
for y.

e Risk: R(f) =E[L(f (X),Y)].

@ Estimator lA‘,, X = ).

@ Goal: small risk R (f‘,,)
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Large-margin classifiers

Definition of the margin
e For pattern recognition ) = {—1,1}.
@ The goal is to estimate a prediction function  : X — R.

@ The margin of the function f for a pair (x,y) is:

yf(x).

Large margin classifiers

e Focusing on large margins ensures that f (x) has the same sign as 'y
and a large absolute value (confidence).

@ Suggests a loss function L (f (x),y) = ¢ (yf (x)), where ¢ : R - R
is non-increasing.

e Goal: small p-risk R,(f) = E[p (Yf (X))].



Empirical risk minimization (ERM)

ERM estimator

@ Given n observations, the empirical @-risk is:

RIF) = = 3" 0 (Yif (X))
i=1

@ The ERM estimator on the functional class F is the solution (when
it exists) of:
fn = argminR;(f).
feF
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Empirical risk minimization (ERM)

ERM estimator

@ Given n observations, the empirical @-risk is:

RIF) = = 3" 0 (Yif (X))
i=1

@ The ERM estimator on the functional class F is the solution (when
it exists) of:

fn = arg minR7(f).
feF

Question
When is R(f) a good estimate of the true risk R,(f)?
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Class capacity

Motivations

@ The ERM principle gives a good solution if R} (f‘n) is similar to the
minimum achievable risk infscx R ().
@ This can be ensured if F is not “too large".

@ We need a measure of the “capacity” of F.

Definition: Rademacher complexity
The Rademacher complexity of a class of functions F is:

gZa,-f(x,-)

Rad,, (]:) :]EX’J N
i=1

sup
feF

where the expectation is over (X;),_; , and the independent uniform
{#£1}-valued (Rademacher) random variables (o)

i=1,...,n"
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Basic learning bounds

@ Suppose ¢ is Lipschitz with constant L:
Vu,u' €R,  |p(u) — ()| < Ly |u—1d|.

@ Then on average over the training set (and with high probability)
the -risk of the ERM estimator is closed to the empirical one:

Es [sup |R, () — R} (f)\} <2L,Rad, (F) .
feFr

@ The ¢-risk of the ERM estimator is also close to the smallest
achievable on F (on average and with large probability):

S .
EsR, (1) < jnf Ru(f) + 4L,Rads (F)
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ERM in RKHS balls

Principle
@ Assume X is endowed with a p.d. kernel.

@ We consider the ball of radius B in the RKHS as function class for
the ERM:
Fg={feH : |fln<B}.

Theorem (capacity control of RKHS balls)

Rad, (Fg) < 22VEKX, X)
n = \/ﬁ .
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Proof (1/2)

Rad, (Fg) =Ex,, | sup

n

23 0if (X))

f€]:B n i=1
E sup | ( f,— 2 i K (RKHS)
= o b Ji i
X f€.7:B n i=1 %

(Cauchy-Schwarz)

=Ex,o BH - ZU:’KX; [EM
L i=1

2B .
= Exo |4/l > aiKx 113,
2B
< — Ex,o Z oioiK (Xi,X;)| (Jensen)
_I_j 1
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Proof (2/2)

But E; [0joj] is 1 if i = j, O otherwise. Therefore:

n
Ex | Y Eolojoi] K (X, X;)

\ ij=1
\

Rad (.FB S

3‘00

| /\

B n
— | E iy Xi
. x;K(X Xi)
2B\/ExK(X,X)
= . g
Vn
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Basic learning bounds in RKHS balls

Corollary
@ Suppose K(X, X) < k? a.s. (e.g., Gaussian kernel and x = 1).

@ Let the minimum possible -risk:

R:= inf R,(f).

® f measurable

@ Then we directly get for the ERM estimator in Fpg:

- « _ 8L,kB _ .
ER, (f) - R} < =t L.Gn;B R.(f) - RW] .
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Choice of B by structural risk minimization

Remark

@ The estimation error upper bound 8L,xB/+/n increases (linearly)
with B.

@ The approximation error [inffe;B Ry (f) — R;] decreases with B.

o ldeally, the choice of B should find a trade-off that minimizes the
upper bound.

@ This is achieved when

Dinfrery Ro(f)  8Lyr

0B NG
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ERM in practice

Reformulation as penalized minimization

@ We must solve the constrained minimization problem:

{minf.g% % 27:1 ® (Yif (xi))

subject to || f |y < B.

@ This is a constrained optimization problem.
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ERM in practice

Reformulation as penalized minimization

@ We must solve the constrained minimization problem:

{minfGH % 27:1 ® (Yif (X,‘))

subject to || f || < B.

@ This is a constrained optimization problem.
@ To make this practical we assume that ¢ is convex.

@ The problem is then a convex problem in f for which strong duality
holds. In particular f solves the problem if and only if it solves for
some dual parameter A the unconstrained problem:

i , AFIZ Y.
pg?g{ Zcpy )+ Al HH}
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A few slides on convex duality

Strong Duality

\ f (a/),primal
N : o /

e Strong duality means that max, g(k) = ming (@)

@ Strong duality holds in most “reasonable cases” for convex
optimization (to be detailed soon).
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A few slides on convex duality

Strong Duality

f(a), primal

\ .

N : g '

g(k), dual

@ The relation between k* and a* is not always known a priori.
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A few slides on convex duality

Parenthesis on duality gaps

\

N

f(e), primal

g(k), dual
e The duality gap guarantees us that 0 < f(&) — f(a*) < (&, /).

@ Dual problems are often obtained by Lagrangian or Fenchel duality.
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A few slides on Lagrangian duality

Setting

@ We consider an equality and inequality constrained optimization
problem over a variable x € X:

minimize f(x)
subject to  hj(x) =0,
g(x) <0, j=
making no assumption of f, g and h.

o Let us denote by f* the optimal value of the decision function
under the constraints, i.e., f* = f (x*) if the minimum is reached at
a global minimum x*.
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A few slides on Lagrangian duality

Lagrangian
The Lagrangian of this problem is the function L : X x R™ x R" — R
defined by:

m

L0 A p) = F()+ > Nihi () + > gi(x) -
j=1

i=1

Lagrangian dual function
The Lagrange dual function g : R” x R"” — R is:
A, i) = inf L(x, A
(A, p) = inf L(x, 2, 1)

m

= inf [ F()+ D Nihi () + ) wigi(x)
j=1

i=1
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A few slides on convex Lagrangian duality

For the (primal) problem:
minimize f(x)
subjectto h(x) =0, g(x)<0,
the Lagrange dual problem is:
maximize q(\, )
subjectto pu >0,

Proposition
@ g is concave in (A, i), even if the original problem is not convex.

@ The dual function yields lower bounds on the optimal value f* of
the original problem when p is nonnegative:

g\, p) <f*, VAeR"VueR ,u>0.
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Proofs
@ For each x, the function (A, u) — L(x, A\, u) is linear, and therefore

both convex and concave in (\, it). The pointwise minimum of
concave functions is concave, therefore g is concave.

@ Let X be any feasible point, i.e., h(x) =0 and g(x) < 0. Then we
have, for any A and p > O:

D o Aihi(x)+ ) pigi(x) <0,
i=1 i=1

— L(x, A\, pu) = f(x +Z>\h(x +Zﬂlglx)<f()

= g\ p) =infL(x,\, pn) < L(x,\,p) <f(x), Vx. O
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Weak duality

o Let d* the optimal value of the Lagrange dual problem. Each
g(A, 1) is an lower bound for £* and by definition d* is the best
lower bound that is obtained. The following weak duality inequality
therefore always hold:

dr < f*.

@ This inequality holds when d* or f* are infinite. The difference
d* — f* is called the optimal duality gap of the original problem.
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Strong duality

o We say that strong duality holds if the optimal duality gap is zero,
i.e.:

d*=f*.

@ If strong duality holds, then the best lower bound that can be
obtained from the Lagrange dual function is tight

@ Strong duality does not hold for general nonlinear problems.
o It usually holds for convex problems.

o Conditions that ensure strong duality for convex problems are called
constraint qualification.

@ in that case, we have for all feasible primal and dual points x, A, p,

q(A, 1) < q(A", p*) = L A%, ) = F(x7) < F(x).
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Slater's constraint qualification

Strong duality holds for a convex problem:

minimize f(x)
subject to gj(x) <0, j=1,...,r,
Ax=b,

if it is strictly feasible, i.e., there exists at least one feasible point that
satisfies:
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Remarks

o Slater's conditions also ensure that the maximum d* (if > —o0) is
attained, i.e., there exists a point (\*, u*) with

@ They can be sharpened. For example, strict feasibility is not
required for affine constraints.

@ There exist many other types of constraint qualifications
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Dual optimal pairs

Suppose that strong duality holds, x* is primal optimal, (A*, ©*) is dual
optimal. Then we have:

F(x*) = q (A", ")

x€ER"

= inf < F(x)+ Y Nrhi(x) + D igi(x)
i=1 Jj=1

m r

SF(X) + DY Ahi(x) + > prgi(x*)
i=1 j=1

< f(x¥)

Hence both inequalities are in fact equalities.
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Complimentary slackness

The first equality shows that:
O, X%, w7) = inf L(x, A% 07)

showing that x* minimizes the Lagrangian at (\*, u*). The second
equality shows that:

wigi(x*)=0, j=1,...,r.

This property is called complementary slackness:
the ith optimal Lagrange multiplier is zero unless the ith constraint is
active at the optimum.
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Motivations

Support vector machines (SVM)

@ Historically the first “kernel method” for pattern recognition, still
the most popular.

Often state-of-the-art in performance.

One particular choice of loss function (hinge loss).

o Leads to a sparse solution, i.e., not all points are involved in the
decomposition (compression).

e Particular algorithm for fast optimization (decomposition by
chunking methods).
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Definitions

1(f(x),y)

yi(x)

@ The loss function is the hinge loss:

0 ifu>1,

1—u otherwise.

@hinge(u) = max(l — u70) = {

@ SVM solve the problem:

;nEI?Q{ Zsoh.nge yif )+)\Hf||H} -
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Problem reformulation (1/3)

Slack variables
@ This is a convex optimization problem

@ However the objective function in not differentiable, so we
reformulate the problem with additional slack variables

£1,...,& ER:

1 n
i =Y G
min {ni_1£+ I HH},

fer,Ecrn

subject to:
§i > Phinge (Yif (xi)) -
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Problem reformulation (2/3)

The objective function is now differentiable in f and &;, and we can
rewrite the constraints as a conjunction of linear constraints:

, 1
min  —
feM,Ecrn N

n
D GHANIE,
i=1
subject to:

&>1—yif(x;)), fori=1,...,n,
& >0, fori=1,...,n.
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Problem reformulation (3/3)

Finite-dimensional expansion

Replacing f by

n

IA‘(x) = Za,—K(x;,x) ,

i=1
the problem can be rewritten as an optimization problem in « and &:

min &+ Na'Ka,
aeRnéeR"”Z I

subject to:

y,Z" ajK (xj,xj))+&—1>0, fori=1,...,n,
& >0, fori=1,...,n
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Problem reformulation (3/3)

Finite-dimensional expansion

Replacing f by

n

IA‘(x) = Za,—K(x;,x) ,

i=1
the problem can be rewritten as an optimization problem in « and &:

min &+ Na'Ka,
aeRnéeR"”Z I

subject to:

yil[Ka]i+&—-1>0, fori=1,...,n,
§ >0, fori=1,...,n

Julien Mairal (Inria) 129/564



Solving the problem

Remarks

@ This is a classical quadratic program (minimization of a convex
quadratic function with linear constraints) for which any
out-of-the-box optimization package can be used.

@ The dimension of the problem and the number of constraints,
however, are 2n where n is the number of points. General-purpose
QP solvers will have difficulties when n exceeds a few thousands.

@ Solving the dual of this problem (also a QP) will be more
convenient and lead to faster algorithms (due to the sparsity of the
final solution).
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Lagrangian

@ Let us introduce the Lagrange multipliers g € R” and v € R".
@ The Lagrangian of the problem is:

1 n
L(O’,,é,[,l/,l/) = EZ&"‘)\QTKO’,
i=1
n

= pilyilKali+& -1 - g,
i=1

i=1
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Lagrangian

@ Let us introduce the Lagrange multipliers g € R” and v € R".
@ The Lagrangian of the problem is:

1 n
L(O’,,é,[,l/,l/) = EZ&"‘)\QTKQ
i=1

— (diag (y)p) 'Ka — (p+v) €+ p'1.
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Minimizing L (o, &, p, V) w.rt. o

o L(a,&, p,v) is a convex quadratic function in a. It is minimized
when its gradient is null:

Val =2 \Ka — Kdiag (y)p = K(2 \a — diag (y)u) ,
@ Solving VoL = 0 leads to

_ diag(y)p
o = 2\ + €,
with Ke = 0. But € does not change f (same as kernel ridge
regression), so we can choose for example € = 0 and:

aj-‘(p,,u):yél)fi./ fori=1,...,n.
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Minimizing L (o, &, p,v) w.r.t. €
o L(a,&, p,v) is a linear function in &.

@ Its minimum is —oco except when V£L =0, ie:

oL _1_
86,_,7 /‘LI I — M-
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Dual function

o We therefore obtain the Lagrange dual function:

q(p,v)= inf L(a,§ p,v)
aeR",EcRn
_ i = s e Yy K (xi %)) if i+ vy = forall
—00 otherwise.

@ The dual problem is:

maximize q(u,v)
subjectto p>0,vr>0.
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Dual problem

@ If u;j > 1/n for some i, then there is no v; > 0 such that
wi+vi =1/n, hence q (p,v) = —

@ If 0 < p; <1/nfor all i, then the dual function takes finite values
that depend only on p by taking v; =1/n — p;.

@ The dual problem is therefore equivalent to:

max Zu, 4A2yyjuuj (xi%7) -

0<p<1
H<1/n% =1
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Back to the primal

@ Once the dual problem is solved in p we get a solution of the
primal problem by a = diag (y)u/2\.

@ We can therefore directly plug this into the dual problem to obtain
the QP that @ must solve:

max 2Za,y, Z ajoK (xj,xj) = 2a'y — a'Kaer,
i=1 i,j=1

subject to:

1
Ogy;aigﬁ, fori=1,...,n
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Complimentary slackness conditions

@ The complimentary slackness conditions are, for i = 1,...,n:
pi lyif (xi) + & — 1] =0,
Vigl' = 07

@ In terms of « this can be rewritten as:

ai[yif (x;) +& —1] =0,
(o7~ )& =0
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Analysis of KKT conditions

{a,- [yif (xi) +& —1] =0,
(o1 = ) & = 0.

o If a; =0, then the second constraint is active: & = 0. This implies
y,-f(x,-) Z 1.

o If 0 <yja; < 2/\% then both constraints are active: & = 0 et
yif (x;) +& —1=0. This implies y;f (x;) = 1.

o If o = 5, then the second constraint is not active (& > 0) while
the first one is active: y;f (x;) + & = 1. This implies y;f (x;) <1
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Geometric interpretation
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Geometric interpretation
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o e
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Geometric interpretation
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Support vectors

Consequence of KKT conditions
@ The training points with o; 7 0 are called support vectors.

@ Only support vectors are important for the classification of new
points:

VXEX, f(x):ZO(,'K(X,'./X): Z(X,‘K(X,‘,X),
i=1

where SV is the set of support vectors.

Consequences

@ The solution is sparse in «, leading to fast algorithms for training
(use of decomposition methods).

@ The classification of a new point only involves kernel evaluations
with support vectors (fast).
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Remark: C-SVM

o Often the SVM optimization problem is written in terms of a
regularization parameter C instead of A as follows:

arg mlan fl3 + CZ Lhinge (f (xi),¥i) -
i=1

@ This is equivalent to our formulation with C = ﬁ

@ The SVM optimization problem is then:
max QZa,y, Z aja; K (xj,Xj) ,
i=1 i,j=1

subject to:
0<ya;<C, fori=1,...,n

@ This formulation is often called C-SVM.

Julien Mairal (Inria)
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Remark: 2-SVM

@ A variant of the SVM, sometimes called 2-SVM, is obtained by
replacing the hinge loss by the square hinge loss:

RS
i 23 s 0 P+ 1}
i=1

feH

o After some computation (left as exercice) we find that the dual
problem of the 2-SVM is:

max 2a'y —a' (K+n\) e,
QR

subject to:
0<yja;, fori=1,...,n.

@ This is therefore equivalent to the previous SVM with the kernel
K+ nAl and C = +o0

Julien Mairal (Inria)
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The K-means algorithm
K-means is probably the most popular algorithm for clustering.

Optimization point of view
Given data points X1, ..., X, in RP, it consists of performing alternate
minimization steps for optimizing the following cost function

s Wis s Z”x' b
sie{l,...,k}, for i=1 on!

K-means alternates between two steps:

1 cluster assignment:
Given fixed pq,..., @y, assign each x; to its closest centroid

Vi, s; € argmin ||x; —us||%.
se{l,...,k}
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The K-means algorithm
K-means is probably the most popular algorithm for clustering.

Optimization point of view
Given data points X1, ..., X, in RP, it consists of performing alternate
minimization steps for optimizing the following cost function

n
i 2
min E x: — . |I2.
HyEeRP for j=1,..k “— Ixi = kg, 12

sie{l,...,k}, for i=1,...,n

K-means alternates between two steps:

2 centroids update:
Given the previous assignments si,...,s,, update the centroids

Yis = argmin > lxi — 3.

f:S,'Zj
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The K-means algorithm
K-means is probably the most popular algorithm for clustering.

Optimization point of view
Given data points X1, ..., X, in RP, it consists of performing alternate
minimization steps for optimizing the following cost function

n
i 2
min E x: — . |I2.
HyEeRP for j=1,..k “— Ixi = kg, 12

sie{l,...,k}, for i=1,...,n

K-means alternates between two steps:

2 centroids update:

Given the previous assignments si,...,s,, update the centroids
. 1
SV, M= n—J .Z.x;.
isi=j
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Kernel K-means and spectral clustering

We may now modify the objective to operate in a RKHS. Given data
points X1,...,X, in X and a p.d. kernel K : X x X — R with H its
RKHS, the new objective becomes

2
e sk lew — B, [|5-
sie{l,...,k} for i=1,...,n

To optimize the cost function, we will first use the following Proposition
Proposition

The center of mass ¢, = %Z, 1 ¢(x;) solves the following optimization
problem

2
min .
MGIH E llo(xi) — w3
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Kernel K-means and spectral clustering

Proof

3" el
i=1

= *leso

= *leso

which is minimum for p = @p,.

1 n
—plf =5 2 el —

2 n

<n2¢(xf),u> + [l 13,
i=1 H

M3 — 2 {n, m)gy + ll12ll3;

2 2
W3 — lenllF + llon — wllz,
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Kernel K-means and spectral clustering
Back with the objective,

: 2
min_ leso = 11l

KeM for j=L1,
sie{l,....k} for i= 1

we know that given assignments s;, the optimal p; are the centers of
mass of the respective clusters and we obtain the equivalent objective:

2
n

s,e?l]in } Z (x;) |C | Z ex)|

for i=1,. JEG; H

or, after short calculations,

. 2 1
sfg)r[?l.r.]' k} Iz_:K(X,',X,') - ‘Cs,.‘ ' K(X,‘,Xj) + ’CS.P Z Z K(Xj,X/).
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Kernel K-means and spectral clustering

and, after removing the constant terms, we obtain the objective

Z K(xi,x;), (%)

JECS

n

s,E{l,n,k} Z

for i=1,...,n

s,l

The objective can be expressed with pairwise kernel comparisons.
Unfortunately, the problem is hard and we need an appropriate strategy
to obtain an approximate solution.

Greedy approach: kernel K-means
At every iteration,
o Update the sets C;, I = 1,..., k given current assignments s;'s
e Update the assignments by minimizing (%) keeping the sets C; fixed.

The algorithm is similar to the traditional K-means algorithm.
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Kernel K-means and spectral clustering

Another approach consists of relaxing the non-convex problem with a

feasible one, which yields a class of algorithms called spectral clustering.
First, we rewrite the objective function as

s,e{l,l,k} Z Z K(xi, %))

for i= 1= 1I,j€C

and we introduce

o the binary matrix A in {0,1}"*k such that [A]; =1 if s; = j and 0
otherwise.

o a diagonal matrix D in R’/ with diagonal entries [D];; equal to the
inverse of the number of elements in cluster j.

and the objective can be rewritten (proof is easy and left as an exercise)

miS — trace (D/2ATKAD?/?)

)

Julien Mairal (Inria) 150/564



Kernel K-means and spectral clustering

min |— trace (DY2ATKAD/?)| .

AD

The constraints on A, D are such that DY/2AT ADY/? = | (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = ADY/2:

max trace (Z'KZ) st. Z'Z=1.
ZeRnxk

A solution Z* to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.
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Kernel K-means and spectral clustering

min |— trace (DY2ATKAD/?)| .

AD

The constraints on A, D are such that DY/2AT ADY/? = | (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = ADY/2:

max trace (Z'KZ) st. Z'Z=1.
ZeRnxk

A solution Z* to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.

Question

How do we obtain an approximate solution (A, D) of the original
problem from Z*?

Julien Mairal (Inria) 151/564



Kernel K-means and spectral clustering

min |— trace (DY2ATKAD/?)| .

AD

The constraints on A, D are such that DY/2AT ADY/? = | (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = ADY/2:

max trace (Z'KZ) st. Z'Z=1.
ZeRnxk

A solution Z* to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.

Answer 1

With the original constraints on A, every row of A has a single non-zero
entry = compute the maximum entry of every row of Z*.
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Kernel K-means and spectral clustering

min |— trace (DY2ATKAD/?)| .

AD

The constraints on A, D are such that DY/2AT ADY/? = | (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = ADY/2:

max trace (Z'KZ) st. Z'Z=1.
ZeRnxk

A solution Z* to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.
Answer 2

Normalize the rows of Z* to have unit £2-norm, and apply the traditional
K-means algorithm on the rows. This is called spectral clustering.
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Kernel K-means and spectral clustering

min — trace (DY2ATKADY/?)| .

i

The constraints on A, D are such that DY/2AT ADY/? = | (exercise). A
natural relaxation consists of dropping the constraints on A and instead
optimize over Z = ADY/2:

max trace (Z'KZ) st. Z'Z=1.
ZeRnxk

A solution Z* to this problem may be obtained by computing the
eigenvectors of K associated to the k-largest eigenvalues. As we will see
in a few slides, this procedure is related to the kernel PCA algorithm.

Answer 3
Choose another variant of the previous procedures.
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© Kernel Methods: Supervised Learning

© Kernel Methods: Unsupervised Learning

@ Kernel PCA

@ The Kernel Jungle

e Open Problems and Research Topics

Julien Mairal (Inria)

152/564



Principal Component Analysis (PCA)

Classical setting
o Let S = {x1,...,x,} be a set of vectors (x; € RY)

o PCA is a classical algorithm in multivariate statistics to define a set
of orthogonal directions that capture the maximum variance

@ Applications: low-dimensional representation of high-dimensional
points, visualization
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Principal Component Analysis (PCA)

Formalization
@ Assume that the data are centered (otherwise center them as

preprocessing), i.e.:
n
ZX,’ =0.
i=1

@ The orthogonal projection onto a direction w € R is the function
hy : X — R defined by:
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Principal Component Analysis (PCA)

Formalization

@ The empirical variance captured by hy, is:
T 2
1

var (hw) = %Z hw (x/)? = 1 Z (x;
i=1

w)

n 2wl
@ The i-th principal direction w; (i =1,...,d) is defined by:

w; = argmax var (hy).
WL{Wl,...,W,',l}
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Principal Component Analysis (PCA)

Solution

@ Let X be the n x d data matrix whose rows are the vectors
X1, ...,Xn. We can then write:

1 Z": (x7w)® 1w XTXw

Iw[2 n w'w

i=1
@ The solutions of:
1w X Xw

w; = argmax — —
wl{wy,...,wi_}1 W W

are the successive eigenvectors of K = XX, ranked by decreasing
eigenvalues.
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Functional point of view

o Let K(x,y) = x"y be the linear kernel.
@ The associated RKHS H is the set of linear functions:

fu(x) =w'x,

endowed with the norm || fy || = || W ||ga-

@ Therefore we can write:

s C1E (w1 2
B (he) =2 2 T = AP 2 O

i=1

@ Moreover, w L w' < £, L f.

Julien Mairal (Inria) 157 /564



Functional point of view

@ In other words, PCA solves, for i =1,...,d:

1 n
fi= argmax ——— f(x;)2.
u{fl,...,f,-,l}”H f° ;

e We can apply the representer theorem (exercise: check that is is
also valid in a linear subspace): for i =1,...,d, we have:

n
VxeX, fi(x) = aiiK(x,x),
j=1

with a; = (a,-,l, 3000 Oz,'yn)T € R".
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Functional point of view

@ Therefore we have:

d

[RAEES Z o kai K (xk, %)) = o Key;,
k=1

o Similarly:
n

Z fi (xk)? = o] K2auj.
k=1
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Functional point of view

PCA maximizes in o the function:

oK

Q= argmax————,
! a noaKa

under the constraints:

a/Ka;j=0 forj=1,...,i—1.
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Solution

o Let U= (uy,...,u,) be an orthonormal basis of eigenvectors of K
with eigenvalues \; > ... > A\, > 0.

o Let aj = E’-’Zl 6;juj, then

]
T n 212
Q; K2a; E:jfl 6,‘j>\j

TKo: N g2y’
na; Key  n) iq BA;

which is maximized at «v; = S11u1, ap = Baoun, etc...
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Normalization

e For a; = fBju;, we want:
1= 3 = o Kaj = B3

@ Therefore:

(0 T u;.

1
VA
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Kernel PCA: summary

@ Center the Gram matrix
@ Compute the first eigenvectors (u;, \;)
© Normalize the eigenvectors a; = u;j/v/A;

@ The projections of the points onto the /-th eigenvector is given by
Ko
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Kernel PCA: remarks

@ In this formulation, we must diagonalize the centered kernel Gram
matrix, instead of the covariance matrix in the classical setting

o Exercise: check that XTX and XX have the same spectrum (up
to 0 eigenvalues) and that the eigenvectors are related by a simple
relationship.

@ This formulation remains valid for any p.d. kernel: this is kernel
PCA

@ Applications: nonlinear PCA with nonlinear kernels for vectors, PCA
of non-vector objects (strings, graphs..) with specific kernels...
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Example

PC2 A set of 74 human tRNA
n sequences is analyzed using
ot
%@ a kernel for sequences (the
o B N second-order marginalized
kernel based on SCFG). This
set of tRNAs contains three
oo classes, called Ala-AGC
00 ® (white circles), Asn-GTT
8 889 )
(black circles) and Cys-GCA
& (plus symbols) (from Tsuda
et al., 2003).

Julien Mairal (Inria) 165/564



QOutline

o Kernels and RKHS
© Kernel Methods: Supervised Learning
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Canonical Correlation Analysis (CCA)

Given two views X = [x,...,X,] in RP*" and Y = [y1,...,y,] in RIX"
of the same dataset, the goal of canonical correlation analysis (CCA) is
to find pairs of directions in the two views that are maximally correlated.

Formulation

Assuming that the datasets are centered, we want to maximize
150 Ty T
7 2ie1 Wa Xi¥; W
o Rd (1 1/2 TyuT
ERP,wpeRY (1 n T n .
waERe o R (L1 Wy xix wa) T (1 30 Wi yiy wh)

Assuming that the pairs (x;,y;) are i.i.d. samples from an unknown
distribution, CCA seeks to maximize

1/2°

T T
ax cov(w, X,w, Y)

waERPWLERY /1 ar (w] X) \/WZY)
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Canonical Correlation Analysis (CCA)

Given two views X = [x,...,X,] in RP*" and Y = [y1,...,y,] in RIX"
of the same dataset, the goal of canonical correlation analysis (CCA) is
to find pairs of directions in the two views that are maximally correlated.

Formulation
Assuming that the datasets are centered, we want to maximize
150 Ty T
7 2ie1 Wa Xi¥; W
o Rd (1 1/2 TynT 1/2°
ERP,wpeRY (1 n T n .
waERe o R (L1 Wy xix wa) T (1 30 Wi yiy wh)

It is possible to show that this is an generalized eigenvalue problem (see
next slide or see Section 6.5 of Shawe-Taylor and Cristianini 2004b).

The above problem provides the first pair of canonical directions. Next
directions can be obtained by solving the same problem under the
constraint that they are orthogonal to the previous canonical directions.
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Canonical Correlation Analysis (CCA)

Formulation

Assuming that the datasets are centered,

w.! XTYw,
max

w,ERP, w,ERY (WIXTXW3)1/2 (W;YTYWb)

12"

can be formulated, after removing the scaling ambiguity, as

max  w.X'Yw, st. w, X Xw,=1 and w]Y'Yw, =1.
w,ERP,wy,eRY

Then, there exists A\; and Ap, such that the problem is equivalent to
. TyT Az, Ty T Ab o TT
min  —w, X ow+7(waX Xwa—l)—i—?(wa Yw;, — 1).

w,ERP Wy €Rd
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Canonical Correlation Analysis (CCA)

Taking the derivatives and setting the gradient to zero, we obtain

—X"Ywp + A X Xw, =0
—Y T Xw, + AY Yw, =0

Multiply first equality by w. and second equality by WZ; subtract the
two resulting equalities and we get

AW X T Xw, = Apw) YT Yw, = A, = Xy = ),

and then, we obtain the generalized eigenvalue problem:

0 ) SA'% W, XTX 0 W,
T =A T
Y X 0 Wy 0 Y'Y Wy
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Canonical Correlation Analysis (CCA)

Let us define

0 X'Y X'™X 0 w,
ZA_[YTX 0 ] ZB_{ 0 YTY] and ""_[ ]

Assuming the covariances are invertible, the generalized eigenvalue
problem is equivalent to

3P aw = AT %W
which is also equivalent to the eigenvalue problem

> P s (25 Pw) = A(Z5 w).
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Kernel Canonical Correlation Analysis

Similar to kernel PCA, it is possible to operate in a RKHS. Given two
p.d. kernels K;, Kp : X x X — R, we can obtain two “views" of a
dataset x1,...,Xx, in X

(Pa(x1);-- - palxn)) and  (pp(x1), ..., @b(xn)),

where ¢, : X — H, and ¢p : X — Hj, are the embeddings in the
RKHSs H, of K, and H}, of Kj, respectively. Then, we may formulate
kernel CCA as the following optimization problem

% 27:1 <f37 gOa(X,-»Ha <30b(xi)> fb>7.[b
max
fa€Ha, f€Hy (l

LS ab,) (AT e pnt),)
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Kernel Canonical Correlation Analysis

Similar to kernel PCA, it is possible to operate in a RKHS. Given two
p.d. kernels K;, Kp : X x X — R, we can obtain two “views" of a
dataset x1,...,Xx, in X

(Pa(x1);-- - palxn)) and  (pp(x1), ..., @b(xn)),

where ¢, : X — H, and ¢p : X — Hj, are the embeddings in the
RKHSs H, of K, and H}, of Kj, respectively. Then, we may formulate
kernel CCA as the following optimization problem

5 2oia fa(xi)fo(xi)
max 1 ; 12 /1 R 12
e loCHy (L3711 fH(xi)2) 7 (5 207 fol(xi)?)
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Kernel Canonical Correlation Analysis

Up to a few technical details (exercise), we can apply the representer
theorem and look for solutions f,(.) = 37 ; iK,(x;,.) and
fo(.) = Y1 BiKb(xi,.). We finally obtain the formulation

ax =30 [KaaliKpgl;
a€RMBERN (1 0 21\1/2 1 < 2
(n Zi:l[Kaa]i) (n Zi:l[KbIB]i)

which is equivalent to

1/2°

aK,Kp8
max

S (aTKZa) " (B7KES)

1/2°
or, after removing the scaling ambiguity for a and S,

max aTKaKbB s.t. aTKgazl and BTK%B:L
acR" BeR”
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Kernel Canonical Correlation Analysis

Remarks
@ kernel CCA also yields a generalized eigenvalue problem.

o the subsequent canonical directions are obtained by solving the
same problem with additional orthogonality constraints.

@ in practice, kernel CCA is numerically unstable; it requires
regularization to replace the constraints o' K2ax by
o' (K2 4 p,l)a =1 (same for K;), which improves the condition
number of the matrix K2.
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Outline
o Kernels and RKHS
© Kernel Methods: Supervised Learning

© Kernel Methods: Unsupervised Learning

@ The Kernel Jungle
o Kernels for probabilistic models

e Open Problems and Research Topics
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Motivation

Kernel methods are sometimes criticized for their lack of flexibility: a
large effort is spent in designing by hand the kernel.

Question
How do we design a kernel adapted to the data?
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Motivation

Kernel methods are sometimes criticized for their lack of flexibility: a
large effort is spent in designing by hand the kernel.

Question

How do we design a kernel adapted to the data?

Answer

A successful strategy is given by kernels for generative models, which
are/have been the state of the art in many fields, including image and
sequence representations.

Parametric model
A model is a family of distributions

{Pp,0 € © CR™} C M7 (X).
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@ The Kernel Jungle

@ Kernels for probabilistic models
@ Fisher kernel
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Fisher kernel

Definition
e Fix a parameter 0y € © (e.g., by maximum likelihood over a
training set of sequences)

@ For each sequence x, compute the Fisher score vector:
Py, (x) = Vg log Py(x)|o=0, -
e Form the kernel (Jaakkola et al., 2000):
K (x,x') = ®g,(x) "1(60) " ¥g, (x') ,

where 1(6g) = E [®g,(x)®g,(x) "] is the Fisher information matrix.
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Fisher kernel properties (1/2)

@ The Fisher score describes how each parameter contributes to the
process of generating a particular example

@ A kernel classifier employing the Fisher kernel derived from a model
that contains the label as a latent variable is, asymptotically, at
least as good a classifier as the MAP labelling based on the model
(Jaakkola and Haussler, 1999).

@ A variant of the Fisher kernel (called the Tangent of Posterior
kernel) can also improve over the direct posterior classification by

helping to correct the effect of estimation errors in the parameter
(Tsuda et al., 2002).
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Fisher kernel properties (2/2)

Lemma
The Fisher kernel is invariant under change of parametrization.

o Consider indeed different parametrization given by some
diffeomorphism A = f(#). The Jacobian matrix relating the

parametrization is denoted by [J];; = %'
@ The gradient of log-likelihood w.r.t. to the new parameters is
D), (x) = Vi log Py, (x) = JVglog Py, (x) = JPy,(x).
@ the Fisher information matrix is

1(00) = E [%O(x)%(xf] = JI(6)d7.

o we conclude by noticing that I(\g)™* = J71I(6p)~1J T 1.
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Fisher kernel in practice

@ ®y,(x) can be computed explicitly for many models (e.g., HMMs),
where the model is first estimated from data.

@ 1(fo) is often replaced by the identity matrix for simplicity.

o Several different models (i.e., different ) can be trained and
combined.

o The Fisher vectors are defined as ¢g,(x) = 1(6o)~2/?®g,(x). They
are explicitly computed and correspond to an explicit embedding:

K(x,X) = g,(x) " 095 (x').
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Fisher kernels: example with Gaussian data model (1/2)

Consider a normal distribution A/(j1, %) and denote by o = 1/0? the
inverse variance, i.e., precision parameter. With 6 = (u, ), we have

1 1 1
log Py(x) = 5 log o — 5 log(27) — Ea(x —u)?,
and thus
Jlog Pg(x) dlog Pp(x) 11 9
on = a(x — p), el bl G DM

and (exercise)

©=(5 @aar)

The Fisher vector is then

B (x —p)/o
o(x) = ( (1/v2)(1 = (x — n)?/o?) ) ’
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Fisher kernels: example with Gaussian data model (2/2)

Now consider an i.i.d. data model over a set of data points xi, ..., x, all
distributed according to N (i, o?):

Po(xi, ..., xn) = H Py (x;).-

Then, the Fisher vector is given by the sum of Fisher vectors of the
points.

@ Encodes the discrepancy in the first and second order moment of
the data w.r.t. those of the model.

Y =S i) — 1 (B =)o
Pl o) ;w(:) (o Pty )

@ where

3\'—‘
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Application: Aggregation of visual words (1/4)

o Patch extraction and description stage:
In various contexts, images may be described as a set of
patches x3,...,x, computed at interest points. For example, SIFT,
HOG, LBP, color histograms, convolutional features...

o Coding stage: The set of patches is then encoded into a single
representation ((x;), typically in a high-dimensional space.

@ Pooling stage: For example, sum pooling

O(X1,...,Xp) = Z o(x;).
i=1

Fisher vectors with a Gaussian Mixture Model (GMM) is
considered to be a state-of-the-art aggregation
technique [Perronnin and Dance, 2007].
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Application: Aggregation of visual words (2/4)

Let 0 = (7), 1j, T;j)j=11dots k be the parameters of a GMM with k
Gaussian components. Then, the probabilistic model is given by

k

Py(x) = Z’/TJ'N(X; wj, X;).

j=1

Remarks
@ Each mixture component corresponds to a visual word, with a
mean, variance, and mixing weight.
o Diagonal covariances X; = diag (oj1, . ..,0j,) = diag (o) are often
used for simplicity.
@ This is a richer model than the traditional “bag of words” approach.

@ The probabilistic model is learned offline beforehand.
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Application: Aggregation of visual words (3/4)

After a few calculations (exercise), we obtain @p(x1,...,X,) =

[Qpﬂ'l(x)v SRRE) Soﬂ’p(x)a @Hl(x)Tv SRRE) QOHP(X)Tv Poy (X)Tv SRR) Soa'p(x)T]T7

with

o, (X) = — uj)/o;

\/TZ’YU (xi — IJ‘J) /‘7 _1]
i=1

where with an abuse of notation, the division between two vectors is
meant elementwise and the scalars vj; can be interpreted as the
soft-assignment of word / to component j:

‘Poj(x)

TN (xi; 1y, 05)
p :
2= TN (i g, 01)

Vij =



Application: Aggregation of visual words (4/4)

Finally, we also have the following interpretation of encoding first and
second-order statistics:

o, (X) = L — ) /o

VT
oy (X) = —2=(67 — 0?) /0

J2m

with

n n n

1 . 1
')/J-:Z’yij and fi; = WZVUX, and &= VZ’YU( HJ)Z'

i=1 J =1 J =1

The component ¢ (X) is often dropped due to its negligible
contribution in practice, and the resulting representation is of
dimension 2kp where p is the dimension of the x;'s
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Relation to classification with generative models (1/3)

Assume that we have a generative probabilistic model Py to model
random variables (X, Y) where Y is a label in {1,...,p}.

Assume that the marginals Py(Y = k) = mx are among the model
parameters 6, which we can also parametrize as
ek

I;,:]- eak/ .

Po(Y = k) = mx =

The classification of a new point x can be obtained via Bayes' rule:

y(x) = argmax Py(Y = k|x),
k=1,....p

where Py(Y = k|x) is short for Py(Y = k|X = x) and
Po(Y = k|x) = Po(x|Y = k)Py(Y = k)/Pp(x)
p
= Py(x|Y = K)me/ Y Po(x|Y = K')mws
k'=1
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Relation to classification with generative models (2/3)

Then, consider the Fisher score

1
Vg log Py(x) = D) VoPy(x)
1 P
- VoS Po(x,Y = k
Py(x) 9; ot )
1 P
= Pg X,YZk)V@ Iong(x,Y:k)
P 21

I
M

Po(Y = k|x)[Vglog mx + Vg log Py(x|Y = k)].

=

-1
In particular (exercise)
0 log Py(x)

aOék
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Relation to classification with generative models (3/3)

The first p elements in the Fisher score are given by class posteriors
minus a constant

wo(x) = [Po(Y =1|x) — m1,..., Po(Y = p|x) — mp, ...].

Consider a multi-class linear classifier on g, such that for class k
@ The weights are zero except one for the k-th position;
@ The intercept by be —my;
Then,
§(x) = argmax ©p(x) "wy + by
k:]'?"'?p
y(x) = argmax Py(Y = k|x).
k=1,...,p

Bayes' rule is implemented via this simple classifier using Fisher kernel.
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@ The Kernel Jungle
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Mutual information kernels

Definition
@ Chose a prior w(df) on the measurable set ©.
@ Form the kernel (Seeger, 2002):

K (x,x') = /eee Py (x)Py(x')w(dB) .

@ No explicit computation of a finite-dimensional feature vector.

C K(X,X/) =< SD(X)’SD(X,) >L2(W) with

¢ (%) = (Po (x))geo -
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Example: coin toss

o Let Pp(X =1) =6 and Py(X =0) =1 — 6 a model for random
coin toss, with 6 € [0, 1].

@ Let df be the Lebesgue measure on [0, 1]

@ The mutual information kernel between x = 001 and x’ = 1010 is:

Po(x) =0(1-0),
Po(xX) =6*(1-0),

! 14 1
K(x,x’):/o 03(1—9)4d9:%:@.
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@ The Kernel Jungle
@ Kernels for probabilistic models

@ Marginalized kernels
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Marginalized kernels

Definition
@ For any observed data x € X, let a latent variable y € ) be
associated probabilistically through a conditional probability
Py (dy).
@ Let Kz be a kernel for the complete data z = (x,y)

@ Then the following kernel is a valid kernel on X, called a
marginalized kernel (Tsuda et al., 2002):

Kx (x,X') := Ep,(dy)xp(dy) Kz (2,2Z')

//Kz x,¥), (x',y")) Px (dy) Px (dy’) .
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Marginalized kernels: proof of positive definiteness

@ Kz is p.d. on Z. Therefore there exists a Hilbert space H and
&z : Z — H such that:

Kz (z,z’) = <¢Z (2),%z (z’)>H )
o Marginalizing therefore gives:

Kx (x,X') = Ep,(dy)x P, (dy) Kz (2, Z')
= EPx(dy)XPx/(dy’ <¢Z Z/)>
= (Ep,(ay)®z (2), EPx(dy)q’Z (Z/)>H :

therefore Ky is p.d. on X. [
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Outline
o Kernels and RKHS
© Kernel Methods: Supervised Learning

© Kernel Methods: Unsupervised Learning

@ The Kernel Jungle

o Kernels for biological sequences

e Open Problems and Research Topics
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@ The Kernel Jungle

@ Kernels for biological sequences
@ Motivations and history of genomics
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Short history of genomics

1866 :
1909 :
1944
1953 :
1966 :

1977 :
1982 :
1990 :
2003 :

Laws of heredity (Mendel)

Morgan and the drosophilists

DNA supports heredity (Avery)
Structure of DNA (Crick and Watson)
Genetic code (Nirenberg)

1960-70 : Genetic engineering

Method for sequencing (Sanger)
Creation of Genbank

Human genome project launched
Human genome project completed
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Chromosomes

HUMAN CHROMODSOMES

b)

XLXK XK XK AR
TEA | ¥ AKRE W KK xx

10 1

ﬂ\ §1.] XK EA XX AR

14 16 17 18

¥k XA XX xx Bz

20 21 581

[}
Telomere
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Chromosomes and DNA

Chromosome
Cheonatia Chromalid
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Structure of DNA

Julien Mairal (Inria)

“We wish to suggest a
structure for the salt of
desoxyribose nucleic acid
(D.N.A.). This structure have
novel features which are of
considerable biological
interest” (Watson and Crick,
1953)
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The double helix
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Central dogma

DNA

20000900

mRNA Transcription

NN
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Proteins

Amino Acid
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Genetic code

DNA = 4 etters (ATCG)

C:‘L%ﬁ Cj‘% RNA = 4 letters (AUCG)

U C A anticodon AUG
I3 AGUcodon.” UAC mRNA 3

UICIAlG Protein = 20 letters (amino acids)

1stbase in codon
uopod Ul 358q PIE

I amino acid

B
v
o»ocln»ncm»oc oroc

The Geneti(; Code .
3 nucleotides
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Human genome project

@ Goal : sequence the 3,000,000,000 bases of the human genome
o Consortium with 20 labs, 6 countries
@ Cost : about 3,000,000,000 USD
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2003: End of genomics era

THE .
HUMAN 72
GENOMI

Findings
@ About 25,000 genes only (representing 1.2% of the genome).
@ Automatic gene finding with graphical models.
@ 97% of the genome is considered “junk DNA".

@ Superposition of a variety of signals (many to be discovered).
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Protein sequence

Primary prolain structure
is sequence of a chain of mino acids

Aming Acid

A : Alanine V : Valine L : Leucine

F : Phenylalanine P : Proline M : Methionine
E : Glutamic acid K : Lysine R : Arginine

T : Threonine C : Cysteine N : Asparagine
H : Histidine Y : Tyrosine W : Tryptophane
| : Isoleucine S : Serine Q : Glutamine

D : Aspartic acid G : Glycine
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Challenges with protein sequences

@ A protein sequences can be seen as a variable-length sequence over
the 20-letter alphabet of amino-acids, e.g., insuline:
FVNQHLCGSHLVEALYLVCGERGFFYTPKA

@ These sequences are produced at a fast rate (result of the
sequencing programs)

@ Need for algorithms to compare, classify, analyze these sequences

@ Applications: classification into functional or structural classes,
prediction of cellular localization and interactions, ...
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Example: supervised sequence classification

Data (training)

@ Secreted proteins:
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEA. ..
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVW. . .
MALHTVLIMLSLLPMLEAQNPEHANITIGEPITNETLGWL. . .

@ Non-secreted proteins:
MAPPSVFAEVPQAQPVLVFKLIADFREDPDPRKVNLGVG. . .
MAHTLGLTQPNSTEPHKISFTAKEIDVIEWKGDILVVG. . .
MSISESYAKEIKTAFRQFTDFPIEGEQFEDFLPIIGNP. .

Goal

@ Build a classifier to predict whether new proteins are secreted or not.
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Supervised classification with vector embedding

The idea
@ Map each string x € X' to a vector ®(x) € F.

e Train a classifier for vectors on the images ®(x1),. .., P(x,) of the
training set (nearest neighbor, linear perceptron, logistic regression,

support vector machine...)
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Kernels for protein sequences

o Kernel methods have been widely investigated since Jaakkola et
al.'s seminal paper (1998).
o What is a good kernel?

e it should be mathematically valid (symmetric, p.d. or c.p.d.)
e fast to compute
o adapted to the problem (give good performances)
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Kernel engineering for protein sequences

o Define a (possibly high-dimensional) feature space of interest

o Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest
o Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels
@ Derive a kernel from a generative model
o Fisher kernel
e Mutual information kernel
o Marginalized kernel
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Kernel engineering for protein sequences

@ Define a (possibly high-dimensional) feature space of interest

o Physico-chemical kernels
e Spectrum, mismatch, substring kernels
o Pairwise, motif kernels

@ Derive a kernel from a generative model

o Fisher kernel
o Mutual information kernel
o Marginalized kernel

@ Derive a kernel from a similarity measure
o Local alignment kernel
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QOutline

@ The Kernel Jungle

@ Kernels for biological sequences

@ Kernels derived from large feature spaces
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Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
® (x) € R". How to perform this embedding?
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Vector embedding for strings

The idea

Represent each sequence x by a fixed-length numerical vector
® (x) € R". How to perform this embedding?

Physico-chemical kernel
Extract relevant features, such as:

@ length of the sequence

@ time series analysis of numerical physico-chemical properties of
amino-acids along the sequence (e.g., polarity, hydrophobicity),
using for example:

o Fourier transforms (Wang et al., 2004)
o Autocorrelation functions (Zhang et al., 2003)

1 <
b — hihiyi
rJ n_.jg +J
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Substring indexation

The approach
Alternatively, index the feature space by fixed-length strings, i.e.,

® (x) = (Pu (X)) yeax

where @, (x) can be:

@ the number of occurrences of u in x (without gaps) : spectrum
kernel (Leslie et al., 2002)

@ the number of occurrences of u in x up to m mismatches (without
gaps) : mismatch kernel (Leslie et al., 2004)

@ the number of occurrences of u in x allowing gaps, with a weight
decaying exponentially with the number of gaps : substring kernel
(Lohdi et al., 2002)
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Example: spectrum kernel (1/2)

Kernel definition
@ The 3-spectrum of
x = CGGSLIAMMWFGV

(CGG,GGS,GSL,SLI,LIA,IAM, AMM,MMW,MWF ,WFG,FGV) .

o Let ®,(x) denote the number of occurrences of u in x. The
k-spectrum kernel is:

K (x,x) := Z ®, (x) Dy (X) .

ue Ak
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Example: spectrum kernel (2/2)

Implementation

@ The computation of the kernel is formally a sum over |A[X terms,
but at most | x| — k + 1 terms are non-zero in ¢ (x) —
Computation in O (| x|+ | x"|) with pre-indexation of the strings.

o Fast classification of a sequence x in O (| x|):

| x|—k+1

f(x)=w-®(x)= Z w, Py (x) = Z Wy Xi 1+
u f=il

Remarks
@ Work with any string (natural language, time series...)
@ Fast and scalable, a good default method for string classification.

@ Variants allow matching of k-mers up to m mismatches.
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Example 2: Substring kernel (1/11)

Definition
@ For 1 < k < neN, we denote by Z(k, n) the set of sequences of
indices i = (i1,...,0k), with1 < i <ih <...<ix <n.

@ For a string x = x1...x, € X of length n, for a sequence of indices
i € Z(k, n), we define a substring as:

x (i) == xj, Xiy - - . Xi, -

@ The length of the substring is:

/(I):Ik—ll+1
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Example 2: Substring kernel (2/11)

Example

ABRACADABRA

o i=(3,4,7,8,10)
o x (i) =RADAR
o /(i()=10-3+1=38
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Example 2: Substring kernel (3/11)

The kernel

o Let k e Nand A\ € Rt fixed. For all u € AX, let &, : X — R be
defined by:

Vx e X, ®&,(x)= > A
i€Z(k,|x]): x(i)=u

@ The substring kernel is the p.d. kernel defined by:

V(x,x’)EX2, Kix (x,x') Z¢'

uc Ak
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Example 2: Substring kernel (4/11)

Example

u ‘ ca ct at ba bt c ar br
) X X X2 0 0 0 0 0
YIA2 0 0 0 0 A A 0

oy(bat) | 0 0 XX A2 0 0 o0
YO 0 0 X 0 0 A )3

K (cat,cat) = K (car,car) = 2\* 4+ \°
K (cat,car) = \*
K (cat,bar) =0
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Example 2: Substring kernel (5/11)

Kernel computation

@ We need to compute, for any pair x,x’ € X, the kernel:

x’) = Z o, (x) P

uc Ak

-X 2y o,

uc Ak ix(i)=u i =u

o Enumerating the substrings is too slow (of order |x|¥).
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Example 2: Substring kernel (6/11)

Kernel computation (cont.)
o For u € A* remember that:
Oy (x)= AL
ix(i)=u

o Let now:

WV, (x) = Z (=l

ixx(i)=u
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Example 2: Substring kernel (7/11)

Kernel computation (cont.)

Let us note x(1,/) = x1 ...xj. A simple rewriting shows that, if we note
a € A the last letter of u (u = va):

ba(x)= Y W (x(1,j-1)A,

JE[L[x[]:xj=a

and
Vo (x) = Y Wy (x(1,j— 1) AxIH

JelL | x[J:x=a
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Example 2: Substring kernel (8/11)

Kernel computation (cont.)

Moreover we observe that if the string is of the form xa (i.e., the last
letter is a € A), then:

o If the last letter of u is not a:

b, (xa) =P, (x),
U, (xa) =V, (x).

o If the last letter of u is a (i.e., u = va with v € A" 1):

bua(xa) = Py, (x) + AV, (x)
Wy, (xa) = AWy, (x) + AV, (x) .
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Example 2: Substring kernel (9/11)

Kernel computation (cont.)

Let us now show how the function:

B, (x,x') o= Z vy, (x) Wy, (x’)

uc An

and the kernel:
can be computed recursively. We note that:

Bo (x,x") = Ko (x,x') =0  for all x,x’
Bk (x,x') = Kk (x,x') =0 if min(|x]|,[x]) < k
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Example 2: Substring kernel (10/11)

Recursive computation of B,

B, (xa,x')

— Z Wy (xa) Wy (X')

uc A"

=AU ()WL (X)) + A D> Wy, (x) Wy, (X)

uc A" veAn—1
= AB, (x, x’) +

A Wv(x)( > v (X (1,j-1) ,\X’f“)

veAn—1 JEMLIX []:x{=a

= \B, (x,x/) + Z B,_1 (x,x' (1,j — 1)) ALY =it2

H ! 1 s/ —
JEL|X []:x/=a
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Example 2: Substring kernel (10/11)

Recursive computation of B,

B (xa,x'b)
= ABy (x,Xb) + A Y Bpa ()X (1,j - 1)) N¥ I

JelL|x [l:x/=a
+ 02-5Bn_1(x, X' )N\
= AB, (x,x'b) + N(Bn(xa,x) — ABu(x, X)) + dapBn_1(x,x' )N\
= AB, (x,X'b) + ABp(xa,x') — N2Bp(x,X') + 6apBn_1(x, X' )N\

The dynamic programming table can be filled in O(n|x||x|) operations.
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Example 2: Substring kernel (10/11)

Recursive computation of K,

Kn (xa,x’)

— Z ®y (xa) Py (x')

uc A"

= Y Bu( B (X) + A D Wy (%) Bus (X)

ucAn veAn—1
=K, (x, x') +

A Y \Uv(x)( > \Uv(x’(l,jl)))\)

veAr-1 JelL|x [l:x/=a

= MK, (X)) +22 > Boa(x,X(1,j—1)

H 115! —
JEMLIX []:x{=a
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Summary: Substring indexation

o Implementation in O(|x| + [x’|) in memory and time for the
spectrum and mismatch kernels (with suffix trees)

o Implementation in O(k(|x| + |x'[)) in memory and time for the
spectrum and mismatch kernels (with tries)

o Implementation in O(k|x| x |x'|) in memory and time for the
substring kernels

o The feature space has high dimension (|.A|), so learning requires
regularized methods (such as SVM)
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Dictionary-based indexation

The approach
@ Chose a dictionary of sequences D = (x1,X2, . ..,Xp)
@ Chose a measure of similarity s (x,x’)

o Define the mapping ®p (x) = (S(vai))x;ED
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Dictionary-based indexation

The approach
@ Chose a dictionary of sequences D = (x1,X2, . ..,Xp)
@ Chose a measure of similarity s (x,x’)

@ Define the mapping ®p (x) = (s (X7xi))x,€D

Examples

This includes:
o Motif kernels (Logan et al., 2001): the dictionary is a library of
motifs, the similarity function is a matching function

o Pairwise kernel (Liao & Noble, 2003): the dictionary is the training
set, the similarity is a classical measure of similarity between

sequences.
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QOutline

@ The Kernel Jungle

@ Kernels for biological sequences

@ Kernels derived from generative models
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Probabilistic models for sequences

Probabilistic modeling of biological sequences is older than kernel
designs. Important models include HMM for protein sequences, SCFG
for RNA sequences.

Recall: parametric model

A model is a family of distributions

{Pp,0 € © CR™} C M (X)
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Context-tree model

Definition

A context-tree model is a variable-memory Markov chain:

n
P'D’Q(X) = 'DD,O (Xl N XD) H pryg (X,' | Xi—D ... X,'_]_)
i=D+1

@ D is a suffix tree

o 0 € ¥P is a set of conditional probabilities (multinomials)
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Context-tree model: example

P(AABACBACC) = P(AAB)0ag(A)0a(C)0c(B)0acs(A)0a(C)0c(A) .
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The context-tree kernel

Theorem (Cuturi et al., 2005)

o For particular choices of priors, the context-tree kernel:
Kxx) =3 [ PoolxIPoo(x)w(dblD)n(D)
p JOEX

can be computed in O(|x| + |x'|) with a variant of the Context-Tree
Weighting algorithm.

@ This is a valid mutual information kernel.

o The similarity is related to information-theoretical measure of
mutual information between strings.
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Marginalized kernels

Recall: Definition
@ For any observed data x € X, let a latent variable y € ) be
associated probabilistically through a conditional probability
Py (dy).
@ Let Kz be a kernel for the complete data z = (x,y)

@ Then the following kernel is a valid kernel on X, called a
marginalized kernel (Tsuda et al., 2002):

Kx (x,X') := Ep,(dy)xp(dy) Kz (2,2Z')

//Kz x,¥), (x',y")) Px (dy) Px (dy’) .
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Example: HMM for normal/biased coin toss

0.85
0.05
0.5
01 @ e Normal (N) and biased (B)
0.1 coins (not observed)
0.5 <3) 0.05
0.85

@ Observed output are 0/1 with probabilities:

7(O|N) =1 — 7(1|N) = 0.5,
7(0|B) = 1 —7(1|B) = 0.8.

e Example of realization (complete data):

NNNNNBBBBBBBBBNNNNNNNNNNNBBBBBB
1001011101111010010111001111011
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1-spectrum kernel on complete data

o If both x € A* and y € S* were observed, we might rather use the
1-spectrum kernel on the complete data z = (x,y):

Kz (2,7) = Z Nas (2) nas (2),

(a,5)EAXS
where n, s (x,y) for a=0,1 and s = N, B is the number of

occurrences of s in y which emit a in x.

o Example:

z=1001011101111010010111001111011,
z/ =0011010110011111011010111101100101,

Kz (z,Z') = no (2) no (2') + no (z) no (') + n1 (z) m (Z) + ny (2) ny (2
=7x154+9x12+13x6+2x1=293.
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1-spectrum marginalized kernel on observed data
@ The marginalized kernel for observed data is:

K (X)) = 3 Kz ((xy),(x,y) P(yx) P (yIx)

y,y'€S*

ST enwen (),

(a,s)eAXS

with

®as () = D P(y[x) nas (x,y)

yeS*
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Computation of the 1-spectrum marginalized kernel

X) = Z P(Y|x) Nas (X, Y)

yeES*

= Z P(y|X {25 Xi, a _yH }
yeS*

:Zé(xn {Z P y’X yH }
i=1 yeS*

—25 xi,a) P (yi = s|x).

and P (y; = s|x) can be computed efficiently by forward-backward
algorithm!
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HMM example (DNA)

Gene on
forward strand

Gene on
reverse strand
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HMM example (protein)

N times
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SCFG for RNA sequences

SFCG rules
e S SS
e S — aSa
e S—as

e S—a

Marginalized kernel (Kin et al., 2002)

o Feature: number of occurrences of each (base,state) combination

e Marginalization using classical inside/outside algorithm
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Marginalized kernels in practice

Examples

@ Spectrum kernel on the hidden states of a HMM for protein
sequences (Tsuda et al., 2002)

o Kernels for RNA sequences based on SCFG (Kin et al., 2002)

o Kernels for graphs based on random walks on graphs (Kashima et
al., 2004)

o Kernels for multiple alignments based on phylogenetic models (Vert
et al., 2006)
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Marginalized kernels: example

PC2 A set of 74 human tRNA
sequences is analyzed using a
+§t++ kernel for sequences (the

* second-order marginalized

°c e kernel based on SCFG). This

set of tRNAs contains three

oo classes, called Ala-AGC (white

3 <§8§@ c{rcles), Asn-GTT (black

circles) and Cys-GCA (plus

o symbols) (from Tsuda et al.,

2002).

° F'V-.
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QOutline

@ The Kernel Jungle

@ Kernels for biological sequences

@ Kernels derived from a similarity measure
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Sequence alignment
Motivation

How to compare 2 sequences?

x1 = CGGSLIAMMWFGV
X2 = CLIVMMNRLMWFGV

Find a good alignment:

CGGSLIAMM-----—- WFGV

[ i ety
i LIVMMNRLMWFGV
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Alignment score

In order to quantify the relevance of an alignment 7, define:
@ a substitution matrix S € RA*A
@ a gap penalty function g: N — R

Any alignment is then scored as follows

CGGSLIAMM------ WFGV

looa HIMHIT o aac D0 T
C----LIVMMNRLMWFGV

ss.g(m) = S(C,C) + S(L, L) + S(I,1) + S(A, V) 4+ 25(M, M)
+S(W, W)+ S(F,F)+ S(G,G)+ S(V,V)—g(3) — g(4)
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Local alignment kernel

Smith-Waterman score (Smith and Waterman, 1981)

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) == S ss,g().

o It is symmetric, but not positive definite...
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Local alignment kernel

Smith-Waterman score (Smith and Waterman, 1981)

@ The widely-used Smith-Waterman local alignment score is defined
by:

SWs g(x,y) == S ss,g().

o It is symmetric, but not positive definite...

LA kernel (Saigo et al., 2004)

The local alignment kernel:

K2 (xy)= D exp(Bssg (x,y,m)),

men(x,y)

is symmetric positive definite.
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LA kernel is p.d.: proof (1/11)

Lemma
o If K1 and K5 are p.d. kernels, then:

K1 + Ko,
KlKQ, and
cKi, for ¢ > 0,

are also p.d. kernels

o If (Kj);~; is a sequence of p.d. kernels that converges pointwisely
to a function K:

! 2 N _ . /
V(x,x)eX, K(x,x)—nILrQOK,(x,x),

then K is also a p.d. kernel.
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LA kernel is p.d.: proof (2/11)

Proof of lemma
Let A and B be n x n positive semidefinite matrices. By diagonalization
of A:

Aij = Zl AIAY

for some vectors f1,...,f,. Then, for any a € R™:
n
Za,’OzJ'A,'JB,' ZZaf( Oaj B > 0.
ij=1 p=1ij=1

The matrix C;j = A; ;B is therefore p.d. Other properties are obvious
from definition. 0O
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LA kernel is p.d.: proof (3/11)

Lemma (direct sum and product of kernels)

Let X = A1 X X,. Let K1 be a p.d. kernel on X3, and K3 be a p.d.
kernel on X>. Then the following functions are p.d. kernels on X

@ the direct sum,

K ((x1,%2), (y1,¥2)) = K1 (x1,¥1) + K2 (x2,¥2)

@ The direct product:

K ((x1,%2), (y1,¥2)) = K1 (x1,¥1) K2 (x2,y2) -
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LA kernel is p.d.: proof (4/11)

Proof of lemma
If K1 is a p.d. kernel, let ®; : X7 — H be such that:

K1 (x1,y1) = (®1(x1), P1(y1))y -
Let & : A7 x Ao — H be defined by:
® ((x1,x%2)) = P71 (x1) -
Then for x = (x1,x2) and y = (y1,y2) € X, we get
(@ ((x1,%2)), @ ((y1,¥2)))3 = Ki (x1,%2),

which shows that K (x,y) := K1 (x1,y1) is p.d. on X1 X X5. The lemma
follows from the properties of sums and products of p.d. kernels. [
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LA kernel is p.d.: proof (5/11)

Lemma: kernel for sets

Let K be a p.d. kernel on X, and let P (X) be the set of finite subsets
of X. Then the function Kp on P (X)) x P (X) defined by:

VA, BEP(X), Kp(AB):=> > K(xy)

xcAyeB

is a p.d. kernel on P (X).
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LA kernel is p.d.: proof (6/11)

Proof of lemma
Let ¢ : X — H be such that

K(x,y) = (®(x), P () -

Then, for A, B € P (X), we get:

Kp (A B) =) > (®(x),d(y))y

x€EAyeB
. <z¢<x>,z¢<y>>
x€A yeB ey

= (Pp(A),Pp(B))y

with ®p(A) =3, 4 ®(x). O
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LA kernel is p.d.: proof (7/11)

Definition: Convolution kernel (Haussler, 1999)

Let K1 and K> be two p.d. kernels for strings. The convolution of Ki
and K3, denoted Kj x Ko, is defined for any x,x’ € X’ by:

Kix Ka(x,y) := Z Ki(x1,y1)Ka(x2,y2)-

X1X2=X,y1¥2=Y

Lemma
If K1 and K, are p.d. then K1 x K> is p.d..
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LA kernel is p.d.: proof (8/11)

Proof of lemma
Let X be the set of finite-length strings. For x € X, let

R(x) = {(x1,%2) € ¥ X X : x =x1%2} C X X X.
We can then write

K1 x Ka(x,y) = Z Z Ki(x1,y1)Ka(x2,y2)

(x1,%2)€R(x) (y1,¥2)ER(Y)

which is a p.d. kernel by the previous lemmas. [
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LA kernel is p.d.: proof (9/11)

3 basic string kernels

@ The constant kernel:
KO (X, y) =1.

@ A kernel for letters:
K‘gﬁ)(x,y):_{o if |x|# 1 where |y|#1,

exp (BS(x,y)) otherwise.

@ A kernel for gaps:

K (x,y) = exp[B(g (Ix]) + & (Iy )] -
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LA kernel is p.d.: proof (10/11)

Remark
e S: A% — R is the similarity function between letters used in the
alignment score. K;ﬂ) is only p.d. when the matrix:

(exp (Bs(a, b)))(a,b)eA2

is positive semidefinite (this is true for all 5 when s is conditionally
p.d..

@ g is the gap penalty function used in alignment score. The gap
kernel is always p.d. (with no restriction on g) because it can be
written as:

K (x,y) = exp (Bg (| x])) x exp (Bg (¥ ])) -
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LA kernel is p.d.: proof (11/11)

Lemma
The local alignment kernel is a (limit) of convolution kernel:

& “ (n-1)
KR =D Kox (K% k)" k) x ko,
n=0

As such it is p.d..

Proof (sketch)
@ By induction on n (simple but long to write).
@ See details in Vert et al. (2004).
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LA kernel computation

@ We assume an affine gap penalty:

g(0) =0,
g(n) =d+e(n—1)sin>1,

@ The LA kernel can then be computed by dynamic programming by:
3
KR (x,9) = 1+ Xa(Ixl, lyl) + Ya(lxl, yl) + M(Ix], Iy),

where M(i, ), X(i.j), Y (i.). Xa(i. ), and Ya(i,j) for 0 < i < |x],
and 0 < j < |y| are defined recursively.
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LA kernel is p.d.: proof (/)

Initialization
(M(i,0) = M(0,)) =0,
X(i,0) = X(0,/) =0,
Y(i,0) = Y(0,j) =0,
X2(i,0) = X2(0,)) =0,
[ Y2(i,0) = Y2(0,)) =0,
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LA kernel is p.d.: proof (/)

Recursion
Fori=1,...,|x|and j=1,... ]yl

M(ij) = exp(BS(xi )1+ X(i =1, 1)
+Y(i—-1,j—-1)+M(@(i—-1,j-1)|,

X(irj) = exp(Bd)M(i — 1,5) + exp(Be)X (i — 1.)),

Y(ij) = exp(Bd) [M(i,j = 1)+ X(i.j = 1)
+exp(8e) Y (i, — 1),

Xo(irj) = M(i—1,j)+ Xa(i = 1,J),

Valinj) = M(irj = 1)+ Xa(irj — 1) + Ya(i,j — 1).
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LA kernel in practice

o Implementation by a finite-state transducer in O(|x| x [x/[)
0:01

@ In practice, values are too large (exponential scale) so taking its
logarithm is a safer choice (but not p.d. anymore!)
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QOutline

@ The Kernel Jungle

@ Kernels for biological sequences

@ Application to remote homology detection
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Remote homology

Sequence similarity

@ Homologs have common ancestors
@ Structures and functions are more conserved than sequences

@ Remote homologs can not be detected by direct sequence
comparison
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SCOP database

SCOP
Fold

Superfamily Cé\ \ﬁl
Family l@ CE (- C\D O OED é)

Renot e honol ogs  C ose honol ogs
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A benchmark experiment

o Goal: recognize directly the superfamily

@ Training: for a sequence of interest, positive examples come from
the same superfamily, but different families. Negative from other
superfamilies.

o Test: predict the superfamily.
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Difference in performance

' ' ' SVM-LA ——
SVM-pairwise ---x---
I SVM-Mismatch ------
e 50 - SVM-Fisher & 7
£ %
5 ;
g 40 —E
= 3
230t
5
[}
2 20t
E
8
G
o 10
z
0
0

Performance on the SCOP superfamily recognition benchmark (from
Saigo et al., 2004).
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String kernels: Summary

@ A variety of principles for string kernel design have been proposed.

@ Good kernel design is important for each data and each task.
Performance is not the only criterion.

o Still an art, although principled ways have started to emerge.
o Fast implementation with string algorithms is often possible.

@ Their application goes well beyond computational biology.
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QOutline

o Kernels and RKHS
© Kernel Methods: Supervised Learning
© Kernel Methods: Unsupervised Learning

@ The Kernel Jungle

@ Mercer kernels and shift-invariant kernels

e Open Problems and Research Topics
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Motivations

@ The RKHS norm is related to the smoothness of functions.

@ Smoothness of a function is naturally quantified by Sobolev norms
(in particular L, norms of derivatives), or by the decay of the
Fourier transform.

@ In this section, we introduce several kernels were this link is explicit,
and we make a general link between RKHS and Green functions
defined by differential operators.
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@ The Kernel Jungle

@ Mercer kernels and shift-invariant kernels
@ Shift-invariant kernels
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Translation invariant kernels

Definition
A kernel K : RY x R? = R is called translation invariant (t.i.) if it only
depends on the difference between its argument, i.e.:

V(x,y) € R K(x,y)=r(x—Y).

Examples
@ Gaussian kernel (or RBF kernel)

K(x,y) = o sz Ixyl3

o Laplace kernel
Kx,y) = el
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In case of...

Definition

Let f € L* (RY). The Fourier transform of f, denoted f or F[f], is the
function defined for all w € R? by:

S

f(w) = /]Rd e ™@f (x) dx.
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In case of...

Properties

o f is complex-valued, continuous, tends to 0 at infinity and
[ £ {leee <[ F [l
o lffell (Rd), then the inverse Fourier formula holds:

1

Vx eRY, f(x)=
) (27)9 Jre

e w§ (w) dw.

o If f € L* (RY) is square integrable, then Parseval’s formula holds:

5 _ 1
[ 1760 "x‘(zw)d/w

. 2
f(w)‘ dw.
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Translation invariant kernels

Definition
A kernel K : RY x R? = R is called translation invariant (t.i.) if it only
depends on the difference between its argument, i.e.:

V(x,y) € R K(x,y)=r(x—Y).

Intuition
If Kist.i. and k € L1 (Rd), then

1 i(x—y).w 2
m(xy):(27r)d/Rde( V@R (w) dw

_ / R (w) eiw.xefiw.ydw

re (2m)9
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Characterization of p.d. t.i. kernels

Theorem (Bochner)

A real-valued continuous function k(x —y) on R is positive definite if
and only if it is the Fourier-Stieltjes transform of a symmetric, positive,
and finite Borel measure pu:

K@) = [ e uldw).

Remarks
e If K(0) = 1, x is a characteristic function—that is, x(z) = E,[e/**].
@ & is easy:

2
p(dw) > 0.

E aka//i(xk — X/ E ake’xk w
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RKHS of translation invariant kernels

Theorem

Let K be a translation invariant p.d. kernel, such that x is integrable on
RY as well as its Fourier transform &. The subset Hy of L, (R?) that
consists of integrable and continuous functions f such that:
. 2
, 1 g [fe)
Ik = g - dw < +o00,
2m)? Jre  R(w)

endowed with the inner product:

_ 1 fw)g (@),
(f,g) = 2n)? /Rd d

is a RKHS with K as r.k.
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Proof

Hy is a Hilbert space: exercise.
For x € RY, Ky(y) = K(x,y) = x(x — y) therefore:

Ky(w) = /e"“""/ﬁ;(u —x)du = e i (w).
This leads to Ky € H, because:

/Rx(w)< || < 52
R Aw) T Jre ’

Moreover, if f € H and x € R?, we have:

‘ 2

A

- 1 Rx(w)f(w)* es) = 1 s ) * a—iwx X
<f,KX>H(2W)d/Rd ) d =~ 2y Rdf( ) e f(x)
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Example

Gaussian kernel

corresponds to:

and

o fo ol s

In particular, all functions in H are infinitely differentiable with all
derivatives in L.
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Example

Laplace kernel

corresponds to:

n P ,y
@ =1
and
2 (242
H:{f:/ f(w)‘ Ww)dw<oo},
g

the set of functions L2 differentiable with derivatives in L? (Sobolev
norm).
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Example

Low-frequency filter

corresponds to:

Flw)=UW+9Q)—Uw-Q)

’H:{f:/wbﬂ‘?(w)‘zdw:O},

the set of functions whose spectrum is included in [—, Q].

and
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QOutline

@ The Kernel Jungle

@ Mercer kernels and shift-invariant kernels

@ Generalization to semigroups
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Generalization to semigroups (cf Berg et al., 1983)

Definition
@ A semigroup (S, 0) is a nonempty set S equipped with an
associative composition o and a neutral element e.
@ A semigroup with involution (S, 0, %) is a semigroup (S, o) together
with a mapping * : S — S called involution satisfying:
Q (sot)" =t*os* fors,teS.
Q (s*)" ' =sforseS.

Examples
@ Any group (G,0) is a semigroup with involution when we define
s* =571,
@ Any abelian semigroup (S, +) is a semigroup with involution when
we define s* = s, the identical involution.
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Positive definite functions on semigroups

Definition
Let (S, 0, %) be a semigroup with involution. A function ¢ : S — R is
called positive definite if the function:

Vs,teS, K(s,t)=p(s"ot)

is a p.d. kernel on S.

Example: translation invariant kernels

(Rd, +, —) is an abelian group with involution. A function ¢ : RY — R
is p.d. if the function
K(x,y) = p(x—y)

is p.d. on RY (translation invariant kernels).
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Semicharacters

Definition
A function p : S — C on an abelian semigroup with involution (S, +, )
is called a semicharacter if

9 p(0) =1,
Q p(s+t)=p(s)p(t) for s, t € S,
Q p(s*)=p(s) forseS.
The set of semicharacters on S is denoted by S*.

Remarks
o If x is the identity, a semicharacter is automatically real-valued.
o If (S,+) is an abelian group and s* = —s, a semicharacter has its
values in the circle group {z € C| |z| = 1} and is a group
character.
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Semicharacters are p.d.

Lemma

Every semicharacter is p.d., in the sense that:
° K(57 t) = m'
° > li1aiaiK(xi,x) >0

Proof
Direct from definition, e.g.,

n n
Yo agp(xi+x) =) aip(x)p(x)=0.
ij=1 ij=1
Examples
o ¢(t) = ePt on (R, +, Id).
e o(t) = e“ton (R, +,—).



Integral representation of p.d. functions

Definition

@ An function o : S — R on a semigroup with involution is called an
absolute value if (i) a(e) =1, (i)a(so t) < a(s)a(t), and (iii)
a(s*) = afs).

@ A function f : S — R is called exponentially bounded if there exists an
absolute value o and a constant C > 0 s.t. | f(s)| < Ca(s) for s € S.

Theorem

Let (S, +, *) an abelian semigroup with involution. A function ¢ : S — R is
p.d. and exponentially bounded (resp. bounded) if and only if it has a
representation of the form:

2() = [ ols)au(p).

where v is a Radon measure with compact support on S* (resp. on S, the set
of bounded semicharacters).
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Proof

Sketch (details in Berg et al., 1983, Theorem 4.2.5)

@ For an absolute value «, the set Pi* of a-bounded p.d. functions
that satisfy ¢(0) = 1 is a compact convex set whose extreme points
are precisely the a-bounded semicharacters.

@ If v is p.d. and exponentially bounded then there exists an absolute
value o such that ¢(0)~1p € P{.

@ By the Krein-Milman theorem there exits a Radon probability
measure on P{ having ¢(0)~1¢ as barycentre.

Remarks

@ The result is not true without the assumption of exponentially
bounded semicharacters.

@ In the case of abelian groups with s* = —s this reduces to
Bochner's theorem for discrete abelian groups, cf. Rudin (1962).
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Example 1: (R, +, Id)

Semicharacters
e S = (R4, +,/d) is an abelian semigroup.
e P.d. functions are nonnegative, because p(x) = ¢ (\/§)2
@ The set of bounded semicharacters is exactly the set of functions:

seRy — pafs) =%,
for a € [0, +00] (left as exercice).

@ Non-bounded semicharacters are more difficult to characterize; in
fact there exist nonmeasurable solutions of the equation

h(x +y) = h(x)h(y).
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Example 1: (R, +, Id) (cont.)

P.d. functions
@ By the integral representation theorem for bounded semi-characters
we obtain that a function ¢ : Ry — R is p.d. and bounded if and
only if it has the form:

o(s) = [ e du(a) + bye(s)
0
where 1 € M2 (Ry) and b > 0.

@ The first term is the Laplace transform of y. ¢ is p.d., bounded and
continuous iff it is the Laplace transform of a measure in M?% (R).
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Example 2: Semigroup kernels for finite measures (1/6)

Setting

@ We assume that data to be processed are “bags-of-points”, i.e., sets
of points (with repeats) of a space U.

@ Example : a finite-length string as a set of k-mers.

@ How to define a p.d. kernel between any two bags that only
depends on the union of the bags?

@ See details and proofs in Cuturi et al. (2005).
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Example 2: Semigroup kernels for finite measures (2/6)

Semigroup of bounded measures
@ We can represent any bag-of-point x as a finite measure on U:

X = g ai0x; ,
i

where a; is the number of occurrences on x; in the bag.

@ The measure that represents the union of two bags is the sum of
the measures that represent each individual bag.

o This suggests to look at the semigroup (M?” (i), +,/d) of
bounded Radon measures on U and to search for p.d. functions ¢
on this semigroup.
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Example 2: Semigroup kernels for finite measures (3/6)

Semicharacters

o For any Borel measurable function f : i/ — R the function
pr : MP (U) — R defined by:

pr(p) = el

is a semicharacter on (M5 (U),+).

e Conversely, p is continuous semicharacter (for the topology of weak
convergence) if and only if there exists a continuous function
f :U — R such that p = pr.

@ No such characterization for non-continuous characters, even
bounded.
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Example 2: Semigroup kernels for finite measures (4/6)

Corollary

Let U be a Hausdorff space. For any Radon measure € M (C (U))
with compact support on the Hausdorff space of continuous real-valued
functions on U endowed with the topology of pointwise convergence, the
following function K is a continuous p.d. kernel on M? (1) (endowed
with the topology of weak convergence):

) — /C N I g (F)

Remarks

The converse is not true: there exist continuous p.d. kernels that do not have
this integral representation (it might include non-continuous semicharacters)
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Example 2: Semigroup kernels for finite measures (5/6)

Example : entropy kernel

o Let X be the set of probability densities (w.r.t. some reference
measure) on U with finite entropy:

@ Then the following entropy kernel is a p.d. kernel on X for all
8> 0:
K (x, x’) — o Bh(*%)

@ Remark: only valid for densities (e.g., for a kernel density estimator
from a bag-of-parts)
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Example 2: Semigroup kernels for finite measures (6/6)

Examples : inverse generalized variance kernel

o Let &/ =R9 and MY (U) be the set of finite measure x with
second order moment and non-singular variance

T(u) = p o] = pd "

o Then the following function is a p.d. kernel on MY (i), called the
inverse generalized variance kernel:

1

K (Ma //) =7 N
detX (%)

o Generalization possible with regularization and kernel trick.
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Application of semigroup kernel

11 =0.0552 =), =0.0441 /| =0.0497
3,,=0.0013 55, =0.0237 =y, =0.0139

Weighted linear PCA of two different measures, with the first PC shown.
Variances captured by the first and second PC are shown. The
generalized variance kernel is the inverse of the product of the two
values.
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Kernelization of the IGV kernel

Motivations
@ Gaussian distributions may be poor models.

@ The method fails in large dimension

Solution
© Regularization:

1
= (z(4) +2ka)

@ Kernel trick: the non-zero eigenvalues of UUT and UTU are the
same = replace the covariance matrix by the centered Gram
matrix (technical details in Cuturi et al., 2005).
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[llustration of kernel IGV kernel

0.168 0.184

e

0.142 0.122

= -
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Semigroup kernel remarks

Motivations

@ A very general formalism to exploit an algebraic structure of the
data.

o Kernel IVG kernel has given good results for character recognition
from a subsampled image.

@ The main motivation is more generally to develop kernels for
complex objects from which simple “patches” can be extracted.

@ The extension to nonabelian groups (e.g., permutation in the
symmetric group) might find natural applications.
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QOutline

@ The Kernel Jungle

@ Mercer kernels and shift-invariant kernels

@ Mercer kernels
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Mercer kernels

Definition
A kernel K on a set X is called a Mercer kernel if:
@ X is a compact metric space (typically, a closed bounded subset of
RY).
Q@ K:X xX — Ris a continuous p.d. kernel (w.r.t. the Borel
topology)

Motivations

@ We can exhibit an explicit and intuitive feature space for a large
class of p.d. kernels

@ Historically, provided the first proof that a p.d. kernel is an inner
product for non-finite sets X (Mercer, 1905).

@ Can be thought of as the natural generalization of the factorization
of positive semidefinite matrices over infinite spaces.
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Sketch of the proof

© The kernel matrix when X is finite becomes a linear operator when
X is a metric space.

@ The matrix was positive semidefinite in the finite case, the linear
operator is self-adjoint and positive in the metric case.

© The spectral theorem states that any compact linear operator
admits a complete orthonormal basis of eigenfunctions, with
non-negative eigenvalues (just like positive semidefinite matrices
can be diagonalized with nonnegative eigenvalues).

© The kernel function can then be expanded over basis of
eigenfunctions as:

K(x,t) = Nethe () ¥ (1),
k=1

where \; > 0 are the non-negative eigenvalues.
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In case of...

Definition
Let H be a Hilbert space
@ A linear operator is a continuous linear mapping from H to itself.

@ A linear operator L is called compact if, for any bounded sequence
{fa}721, the sequence {Lf,}>2; has a subsequence that converges.

o L is called self-adjoint if, for any f, g € H:

(f,Lg) = (Lf,g).
o L is called positive if it is self-adjoint and, for any f € H:

(F,Lf) >0.
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An important lemma

The linear operator

o Let v be any Borel measure on X, and L% (X) the Hilbert space of
square integrable functions on X.

e For any function K : X2 — R, let the transform:

VF e L (X), (Lxf)(x)= /K(x,t)f(t) dv (t).

Lemma

If K is a Mercer kernel, then Lk is a compact and bounded linear
operator over L% (X), self-adjoint and positive.
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Proof (1/6)
Lk is a mapping from L% (X)) to Ly (X)
For any f € L5 (X) and (x1,x1) € X2
| Lf (x1) — Lkf (x2) | = ‘ /(K(xl,t) — K (x2,t)) f (t) dv(t)

<K (xas ) = K (x2,) (I F
(Cauchy-Schwarz)

< \/Mrt‘rwe%!K(XLt)—K(Xz,tHHfH-

K being continuous and X compact, K is uniformly continuous,
therefore Ly f is continuous. In particular, Lif € L5 (X) (with the slight
abuse of notation C (X)) C L§ (X)). O
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Proof (2/6)

Lk is linear and continuous

o Linearity is obvious (by definition of Lx and linearity of the
integral).
@ For continuity, we observe that for all f € L (X') and x € X

[ (LkF) ()| = ]/K(x,of(t) v (1)
< (@) max| K (x.8)[| ]
< T @CKI F

with Ck = maxytex | K (x,t)|. Therefore:
>
It ll= [ taf P av(®) <@ Gl £
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Proof (3/6)

Criterion for compactness

In order to prove the compactness of Lx we need the following criterion.
Let C(X') denote the set of continuous functions on X endowed with
infinite norm || f ||oo = maxxex | f (x) |.

A set of functions G C C (X) is called equicontinuous if:

Ve > 0,36 > 0,V (x,y) € A2,
[x—yl|<d = VgeG,lg(x)—g(y)l<e

Ascoli Theorem

A part H C C(X) is relatively compact (i.e., its closure is compact) if
and only if it is uniformly bounded and equicontinuous.
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Proof (4/6)

Lk is compact

Let (,),>0 be a bounded sequence of L5 (X) (|| f, || < M for all n).
The sequence (Lkfn),q is @ sequence of continuous functions,
uniformly bounded because:

'Lk o lloo < VV(X)Ck| fall < Vv (X)CkM.

It is equicontinuous because:

|LKf,, (Xl) — Lf, (X2)| < \/l/(.)() rtnea)zd K(Xl,t) = K(Xz,t) ’ M.

By Ascoli theorem, we can extract a sequence uniformly convergent in
C(X), and therefore in LY (X). O
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Proof (5/6)

L is self-adjoint
K being symmetric, we have for all f, g € H:

(f, Lg) = /f(x)(Lg) (x) v (dx)

://f(x)g(t)K(x,t)l/(dx)z/(dt) (Fubini)
= (Lf,g).
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Proof (6/6)

Lk is positive
We can approximate the integral by finite sums:

(f, Lf>://f(x)f(t)K(x,t)u(dx)y(dt)

= I|m 2l ZK(XHXJ (xi) f (x;)

k—oo k2
ij=1

>0

9

because K is positive definite.  [J
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Diagonalization of the operator
We need the following general result:

Spectral theorem

Let L be a compact linear operator on a Hilbert space H. Then there
exists in H{ a complete orthonormal system (11,5, ...) of eigenvectors
of L. The eigenvalues (A1, A2, ...) are real if L is self-adjoint, and
non-negative if L is positive.

Remark

This theorem can be applied to L. In that case the eigenfunctions ¢
associated to the eigenfunctions A, # 0 can be considered as continuous
functions, because:

1
=
(2 » YKk
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Main result

Mercer Theorem

Let X be a compact metric space, v a Borel measure on X, and K a
continuous p.d. kernel. Let (A1, A2, ...) denote the nonnegative
eigenvalues of Lk and (1,2, ...) the corresponding eigenfunctions.
Then all ¢ are continuous functions, and for any x,t € X

K(x,t) = At (x) e (8)
k=1

where the convergence is absolute for each x,t € X, and uniform on
X xX.
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Mercer kernels as inner products

Corollary
The mapping

O

X (\/)‘_klbk (X))k

is well defined, continuous, and satisfies

eN

K(x,t) = (®(x),®(t))p .
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Proof of the corollary

Proof

By Mercer theorem we see that for all x € X', > Ak1b? (x) converges to
K (x,x) < oo, therefore ® (x) € /2.
The continuity of ® results from:

[ (x) = @ (1) I =D M (v (x) = (£))?

k=1
= K (x,x) + K (t,t) — 2K (x,t)
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Summary

@ This proof extends the proof valid when X is finite.
@ This is a constructive proof, developed by Mercer (1905).

@ Compactness and continuity are required. For instance, for
X = RY, the eigenvalues of:

/ K (x,8) 6 (£) = M (1)
X

are not necessarily countable, Mercer theorem does not hold. Other
tools are thus required such as the Fourier transform for
shift-invariant kernels.
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RKHS of Mercer kernels

o Let X be a compact metric space, and K a Mercer kernel on X
(symmetric, continuous and positive definite).

@ We have expressed a decomposition of the kernel in terms of the
eigenfunctions of the linear convolution operator.

@ In some cases this provides an intuitive feature space.
@ The kernel also has a RKHS, like any p.d. kernel.

@ Can we get an intuition of the RKHS norm in terms of the
eigenfunctions and eigenvalues of the convolution operator?
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Reminder: expansion of Mercer kernel

Theorem
Denote by Ly the linear operator of L} (') defined by:

VF € L5 (X)), (Lxf) (%) :/K(x,t) £ () du (t).

Let (A1, A2, ...) denote the eigenvalues of Lk in decreasing order, and
(11,2, . ..) the corresponding eigenfunctions. Then it holds that for
any x,y € X

K(x,y) = Netb () i (y) = (® (x), D (y)) e
k=1

with & : X' = /2 defined par @ (x) = (V Akt (X)) ooy
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RKHS construction

Theorem

Assuming that all eigenvalues are positive, the RKHS is the Hilbert
space:

00 oo 2
Hy = {feLZ(X):fZ;aﬂ/),-, with kz_:lii <oo}

endowed with the inner product:

o0

(f 80k =) af\bk, for f =) axtu, 8 = Y brthi.
P P

.

Remark

If some eigenvalues are equal to zero, then the result and the proof remain valid
on the subspace spanned by the eigenfunctions with positive eigenvalues.
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Proof (1/6)

Sketch

In order to show that Hy is the RKHS of the kernel K we need to show
that:

© it is a Hilbert space of functions from X to R,
Q foranyx e X, K, € Hk ,
Q forany x € X and f € H, f (x) = (f, K«)p, -
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Proof (2/6)

Hy is a Hilbert space
Indeed the function:

1
L2 L% (X) — Hk

D ai = Y ai/ i
i=1 i=1

is an isomorphism, therefore Hy is a Hilbert space, like L} (x). O
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Proof (3/6)

Hy is a space of continuous functions
For any f = ", aj9; € Hk, and x € X, we have (if f(x) makes sense):

1
= [l K (x,%)2
= [l v Ck -

Therefore convergence in ||. ||, implies uniform convergence for
functions.
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Proof (4/6)

Hy is a space of continuous functions (cont.)

Let now f, = 27:1 ajy; € Hk. The functions ); are continuous
functions, therefore f, is also continuous, for all n. The f,'s are
convergent in Hy, therefore also in the (complete) space of continuous
functions endowed with the uniform norm.

Let f. the continuous limit function. Then f. € L% (X) and

| fo — fc HLg(X) njoo 0.

On the other hand,
1 = falligony < Ml = fallie = 0,

therefore f = f.. [
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Proof (5/6)

KX & HK

For any x € X let, for all i, a; = \j); (x). We have:
L= i (x)? = K (x,x) < oo,
=17 =1

therefore ¢, 1= E?il ajY; € Hk. As seen earlier the convergence in Hi
implies pointwise convergence, therefore for any t € X:

px (t) = Z aipi (t) = Z)\,@ZJ, )i (t) = K (x,t),

=il

therefore p, = Ky € Hgx. O
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Proof (6/6)

f (%) = (f, Ky
Let £ =>"7°; aihi € Hi, et x € X. We have seen that:

K=Y Aithi (x) ¢,
i—1

therefore:
N (X) e
(Ko = 2 2 =S a0 = £
i=1 ! i=1

which concludes the proof. [
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Remarks

o Although Hyk was built from the eigenfunctions of Lk, which
depend on the choice of the measure v (x), we know by uniqueness
of the RKHS that Hk is independant of v and L.

@ Mercer theorem provides a concrete way to build the RKHS, by
taking linear combinations of the eigenfunctions of Lk (with
adequately chosen weights).

@ The eigenfunctions (1;);cy form an orthogonal basis of the RKHS:

1
A
The RKHS is a well-defined ellipsoid with axes given by the
eigenfunctions.

Wiy =0 siiFd il =
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QOutline

@ The Kernel Jungle

@ Mercer kernels and shift-invariant kernels

@ RKHS and Green functions
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Motivations

@ The RKHS norm is related to the smoothness of functions.

@ Smoothness of a function is naturally quantified by Sobolev norms
(in particular L, norms of derivatives).

@ In this section we make a general link between RKHS and Green
functions defined by differential operators.
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A simple example

Explicit choice of smoothness
Let

H = {f :[0,1] = R, absolutely continuous, f" € L*([0,1]), f (0) = 0} .

endowed with the bilinear form:
1
¥(f.g) € P2 f.8) = [ F(0)e (u)du.
0

Note that (f, f),, measures the smoothness of f:

1
(P = [ 7 o= 11 F oy
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The RKHs point of view

Theorem
H is a RKHS with r.k. given by:

V(x,y)€[0,1]?, K(x,y)=min(x,y).
Remark

Therefore, || f |3z = || " ||2: the RKHS norm is precisely the smoothness
functional defined in the simple example.
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Proof (1/3)

Sketch
We need to show that

o H is a Hilbert space
e Vx €0,1], Ky € H,
o V(x,f) €[0,1] x H,(f, Kx)y = f (x).

Julien Mairal (Inria) 337/564



Proof (1/3)

Sketch
We need to show that

o H is a Hilbert space
e Vx €0,1], Ky € H,
o V(x,f) €[0,1] x H,(f, Kx)y = f (x).
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Proof (2/3)

‘H is a pre-Hilbert space

@ f absolutely continuous implies differentiable almost everywhere,
and

Vx €[0,1], f(x)=f(0)+ /X f'(u)du.
0

e For any f € H, f(0) = 0 implies by Cauchy-Schwarz:

£ (x)] = \/O Fu)du| < vx (/0 f’(u)2du)§ N

Therefore, || |y =0 = f =0, showing that (.,.),, is an inner
product. H is thus a pre-Hilbert space.

Julien Mairal (Inria) 338/564



Proof (2/3)

‘H is a Hilbert space
@ To show that H is complete, let (f,)nen @ Cauchy sequence in H

o (f)nen is a Cauchy sequence in L2[0, 1], thus converges to
g € L%[0,1]

@ By the previous inequality, (f,(x))nen is a Cauchy sequence and
thus converges to a real number f(x), for any x € [0, 1]. Moreover:

f(x) = Iilr;n fo(x) = Iim/oX fi(u)du = /OX g(u)du,

n

showing that f is absolutely continuous and f’ = g almost
everywhere; in particular, ' € L2[0,1].

e Finally, £(0) = lim, f,(0) = 0, therefore f € H and
lim o= fllse =11 f' — &nlli2p0y =0-
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Proof (2/3)

Vx € [0,1], Ky € H
Let Ki(y) = K(x,y) = min(x, y) sur [0, 1]*:

K(s,t)

t

S 1
K is differentiable except at s, has a square integrable derivative, and
K.(0) = 0, therefore K, € H for all x € [0,1]. O
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Proof (3/3)

For all x, f, (f, Ky),, = f (x)
For any x € [0,1] and f € H we have:

1 X
(f, KX>H:/0 f'(u)K;(u)du:/o F(u)du = F(x),

which shows that K is the r.k. associated to H. [
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Generalization

Theorem

Let X = R? and D a differential operator on a class of functions A such
that, endowed with the inner product:

V(fag)€H27 <f’g>H:<Df7 Dg>L2(X)’

it is a Hilbert space.
Then H is a RKHS that admits as r.k. the Green function of the
operator D*D, where D* denotes the adjoint operator of D.
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In case of...

Green functions
Let the differential equation on H:

f=Dg,
where g is unknown. In order to solve it we can look for g of the form:
g()= [ k(xNf()d
for some function k : X2 — R. k must then satisfy, for all x € X,
f (x) = Dg (x) = (Dhx, ) 2 -

k is called the Green function of the operator D.
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Proof

Let H be a Hilbert space endowed with the inner product:

<f7g>X = <Df7 Dg>L2(X) 5

and K be the Green function of the operator D*D. For all x € X,
K, € H because:

<DKX, DKX>L2(X) = <D*DKX, KX>L2(X) = KX (X) < 0.
Moreover, for all f € H and x € X, we have:
f(X) = <D*DKX, f)LQ(X) - <DKX, Df>L2(X) == <KX7 f>7'[ ;

which shows that H is a RKHS with K as r.k. O
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Kernel examples: Summary

@ Many notions of smoothness can be translated as RKHS norms for
particular kernels (eigenvalues convolution operator, Sobolev norms
and Green operators, Fourier transforms...).

@ There is no “uniformly best kernel”, but rather a large toolbox of
methods and tricks to encode prior knowledge and exploit the
nature or structure of the data.

@ In the following sections we focus on particular data and
applications to illustrate the process of kernel design.
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QOutline

o Kernels and RKHS
© Kernel Methods: Supervised Learning
© Kernel Methods: Unsupervised Learning

@ The Kernel Jungle

o Kernels for graphs

e Open Problems and Research Topics

Julien Mairal (Inria)
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QOutline

@ The Kernel Jungle

o Kernels for graphs
@ Motivation

Julien Mairal (Inria) 347/564



Virtual screening for drug discovery

active

HIJ

1 )
KO
active

NCI AIDS screen results (from http://cactus.nci.nih.gov).
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Image retrieval and classification

From Harchaoui and Bach (2007).
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Our approach
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Our approach

© Represent each graph x in X’ by a vector ®(x) € H, either explicitly
or implicitly through the kernel

K(x,x') = &(x) " d(x).
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Our approach

© Represent each graph x in X’ by a vector ®(x) € H, either explicitly
or implicitly through the kernel

K(x,x') = &(x) " d(x).

@ Use a linear method for classification in H.
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QOutline

@ The Kernel Jungle

o Kernels for graphs

@ Explicit enumeration of features
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The approach

© Represent explicitly each graph x by a vector of fixed dimension
d(x) € RP.
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The approach

© Represent explicitly each graph x by a vector of fixed dimension
d(x) € RP.

@ Use an algorithm for regression or pattern recognition in RP.
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Example

2D structural keys in chemoinformatics

@ Index a molecule by a binary fingerprint defined by a limited set of
predefined structures

@ AN ANy A = N

nya

I\HHHHHIHHHI:!

a6 U9%

@ Use a machine learning algorithm such as SVM, kNN, PLS,
decision tree, etc.
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Challenge: which descriptors (patterns)?

DR ARNTA S
NIV

| BENEEEEEEEEE EEEEEEN N

T

@ Expressiveness: they should retain as much information as possible
from the graph

o Computation: they should be fast to compute

@ Large dimension of the vector representation: memory storage,
speed, statistical issues

354/564
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Indexing by substructures

@ Often we believe that the presence or absence of particular
substructures may be important predictive patterns

@ Hence it makes sense to represent a graph by features that indicate
the presence (or the number of occurrences) of these substructures

@ However, detecting the presence of particular substructures may be
computationally challenging...
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Subgraphs

Definition
A subgraph of a graph (V, E) is a graph (V’, E’) with V' C V and

! ceil
Jesss e 0ce
o seeesed

A graph and all its connected subgraphs.

Julien Mairal (Inria) 356/564



Indexing by all subgraphs?

OO
(®(0,...,0,1,0,...,0,1,0,...)
) t
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Indexing by all subgraphs?

@D
(®(0,...,0,1,0,...,0,1,0,...)
4 t
()
e’o

Computing all subgraph occurrences is NP-hard.

Theorem
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Indexing by all subgraphs?

@D
(®(0,...,0,1,0,...,0,1,0,...)
4 t
()
e’o

Computing all subgraph occurrences is NP-hard.

Theorem

Proof

@ The linear graph of size n is a subgraph of a graph X with n
vertices iff X has a Hamiltonian path;

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete.

Julien Mairal (Inria) 357/564



Paths

Definition
@ A path of a graph (V/, E) is a sequence of distinct vertices
Vi,...,Vp € V (i #j = v; # vj) such that (vj, vi41) € E for
i=1,...n—1

o Equivalently the paths are the linear subgraphs.
: | NONON
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Indexing by all paths?

Julien Mairal (Inria) 359/564



Indexing by all paths?

Theorem
Computing all path occurrences is NP-hard.
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Indexing by all paths?

Theorem

Computing all path occurrences is NP-hard.

Proof
Same as for subgraphs.
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Indexing by what?

Substructure selection

We can imagine more limited sets of substructures that lead to more
computationnally efficient indexing (non-exhaustive list)

@ substructures selected by domain knowledge (MDL fingerprint)
@ all paths up to length k (Openeye fingerprint, Nicholls 2005)
@ all shortest path lengths (Borgwardt and Kriegel, 2005)

o all subgraphs up to k vertices (graphlet kernel, Shervashidze et al.,
2009)

e all frequent subgraphs in the database (Helma et al., 2004)
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Example: Indexing by all shortest path lengths and their
endpoint labels

@‘@ ® (0, ,0,2,0, ,0,1,0, )
@ @ 1 3
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Example: Indexing by all shortest path lengths and their
endpoint labels

@‘@@, (0,...,0,2,0,...,0,1,0,...)
@ . -

Properties (Borgwardt and Kriegel, 2005)
@ There are O(n?) shortest paths.

@ The vector of counts can be computed in O(n3) with the
Floyd-Warshall algorithm.
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Example: Indexing by all subgraphs up to k vertices

@D
(®(0,...,0,1,0,...,0,1,0,...)
4 t
()
e’o

Julien Mairal (Inria) 362/564



Example: Indexing by all subgraphs up to k vertices

@D
(®(0,...,0,1,0,...,0,1,0,...)
4 t
()
e’o

Properties (Shervashidze et al., 2009)

o Naive enumeration scales as O(n*).

o Enumeration of connected graphlets in O(nd“~1) for graphs with
degree < d and k <5.

@ Randomly sample subgraphs if enumeration is infeasible.
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Summary

@ Explicit computation of substructure occurrences can be
computationnally prohibitive (subgraphs, paths);

@ Several ideas to reduce the set of substructures considered:

@ In practice, NP-hardness may not be so prohibitive (e.g., graphs
with small degrees), the strategy followed should depend on the
data considered.
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QOutline

@ The Kernel Jungle

o Kernels for graphs

@ Challenges
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The idea
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The idea

@ Represent implicitly each graph x in X by a vector ®(x) € H
through the kernel

K(x,x') = &(x) " d(x).
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The idea

@ Represent implicitly each graph x in X by a vector ®(x) € H
through the kernel

K(x,x') = &(x) " d(x).

@ Use a kernel method for classification in H.
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Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it distinguishes non-isomorphic graphs, i.e.:

VGl,GQEX, dK(Gl,Gz):O — Glng.
Equivalently, ®(G;) # ®(G) if G; and Gy are not isomorphic.
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Expressiveness vs Complexity

Definition: Complete graph kernels
A graph kernel is complete if it distinguishes non-isomorphic graphs, i.e.:

VGl,GQEX, dK(Gl,Gz):O — Glng.
Equivalently, ®(G;) # ®(G) if G; and Gy are not isomorphic.

Expressiveness vs Complexity trade-off

o If a graph kernel is not complete, then there is no hope to learn all
possible functions over X’: the kernel is not expressive enough.

@ On the other hand, kernel computation must be tractable, i.e., no
more than polynomial (with small degree) for practical applications.

@ Can we define tractable and expressive graph kernels?
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Complexity of complete kernels

Proposition (Gartner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.
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Complexity of complete kernels

Proposition (Gartner et al., 2003)

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem.

Proof

@ For any kernel K the complexity of computing dk is the same as
the complexity of computing K, because:

dK(Gl, G2)2 = K(Gl, Gl) + K(Gg, Gz) = 2K(G1, Gg) .

o If K is a complete graph kernel, then computing dk solves the
graph isomorphism problem (dx(Gi, G2) =0 iff G; ~ Gp). O
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Subgraph kernel

Definition
o Let (Ag)cor be a set or nonnegative real-valued weights
o For any graph G € X and any connected graph H € X, let

®4(G) = | {G"is a subgraph of G : G' ~ H}| .
@ The subgraph kernel between any two graphs G; and G € X' is

defined by:
> AOu(GOH(G).

Ksubgraph(Gla G2) -
Hex
H connected

\2)
I ) (0, 7 . , -
5
4
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Subgraph kernel complexity

Proposition (Gartner et al., 2003)
Computing the subgraph kernel is NP-hard.
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Subgraph kernel complexity

Proposition (Gartner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (1/2)
o Let P, be the path graph with n vertices.
@ Subgraphs of P, are path graphs:

®(P,) =nep, +(n—1)ep, + ...+ ep, .

@ The vectors ®(Py),...,P(P,) are linearly independent, therefore:
ép, = Za;q)(P;),
i=1

where the coefficients «; can be found in polynomial time (solving
an n x n triangular system).
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Subgraph kernel complexity

Proposition (Gartner et al., 2003)
Computing the subgraph kernel is NP-hard.

Proof (2/2)
o If G is a graph with n vertices, then it has a path that visits each

node exactly once (Hamiltonian path) if and only if ®(G)"ep, > 0,
i.e.,

n n
CD(G)T (Z a,-d)(P,-)) = ZaiKsubgraph(Gy Pi) >0.
i=1 i=1

@ The decision problem whether a graph has a Hamiltonian path is
NP-complete. [
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Path kernel

Definition
The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1, G2) = Z AHPH(G1)PH(G2),
HeP

where P C X is the set of path graphs.
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Path kernel

Definition
The path kernel is the subgraph kernel restricted to paths, i.e.,

Kpath(G1, G2) = Z AHPH(G1)PH(G2),
HeP

where P C X is the set of path graphs.

Proposition (Gartner et al., 2003)
Computing the path kernel is NP-hard.
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Summary

Expressiveness vs Complexity trade-off
@ It is intractable to compute complete graph kernels.
@ It is intractable to compute the subgraph kernels.

@ Restricting subgraphs to be linear does not help: it is also
intractable to compute the path kernel.

@ One approach to define polynomial time computable graph kernels
is to have the feature space be made up of graphs homomorphic to
subgraphs, e.g., to consider walks instead of paths.
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QOutline

@ The Kernel Jungle

o Kernels for graphs

@ Walk-based kernels

Julien Mairal (Inria) 373/564



Walks

Definition
e A walk of a graph (V, E) is sequence of vy, ..., vp € V such that
(vi,vir1) € Efori=1,..., n—1.
o We note W,(G) the set of walks with n vertices of the graph G,
and W(G) the set of all walks.

! 2232
Lodedole s

o e 0 Cede e foao
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Walks # paths
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Walk kernel

Definition
o Let S, denote the set of all possible label sequences of walks of
length n (including vertex and edge labels), and S = U,>1S,.
e For any graph X let a weight Ag(w) be associated to each walk
w € W(G).
o Let the feature vector ®(G) = ($s(G)),s be defined by:

Z AG(w)1 (s is the label sequence of w) .
weW(G)
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Walk kernel

Definition
o Let S, denote the set of all possible label sequences of walks of
length n (including vertex and edge labels), and S = U,>1S,.

e For any graph X let a weight Ag(w) be associated to each walk
w € W(G).
o Let the feature vector ®(G) = ($s(G)),s be defined by:

Z AG(w)1 (s is the label sequence of w) .
weW(G)

o A walk kernel is a graph kernel defined by:

Kuaik(G1, Go) = Y &5(Gy)®
seS
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Walk kernel examples

Examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, O otherwise. It compares two graphs through their
common walks of length n.
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Walk kernel examples

Examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, O otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with Ag(w) = Pg(w), where
P¢ is a Markov random walk on G. In that case we have:

K(Gi, G2) = P(label(Wy) = label(W,))

9

where W; and W, are two independent random walks on G; and
Gy, respectively (Kashima et al., 2003).
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Walk kernel examples

Examples

@ The nth-order walk kernel is the walk kernel with Ag(w) = 1 if the
length of w is n, O otherwise. It compares two graphs through their
common walks of length n.

@ The random walk kernel is obtained with Ag(w) = Pg(w), where
P¢ is a Markov random walk on G. In that case we have:

K(Gi, G2) = P(label(Wy) = label(W,))

where W; and W, are two independent random walks on G; and
Gy, respectively (Kashima et al., 2003).

@ The geometric walk kernel is obtained (when it converges) with
Mg (w) = pleneth(w) for B> 0. In that case the feature space is of
infinite dimension (Gartner et al., 2003).
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Computation of walk kernels

Proposition

These three kernels (nth-order, random and geometric walk kernels) can
be computed efficiently in polynomial time.
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Product graph

Definition
Let G1 = (V4, E1) and Gy = (V2, Ep) be two graphs with labeled vertices.
The product graph G = G; x G, is the graph G = (V, E) with:

Q@ V={(vi,w) € Vi x Vo : vy and v, have the same label} ,

Q E=
{((vi,v2),(v{, ) € V x V : (v1,v]) € E1 and (w2, V}) € Ex}.

4c 4e
Gl 2 Gl x &
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Walk kernel and product graph

Lemma
There is a bijection between:

@ The pairs of walks wg € W,(G1) and wy € W,(Gy) with the same
label sequences,

@ The walks on the product graph w € W,(G1 x Gy).
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Walk kernel and product graph

Lemma
There is a bijection between:

@ The pairs of walks wg € W,(G1) and wy € W,(Gy) with the same
label sequences,

@ The walks on the product graph w € W,(G1 x Gy).

Corollary

Kuaik(G1, G2) = > &5(G1)®
seS

= > A (W) A (wa)L(I(w) = I(ws))

(w1,w2)EW(G1)XW(G1)

= Z >‘G1><G2(W)'

wEW(G1x Gp)
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Computation of the nth-order walk kernel

@ For the nth-order walk kernel we have A\g, «g,(w) = 1 if the length
of w is n, 0 otherwise.

@ Therefore:

Knth-order (Gl, GQ) = Z 1.
WEWn(Gl X G2)

@ Let A be the adjacency matrix of G; x G,. Then we get:

Knth-order Gla G2 Z [An],’J — ].TAn].

e Computation in O(n|V4||V2|dida), where d; is the maximum degree
of G,'.
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Computation of random and geometric walk kernels

@ In both cases \g(w) for a walk w = v5 ... v, can be decomposed
as:

Ag(vy .. =)\ (v1 H)\ (vie1,vi)

o Let A; be the vector of A(v) and A; be the matrix of Af(v,V/):

Kwaik (G, G2) = Z > N [T vie1w)
i=2

n=1 weW,(G1x G)

=> NI
n=0
=A(I—A) 11

e Computation in O(|V1|3|V2]3).

Julien Mairal (Inria) 382/564



Extensions 1: Label enrichment

Atom relabeling with the Morgan index (Mahé et al., 2004)

1 2 4
1 1 2 2 4 5
q q
1 ol 2 ol 4 03
No Morgan Indices ‘01 Order 1indices (‘I‘)l Order 2 indices ﬂm

@ Compromise between fingerprints and structural keys.
@ Other relabeling schemes are possible.

e Faster computation with more labels (less matches implies a smaller
product graph).
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Extension 2: Non-tottering walk kernel

Tottering walks

A tottering walk is a walk w = vy ... v, with v; = v;,» for some i.

@ (@ VYon-tottering

@ (O —@ rTottering

o Tottering walks seem irrelevant for many applications.

@ Focusing on non-tottering walks is a way to get closer to the path
kernel (e.g., equivalent on trees).
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Computation of the non-tottering walk kernel (Mahé et
al., 2005)

@ Second-order Markov random walk to prevent tottering walks

@ Written as a first-order Markov random walk on an augmented
graph

e Normal walk kernel on the augmented graph (which is always a
directed graph).

@«—@f@
O
Vd
H—C/ —p @) \%@
Sa ‘@L@
~
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Extension 3: Subtree kernels

- Hi T

e
rza rIa ola ola
044 014 .ja OJ@

Remark: Here and in subsequent slides by subtree we mean a tree-like
pattern with potentially repeated nodes and edges.
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Example: Tree-like fragments of molecules

o N C ::> e
\ Nu—o

N— N—C—C—C
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Computation of the subtree kernel (Ramon and Gartner,
2003; Mahé and Vert, 2009)

o Like the walk kernel, amounts to computing the (weighted) number
of subtrees in the product graph.

@ Recursion: if 7 (v, n) denotes the weighted number of subtrees of
depth n rooted at the vertex v, then:

T(v,n+1) = Z H)\ v,V ,n),

RCN(v) V'ER

where N (v) is the set of neighbors of v.

@ Can be combined with the non-tottering graph transformation as
preprocessing to obtain the non-tottering subtree kernel.
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Back to label enrichment

Link between the Morgan index and subtrees

Recall the Morgan index:

’ H ’ |
No Morgan Indices  O1 Order 1 indices 01 Order 2 indices 03

The Morgan index of order k at a node v in fact corresponds to the
number of leaves in the k-th order full subtree pattern rooted at v.

Z N\
© _;%(%@

A full subtree pattern of order 2 rooted at node 1.

Julien Mairal (Inria)
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Label enrichment via the Weisfeiler-Lehman algorithm

A slightly more involved label enrichment strategy (Weisfeiler and
Lehman, 1968) is exploited in the definition and computation of the
Weisfeiler-Lehman subtree kernel (Shervashidze and Borgwardt, 2009).

. . . (e —®)
@ Multiset-label determination .
and sorting @ ©
(@ @
Cebedd>—CbgeD ad — f
Label compression ‘ bee — g
° P GM"@ Gbde ——
daace —— |

Gd> ad> b

© Relabeling 0&‘0.
® O @§§’
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Label enrichment via the Weisfeiler-Lehman algorithm

A slightly more involved label enrichment strategy (Weisfeiler and
Lehman, 1968) is exploited in the definition and computation of the
Weisfeiler-Lehman subtree kernel (Shervashidze and Borgwardt, 2009).

. . . (e —®)
@ Multiset-label determination ‘
and sorting ©

/

@

f o

CoeD ad

Label compression bice

° P @zo;\@ Gbde
d,aace

Gd> ad> b

(D—@Q
© Relabelin \
® O %g
Compressed labels represent full subtree patterns.
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Weisfeiler-Lehman (WL) subtree kernel

(1)

(G)=(2’171l1l1/2l l1/0l l1/0l1)
(pWLV”bW" abcdef h i k I m
y (G)=(1,2,1,1,1,1,1,0,1,1,0,1,1)
Whsubtree abcdefghijklIlm
L Il I

Counts of Counts of

original compressed

G ® ® node labels node labels

Properties

@ The WL features up to the k-th order are computed in O(|E k).

@ Similarly to the Morgan index, the WL relabeling can be exploited
in combination with any graph kernel (that takes into account

categorical node labels) to make it more expressive (Shervashidze et
al., 2011).
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@ The Kernel Jungle

o Kernels for graphs

@ Applications
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Application in chemoinformatics (Mahé et al., 2005)

MUTAG dataset
@ aromatic/hetero-aromatic compounds

@ high mutagenic activity /no mutagenic activity, assayed in
Salmonella typhimurium.

@ 188 compounds: 125 + / 63 -

Results

10-fold cross-validation accuracy

Method ‘ Accuracy
Progoll 81.4%
2D kernel | 91.2%

Julien Mairal (Inria) 393/564



2D subtree vs walk kernels

Subtrees

D01VI6SY
us
9228-INdx
v-LT0N
29551
(81)09-1H
W30-0:

Screening of inhibitors for 60 cancer cell lines.

394/564
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Comparison of several graph feature extraction
methods/kernels (Shervashidze et al., 2011)

10-fold cross-validation accuracy on garph classification problems in
chemo- and bioinformatics:

@ NCI1 and NCI109 - active/inactive compounds in an anti-cancer screen

@ ENZYMES - 6 types of enzymes from the BRENDA database

’ Method/Data Set H NCI1 H NCI109 H ENZYMES H
WL subtree || 82.10 (£ 0.18) || 82.46 (L£0.24) || 52.22 (£1.26)
WL shortest path || 84.55 (+0.36) || 83.53 (+0.30) || 59.05 (+1.05)
Ramon & Gartner || 61.86 (£0.27) 61.67 (£0.21) 13.35 (£0.87)
Geometric p-walk || 58.66 (+£0.28) || 58.36 (£0.94) || 27.67 (+0.95)
Geometric walk || 64.34 (£0.27) || 63.51 (+ 0.18) || 21.68 (+0.94)
Graphlet count || 66.00 (+0.07) || 66.59 (+0.08) || 32.70 (+1.20)
Shortest path || 73.47 (£0.11) || 73.07 (£0.11) || 41.68 (£1.79)
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Image classification (Harchaoui and Bach, 2007)

COREL14 dataset

@ 1400 natural images in 14 classes

e Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination

(M).

Julien Mairal (Inria)

Test error
o o

Performance comparison on Corel14

H w ™™ wTwW
Kernels
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Summary: graph kernels

What we saw
@ Kernels do not allow to overcome the NP-hardness of subgraph
patterns.
@ They allow to work with approximate subgraphs (walks, subtrees) in
infinite dimension, thanks to the kernel trick.
@ However: using kernels makes it difficult to come back to patterns
after the learning stage.
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Outline
o Kernels and RKHS
© Kernel Methods: Supervised Learning

© Kernel Methods: Unsupervised Learning

@ The Kernel Jungle

o Kernels on graphs

e Open Problems and Research Topics

Julien Mairal (Inria)
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@ The Kernel Jungle

o Kernels on graphs
@ Motivation
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Graphs

Motivation

Data often come in the form of nodes in a graph for different reasons:
@ by definition (interaction network, internet...)
@ by discretization/sampling of a continuous domain

@ by convenience (e.g., if only a similarity function is available)
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Example: web
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Example: protein-protein interaction
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Kernel on a graph

@ We need a kernel K (x,x") between nodes of the graph.

o Example: predict protein functions from high-throughput
protein-protein interaction data.
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General remarks

Strategies to design a kernel on a graph

@ X being finite, any symmetric semi-definite matrix K defines a valid
p.d. kernel on X.
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General remarks

Strategies to design a kernel on a graph

@ X being finite, any symmetric semi-definite matrix K defines a valid
p.d. kernel on X.
@ How to “translate” the graph topology into the kernel?

o Direct geometric approach: Kj; should be “large” when x; and x; are
“close” to each other on the graph?

o Functional approach: || f ||k should be “small” when f is “smooth”
on the graph?

o Link discrete/continuous: is there an equivalent to the continuous
Gaussian kernel on the graph (e.g., limit by fine discretization)?
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@ The Kernel Jungle

o Kernels on graphs

@ Graph distance and p.d. kernels
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Conditionally p.d. kernels

Hilbert distance

@ Any p.d. kernel is an inner product in a Hilbert space
K (x,x') = (®(x),d (x’)>,H .
o It defines a Hilbert distance:
dx (x,x’)2 = K (x,x) + K (x',x') — 2K (x,x) .
e —d2 is conditionally positive definite (c.p.d.), i.e.:

vVt >0, exp (—tdK (x,x')z) is p.d.
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Example

A direct approach
o For X = R”", the inner product is p.d.:

K(x,x)=x"x".
@ The corresponding Hilbert distance is the Euclidean distance:
dk (x,x')2 =x"x+x"x —2xTx' = [|[x = x||?.
e —dZ is conditionally positive definite (c.p.d.), i.e.:

Vt>0, exp(—t|[x— x'|]2) is p.d.
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Graph distance

Graph embedding in a Hilbert space
@ Given a graph G = (V, E), the graph distance dg(x, x") between
any two vertices is the length of the shortest path between x and x’.

o We say that the graph G = (V, E) can be embedded (exactly) in a
Hilbert space if —d¢ is c.p.d., which implies in particular that
exp(—tdg(x, x")) is p.d. for all t > 0.
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Graph distance

Graph embedding in a Hilbert space
@ Given a graph G = (V, E), the graph distance dg(x, x") between
any two vertices is the length of the shortest path between x and x’.
@ We say that the graph G = (V/, E) can be embedded (exactly) in a
Hilbert space if —d¢ is c.p.d., which implies in particular that
exp(—tdg(x, x")) is p.d. for all t > 0.

Lemma
@ In general graphs cannot be embedded exactly in Hilbert spaces.
@ In some cases exact embeddings exist, e.g.:

o trees can be embedded exactly,
o closed chains can be embedded exactly.

Julien Mairal (Inria) 409/564



Example: non-c.p.d. graph distance

15

01112
102 21
de=1|1 2 0 2 1
1 2201
21110

Amin ([e(—0~2dc(u))D — 0028 <0.
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Graph distances on trees are c.p.d.

Proof

o Let G =(V,E) be a tree;

@ Fix aroot x5 € V;

o Represent any vertex x € V by a vector ®(x) € RIEl where
®(x); = 1 if the i-th edge is part of the (unique) path between x
and xp, 0 otherwise.

o Then

dg(x, ') = || ®(x) — &(x') ||?,
and therefore —dg is c.p.d., in particular exp(—tdg(x, x")) is p.d.
for all t > 0.
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Example

1 0.14 037 0.14 0.05
0.14 1 037 0.14 0.05
[e—dc(f»f)}: 037 037 1 037 0.14
0.14 0.14 037 1 037
0.05 0.05 0.14 037 1
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Graph distances on closed chains are c.p.d.

Proof: case |V|=2p
o Let G = (V, E) be a directed cycle with an even number of vertices
VI=2p.
@ Fix a root xg € V, number the 2p edges from xp to xp;
o Label the 2p edges with ey, ..., e,, —e1,..., —e, (vectors in RP);

@ For a vertex v, take ®(v) to be the sum of the labels of the edges
in the shortest directed path between xg and v.
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@ The Kernel Jungle

o Kernels on graphs

@ Construction by regularization
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Functional approach

Motivation
@ How to design a p.d. kernel on general graphs?
@ Designing a kernel is equivalent to defining an RKHS.

@ There are intuitive notions of smoothness on a graph.

Idea
@ Define a priori a smoothness functional on the functions f : X — R;

@ Show that it defines an RKHS and identify the corresponding kernel.
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Notations

X = (x1,...,Xm) is finite.

For x,x’ € X, we note x ~ x’ to indicate the existence of an edge
between x and x’
@ We assume that there is no self-loop x ~ x, and that there is a

single connected component.
Rmxm.

The adjacency matrix is A €

A = 1 ifiwj.,
0 otherwise.

D is the diagonal matrix where D; ; is the number of neighbors of x;
(Dii = 32710 Aig)-
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Example
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Graph Laplacian

Definition
The Laplacian of the graph is the matrix L = D — A.

1
3 5
4
2
1 0 -1 0 0
0 1 -1 0 0
L=D-A=| -1 -1 3 -1 0
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Properties of the Laplacian

Lemma
Let L = D — A be the Laplacian of a connected graph:

@ Forany f: X — R,

Q(f) == (F(xi) = f(x)))* =fLF

i~

o L is a symmetric positive semi-definite matrix

o 0 is an eigenvalue with multiplicity 1 associated to the constant
eigenvector 1 = (1,...,1)
@ The image of L is

lm(L):{feR’":zm:f,-:O}
i=1
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Proof: link between Q(f) and L

Q(F) =D (F(x) — f(x))*

_Z<f(x P+ £ (%) = 2F (x)) £ (x;))

inj

—ZD,,f(x —2Zf(x

frvj
= fTDf — fTAf
=fILf

420/564



Proof: eigenstructure of L

o L is symmetric because A and D are symmetric.
o Forany f € R™, fTLf = Q(f) > 0, therefore the (real-valued)
eigenvalues of L are > 0 : L is therefore positive semi-definite.

e f is an eigenvector associated to eigenvalue 0
iff fTLF=0
Y (F (%) — (%)) =0,
iff £ (x;) = f(x;) when i ~ j,
iff 7 is constant (because the graph is connected).
o L being symmetric, Im(L) is the orthogonal supplement of Ker(L),
that is, the set of functions orthogonal to 1. [
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Our first graph kernel

Theorem

The set H = {f e R™: 5 ", f; = 0} endowed with the norm

Q(f) =Y (F(xi) = £ (x)))*

in~j

is a RKHS whose reproducing kernel is L*, the pseudo-inverse of the
graph Laplacian.
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In case of...

Pseudo-inverse of L

Remember the pseudo-inverse L* of L is the linear application that is
equal to:

e 0 on Ker(L)

o L= on Im(L), that is, if we write:

m
L= g )\,-u,-u,jr
i=1

the eigendecomposition of L:

@ In particular it holds that L*L = LL* = [y, the projection onto
Im(L) =H.
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Proof (1/2)
@ Resticted to H, the symmetric bilinear form:

(f.g)="f"lg

is positive definite (because L is positive semi-definite, and
H = Im(L)). It is therefore a scalar product, making of H a Hilbert
space (in fact Euclidean).

@ The norm in this Hilbert space H is:

| FI? = (f,f) =FTLF =Q(f) .
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Proof (2/2)

To check that H is a RKHS with reproducing kernel K = L*, it suffices
to show that:

Vx € X, K« e H,
V(x,f)e X xH, (f,Kyq)="F(x).

o Ker(K) = Ker (L*) = Ker (L), implying K1 = 0. Therefore, each
row/column of K is in H.
e For any f € H, if we note g; = (K(/,-), ) we get:

g=KLf = L*Lf =Ny(f)=f.

As a conclusion K = L* is the reproducing kernel of H. O
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Example

0.88 —-0.12 0.08 —-0.32 —-0.52

-0.12 088 0.08 —-0.32 -0.52

L= 0.08 0.08 0.28 -0.12 -0.32
-0.32 -0.32 -0.12 048 0.28

-0.52 -052 -0.32 0.28 1.08
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Interpretation of the Laplacian

£,
i—1 1

i+1

Af(x) = f"(x)
f'(x + dx/2) — f'(x — dx/2)

dx
f(x + dx) — f(x) — f(x) + f(x — dx)
~ dx?
_ fir+ fiy — 2f(x)
N dx?
Lf(7)

Codx?
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Interpretation of regularization

For f =[0,1] = R and x; = i/m, we have:
m ; i\ 2
() %(:c( ;1> f2<m>>
pEde)

]
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@ The Kernel Jungle

o Kernels on graphs

@ The diffusion kernel
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Motivation

o Consider the normalized Gaussian kernel on RY:

1 x —x'||?
Kt (X,X,) = 7)gexp <—”4tH> .

(4rt

@ In order to transpose it to the graph, replacing the Euclidean
distant by the shortest-path distance does not work.

@ In this section we provide a characterization of the Gaussian kernel
as the solution of a partial differential equation involving the
Laplacian, which we can transpose to the graph: the diffusion
equation.

@ The solution of the discrete diffusion equation will be called the
diffusion kernel or heat kernel.
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The diffusion equation

Lemma

For any xqg € R, the function:

1 X — Xn |12
Kxo (%, 1) = Kt (x0,X) = —— exp <_”OH)
(4rt)2 4t

is solution of the diffusion equation:

0
&KX(’ (x,t) = AKy, (x, t)

with initial condition Ky, (x,0) = dx,(x)

(proof by direct computation).
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Discrete diffusion equation

For finite-dimensional f; € R™, the diffusion equation becomes:

0
aft = —Lft
which admits the following solution:

fo=foe ™
with

tL 2, 3
e :I—tL—I-EL —aL + ...
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Diffusion kernel (Kondor and Lafferty, 2002)

This suggest to consider:
K=et

which is indeed symmetric positive semi-definite because if we write:
m
L=> Nuu (N =>0)
i=1

we obtain:
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Example: complete graph
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Example: closed chain

1 m—1 9 ) .
Kij = - Z exp [—2t (1 — cos :jﬂ cos 771/([:71)
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@ The Kernel Jungle

o Kernels on graphs

@ Harmonic analysis on graphs
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Motivation

@ In this section we show that the diffusion and Laplace kernels can
be interpreted in the frequency domain of functions

@ This shows that our strategy to design kernels on graphs was based
on (discrete) harmonic analysis on the graph

@ This follows the approach we developed for semigroup kernels!
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Spectrum of the diffusion kernel

o Let 0 = )A1 < A2 < ... < Ap be the eigenvalues of the Laplacian:
m
L= Z)\;u;u;—r (A >0)
i=1

@ The diffusion kernel K; is an invertible matrix because its
eigenvalues are strictly positive:
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Norm in the diffusion RKHS

@ Any function f € R™ can be written as f = K (K‘lf), therefore its
norm in the diffusion RKHS is:

|1l = (FTKTY) K (KTH) = TR

@ Fori=1,...,m, let:
fi=u f

be the projection of f onto the eigenbasis of K.
@ We then have:

m
£ = FTRE =" e™iE2
i=1

.2
o This looks similar to [ ‘ f(w) ‘ e dw ..
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Discrete Fourier transform
Definition

N N ANT
The vector f = (fl, . fm) is called the discrete Fourier transform of
feR”

@ The eigenvectors of the Laplacian are the discrete equivalent to the
sine/cosine Fourier basis on R".

o The eigenvalues ); are the equivalent to the frequencies w?

@ Successive eigenvectors “oscillate” increasingly as eigenvalues get
more and more negative.
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Example: eigenvectors of the Laplacian

2=0 A=-0.5 =1

A=-2.3 A=—4.2
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Generalization

This observation suggests to define a whole family of kernels:
Kr = Z I’()\,')U,'u,-—r
i=1
associated with the following RKHS norms:

m %.2

f 2 _ i
|| HK, 2,,()\1)

where r : Rt — R} is a non-increasing function.
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Example : regularized Laplacian

r()\)=>\+ , e>0
€
1
K:Z)\_i_ uiu] = (L+eht
i=1
[l =FTK =D (F(x) = f(x})) +er(x

i~j
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Example

0.60 0.10 0.19 0.08 0.04
0.10 0.60 0.19 0.08 0.04
(L+1)™*=1] 019 0.19 0.38 0.15 0.08
0.08 0.08 0.15 0.46 0.23
0.04 0.04 0.08 0.23 0.62
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@ The Kernel Jungle

o Kernels on graphs

@ Applications
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Applications 1: graph partitioning

o A classical relaxation of graph partitioning is:

' fi—£) sty ff=1
min > (fi—£)° s Z

inj
@ This can be rewritten

m?xz f2st. |[fllg<1

@ This is principal component analysis in the RKHS (“kernel PCA™)
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Applications 2: search on a graph

@ Let x1,...,xq be a set of g nodes (the query). How to find
“similar” nodes (and rank them)?

@ One solution:

mfin | fllg st f(xj)>1fori=1,...,q.
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Application 3: Semi-supervised learning
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Application 3: Semi-supervised learning
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Application 4: Tumor classification from microarray data
(Rapaport et al., 2006)

Data available
@ Gene expression measures for more than 10k genes

@ Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)
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Application 4: Tumor classification from microarray data
(Rapaport et al., 2006)

Data available
@ Gene expression measures for more than 10k genes

@ Measured on less than 100 samples of two (or more) different
classes (e.g., different tumors)

Goal

@ Design a classifier to automatically assign a class to future samples
from their expression profile

o Interpret biologically the differences between the classes
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Linear classifiers

The approach

e Each sample is represented by a vector x = (xi, ..., xp) where
p > 10° is the number of probes

o Classification: given the set of labeled sample, learn a linear
decision function:

P
f(x) = Bixi+ fo,
i=1
that is positive for one class, negative for the other

@ Interpretation: the weight 5; quantifies the influence of gene i for
the classification
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Linear classifiers

Pitfalls

@ No robust estimation procedure exist for 100 samples in 10°
dimensions!

@ It is necessary to reduce the complexity of the problem with prior
knowledge.
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Example : Norm Constraints

The approach

A common method in statistics to learn with few samples in high
dimension is to constrain the norm of (3, e.g.:

e Euclidean norm (support vector machines, ridge regression):

1812 =37, 57
@ Li-norm (lasso regression) : || 8]t = Y5, |5i]
Cons
Pros @ Limited interpretation
e Good performance in (small weights)
classification @ No prior biological
knowledge
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Example 2: Feature Selection

The approach

Constrain most weights to be 0, i.e., select a few genes (< 20) whose
expression are enough for classification. Interpretation is then about the
selected genes.

Cons
Pros

@ The gene selection
process is usually not
robust

@ Good performance in
classification

o Useful for biomarker

selection o Wrong interpretation is

the rule (too much
correlation between
genes)

o Apparently easy
interpretation
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Pathway interpretation

Motivation

@ Basic biological functions are usually expressed in terms of
pathways and not of single genes (metabolic, signaling, regulatory)

@ Many pathways are already known

@ How to use this prior knowledge to constrain the weights to have an
interpretation at the level of pathways?

Solution (Rapaport et al., 2006)
@ Constrain the diffusion RKHS norm of g

@ Relevant if the true decision function is indeed smooth w.r.t. the
biological network
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Pathway interpretation

N Glycan
biosynthesis

Bad example

Glycolysis /
Gluconeogenesis

@ The graph is the
complete known
metabolic network of the

Nivogen, budding yeast (from

e KEGG database)

@ We project the classifier

weight learned by a SVM

¥ 7 .. .
e o %0 O & @ Good classification
; <% .
oo WD o accuracy, but no possible
TCA cycie

Pheylatanine, rosine andgh |/ interpretation!

Protein
Sulfur

metabolism

tryptophan biosynthesis Purine
metabolism
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Pathway interpretation

Good example

@ The graph is the complete
known metabolic network
of the budding yeast
(from KEGG database)

@ We project the classifier
weight learned by a
spectral SVM

@ Good classification
accuracy, and good
interpretation!

Julien Mairal (Inria) 457 /564



QOutline

© Kernels and RKHS

© Kernel Methods: Supervised Learning
© Kernel Methods: Unsupervised Learning
@ The Kernel Jungle

© Open Problems and Research Topics
@ Multiple Kernel Learning (MKL)
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Motivation

@ We have seen how to make learning algorithms given a kernel K on
some data space X

o Often we may have several possible kernels:

e by varying the kernel type or parameters on a given description of the
data (eg, linear, polynomial, Gaussian kernels with different
bandwidths...)

e because we have different views of the same data, eg, a protein can
be characterized by its sequence, its structure, its mass spectrometry
profile...

@ How to choose or integrate different kernels in a learning task?
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Setting: learning with one kernel

o Forany f: X - R, let f" = (f(x1),...,f(xp)) € R"
o Given a p.d. kernel K : X x X — R, we learn with K by solving:

min R(f") + \|| |3 4
foin R(F7) + Al e (4)
where A > 0 and R : R" — R is an closed! and convex empirical
risk:
o R(u) =137 (ui — y;)? for kernel ridge regression
o R(u)= 13" max(1 — y;u;,0) for SVM
o R(u)= 1>/ ,log(1+exp(—yiu;)) for kernel logistic regression

'R is closed if, for each A € R, the sublevel set {u € R" : R(u) < A} is closed.
For example, if R is continuous then it is closed.
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Sum kernel

Definition
Let Ki,..., Ky be M kernels on X. The sum kernel Ks is the kernel on
X defined as
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Sum kernel and vector concatenation

Theorem
Fori=1,...,M, let ; : X — H; be a feature map such that

K,-(x,x') = <¢,- (x),®; (x’)}H. .
Then Ks = Z,Ail Ki can be written as:

Ks(x,x') = (®s(x), Ps (x,)>7-[5 )

where &5 : X — Hs =H1 D ... D Hp is the concatenation of the
feature maps P;:

Os (x) = (O1(x),..., Py (x)" .

Therefore, summing kernels amounts to concatenating their feature
space representations, which is a quite natural way to integrate different
features.
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Proof

For &5 (x) = (1 (x),...,®n (x))", we easily compute:
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Example: data integration with the sum kernel

Vol. 20 Suppl. 12004, pages i363-1370
DOI: 10.1093/bioinformatics/bth910

8 Protein network inference from multiple
mﬁ genomic data: a supervised approach
1 Y. Yamanishi'-*, J.-P. Vert? and M. Kanehisa’
‘ "Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho,

Uji, Kyoto 611-0011, Japan and ?Computational Biology group, Ecole des Mines de
Paris, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France

/ &~ Protein interaction
Kexp (Expression)
Kppi (Protein interaction) 4 R —
Kioc (Localization) |
Kpny (Phylogenetic profile) =
Kexp + KPPi + Kioc + Kph)’ n‘u n_lz n.l4 U!B U‘E 1‘0
(Integration) Faise positive
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The sum kernel: functional point of view

Theorem

The solution * € Hy, when we learn with Ks = Z,Ail K; is equal to:

where (f*,..., ) € Hk, X ... X Hk,, is the solution of:

M M
. n 2
i, R ( g ) A2 il

i i=1
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Generalization: The weighted sum kernel

Theorem

The solution f* when we learn with K;, = Z,’\il ;i K;, with
N1,---,Mm > 0, is equal to:

M
f*zzf;*7

i=1

where (f,...,f) € Hk, % ... X H,, is the solution of:
R BN L
min - —t
fromf \ ~ i
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Proof (1/4)
o (30 o asn
min ; —t.
o\ =1
@ R being convex, the problem is strictly convex and has a unique

solution (f*,..., 1) € Hi, X ... X Hk,,-

@ By the representer theorem, there exists a7, ..., aj, € R" such that
n
fr(x) = D afiKi(x,x) -
Jj=1

o (af,...,ay},) is the solution of

. M M ol Kia;
min R Z Kiaj | + A Z ’7 .
i=1

ag,...,apERN i:l nj
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Proof (2/4)
@ This is equivalent to

Y al Ko, Y
min R(u)+)\2’7" s.t. u:ZK;a;.
i=1

u,aq,...,0 ER? P ni

@ This is equivalent to the saddle point problem:

M
[ Kia;
min max R (u —i—)\z i +2/\'yT(u—ZK,-a,-).

u,aq,...,0p ER vyER" —
=

@ By Slater’s condition, strong duality holds, meaning we can invert
min and max:

Y al Ko M
max min R(u)—l—)\Z’i"—i—L\’yT(u—ZK,-a,-).
n:

~YER" u,axg,...,cp ER? . i .
i=1 i=1
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Proof (3/4)
@ Minimization in u:
min R(u) + 2\y 'u = — max {—2)\7Tu - R(u)} = —R*(-2\v),
u u
where R* is the Fenchel dual of R:

Y eR” R*(v)= supu'v—R(u).
ucRk”

@ Minimization in «j for i =1,..., M:
TK:a:
min {)\M — 2)\'7TK,-04,-} = —\niv Kiv,

where the minimum in «; is reached for o = 7;7.
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Proof (4/4)

@ The dual problem is therefore

M
—R*(=2\v) = Ay " iKi :
jpe%{ (—2)\y) — Ay (;77 )7}

o Note that if learn from a single kernel K,,, we get the same dual
problem

max {—R*(—2)\7) - )\’yTKn’y} .
~YER”

o If 4% is a solution of the dual problem, then o} = 7;v* leading to:

Vxe X, f(x Zau (xj,x Zn,yj (xj,x

@ Therefore, f* = ZM f* satisfies

f*(x):ZZﬁi’YfKi(xjv ZWJ (xj,x) . O

i=1 j=1
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Learning the kernel

Motivation

o If we know how to weight each kernel, then we can learn with the
weighted kernel

@ However, usually we don't know...

@ Perhaps we can optimize the weights 7; during learning?
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An objective function for K

Theorem
For any p.d. kernel K on X, let

J(K) = min {R(F) + X £ [y}

The function K — J(K) is convex.

This suggests a principled way to "learn” a kernel: define a convex set of
candidate kernels, and minimize J(K) by convex optimization.
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Proof

@ We have shown by strong duality that

J(K)—gne?&)g{ R*(=2\y) — Ay K’y}.

@ For each « fixed, this is an affine function of K, hence convex

@ A supremum of convex functions is convex. g
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MKL (Lanckriet et al., 2004)

@ We consider the set of convex combinations
M M
Kn=> miKi with neXy= {nf >0,y ni= 1}
i=1 i=1

o We optimize both 1 and f* by solving:

in J(Ky) = min min {R(F")+ | £, }
amin, ) = i i (RO A W,
@ The problem is jointly convex in (1, &) and can be solved efficiently.

@ The output is both a set of weights 1, and a predictor
corresponding to the kernel method trained with kernel K.

@ This method is usually called Multiple Kernel Learning (MKL).
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Example: protein annotation

Vol. 20 no. 16 2004, pages 2626-2635
doi:10.1093/bioinformatics/bth294

&

A statistical framework for genomic data fusion

o] Gert R. G. Lanckriet!, Tijl De Bie®, Nello Cristianini®,
1 Michael I. Jordan? and William Stafford Noble®*
EY

" Department of Electrical Engineering and Computer Science, 2Division of Computer
Science, Department of Statistics, University of California, Berkeley 94720, USA,
3Department of Electrical Engineering, ESAT-SCD, Katholieke Universiteit Leuven 3001,
Belgium, *Department of Statistics, University of California, Davis 95618, USA and
5Department of Genome Sciences, University of Washington, Seattle 98195, USA

1.0
go9
Tos
0.7
B SW Pfam FFT LI D E all
a 40 —F—
Kernel Data Similarity measure z 30
20
10
Ksw protein sequences Smith-Waterman 0
Ks protein sequences BLAST B SW Pfam FFT LI D E all
Kptam protein sequences Pfam HMM o |
Krrr hydropathy profile FFT =
Kur protein interactions linear kernel 205
Kp diffusion kernel =
Ke gene expression radial basis kernel 0
Krnp random numbers linear kernel

(B) Membrane proteins
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Example: Image classification (Harchaoui and Bach, 2007)

COREL14 dataset
@ 1400 natural images in 14 classes

e Compare kernel between histograms (H), walk kernel (W), subtree
kernel (TW), weighted subtree kernel (wTW), and a combination
by MKL (M).

Performance comparison on Corel14

o SNe
o Pr
=in
. TH
H T}

Kernels
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MKL revisited (Bach et al., 2004)
M M
anz??iKi with UGZM:{%ZOvZHizl}
i—1 i=1

Theorem
The solution f* of

in min {R(F") + \|| |2 }
n@uznwg;g"{ (F7) + Al £ 11,

is f* = le\il f*, where (f*,...,fl) € Hk, x ... x Hk,, is the solution

of:
M M 2
i R " A f;
i {7 (55e) +2 ()

i i=1
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Proof (1/2)

in min {R(F)+Allf I, |
n@lanfgwﬁr;n{ (F7) + Al F 5,

min  mi R EM: n EM: I HHK
= min min
nexy f,....,fu ) - ni

in (o (3247) 42 m EMJHfHHK
= min
Fioveesfit il nexy — i

2
= min_ R(_ +A (ZIIHM) :

i=1
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Proof (2/2)
where the last equality results from:
M N
Va e R, <Z a,) = 77|En)é’M 2 -,

which is a direct consequence of the Cauchy-Schwarz inequality:

= () ()

Za'—zf

i=1
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Algorithm: simpleMKL (Rakotomamonjy et al., 2008)

o We want to minimize in € X y:

in J(Ky) = mi {~R'(=227) = K1} -

min J (Ky) min max (=2M7) = My Kyy

e For a fixed n € Xy, we can compute f(n) = J(Kj;) by using a
standard solver for a single kernel to find ~v*:

J(Ky) = —R*(—2M7") = M TK, ™.

e From ~* we can also compute the gradient of J(Kj) with respect
ton:
0J(Ky)
o
e J(Ky) can then be minimized on Xy by a projected gradient or
reduced gradient algorithm.

= M T Ky
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Sum kernel vs MKL

o Learning with the sum kernel (uniform combination) solves

M M
i fr (7)o, |
1y-esTM i—1 i—1 !

o Learning with MKL (best convex combination) solves

A, (Zﬁ") (émnm,.)z

@ Although MKL can be thought of as optimizing a convex
combination of kernels, it is more correct to think of it as a
penalized risk minimization estimator with the group lasso penalty:

Q(f) = min Z i Nl -

fit ot fu=
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Example: ridge vs LASSO regression

o Take X =RY, and for x = (xi,...,xg) " consider the rank-1
kernels:
Vi:].,...,d, K;(X,X/):X,'X,{.

A function f; € H; has the form f; (x) = Bjx;, with || fi ||, = | Bi |

The sum kernel is Ks (x,x') = 3%, xix! = x ', a function H, is
of the form f (x) = B'x, with norm | f 7k, = I B lIre-
Learning with the sum kernel solves a ridge regression problem:

d
- 2
ﬂn;]l& {R(X,B) + A g i } .

i=1

Learning with MKL solves a LASSO regression problem:

d 2
min { R(X3) + A (Z | Bi y)
i=1

BeRd
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Extensions (Micchelli et al., 2005)

M M
Forr >0, Ky=Y_ nKi with nezgﬂ:{mzo,znle}
i=1 i=1

Theorem
The solution f* of
) . n 2
min min R+ X Iy, }

is f* = Ef‘il f*, where (fi*,... fl) € Hk, X ... x Hk,, is the solution
of:

r+1

ol M 2r ¢
[ R f A fi ||+
Join ( ,>+ (;H HHK,)

i=1 =
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© Kernel Methods: Supervised Learning
© Kernel Methods: Unsupervised Learning
@ The Kernel Jungle

© Open Problems and Research Topics

o Large-scale learning with kernels
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e Open Problems and Research Topics

@ Large-scale learning with kernels
@ Motivation
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Motivation

Main problem

All methods we have seen require computing the n x n Gram matrix,
which is infeasible when n is significantly greater than 100000 both in
terms of memory and computation.

Solutions
@ low-rank approximation of the kernel,

@ random Fourier features.

The goal is to find an approximate embedding 1 : X — R? such that

K(x,x') = (1h(x), ¥ (X)) pa-
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Motivation

Then, functions f in H may be approximated by linear ones in RY, e.g.,.

=D aiK(xi,x) = (Y aib(xi), ¥(x))rs = (W, (X)) g
i=1 i=1

Then, the ERM problem

SN Ly f AlIFI2,,
;@an yir £(xi)) + M FII3,

becomes, approximately,

min *ZL Yi, W xl)+)\||w||27

weRd N

which we know how to solve when n is large.
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e Open Problems and Research Topics

@ Large-scale learning with kernels

@ Large-scale learning with linear models

Julien Mairal (Inria) 488/564



Large-scale learning with linear models

Let us study for a while optimization techniques for minimizing large
sums of functions

1 n
min — fi(w).
weRd N Z I( )
i=1
Good candidates are
@ stochastic optimization techniques;

@ randomized incremental optimization techniques;

We will see a couple of such algorithms with their convergence rates and
start with the (batch) gradient descent method.
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Introduction of a few optimization principles

Why do we care about convexity?
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Introduction of a few optimization principles

Why do we care about convexity?
Local observations give information about the global optimum

\

N

e Vf(w) =0 is a necessary and sufficient optimality condition for
differentiable convex functions;
e it is often easy to upper-bound f(w) — 7*.
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Introduction of a few optimization principles

An important inequality for smooth convex functions

If f is convex

f(w)

N

o f(w)> f(wo) + Vf(wO)T(w —w?);

~~

linear approximation
@ this is an equivalent definition of convexity for smooth functions.
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Introduction of a few optimization principles

An important inequality for smooth functions

If Vf is L-Lipschitz continuous (f does not need to be convex)

2

o f(w) < g(w) = (W) + VF(w®) " (w — w®) + 5|lw — w3;

o g(w) = Guo + 5w’ — (1/L)VF(w®) — wlj3.
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Introduction of a few optimization principles

An important inequality for smooth functions

If Vf is L-Lipschitz continuous (f does not need to be convex)

2.
21

o f(w) < g(w) = (W) + VF(WO) " (w — w®) + 5w — wO|
= w0 — 7Vf(wP) (gradient descent step).

Julien Mairal (Inria)
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Introduction of a few optimization principles
Gradient Descent Algorithm

Assume that f is convex and differentiable, and that Vf is L-Lipschitz.

Theorem
Consider the algorithm

wi e wi - 1vf(wil).

Then, . 5
f* S LHW — W ||2

flw) - 2t

Remarks

@ the convergence rate improves under additional assumptions on f
(strong convexity);

@ some variants have a O(1/t?) convergence rate [Nesterov, 2004].
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Proof (1/2)
Proof of the main inequality for smooth functions

We want to show that for all w and z,
T L 2
f(w) < f(z) + Vf(z) (w—z)+§\\w—z|\2.

By using Taylor’s theorem with integral form,
f(w) — f(z) = /01 Vi(tw + (1 —t)z) " (w — z)dt.
Then,
Fw)—F(2)-VF@) (w—z) < | (T(tw(1-)2) - VF(2) (w—2)de
< / (At (1 t)2)— V()T (w—2)]de
< [ 19w+ (=00~ VA @lw—zliat (c-5)

1
L
< / Lt|w 2] 3dt = w2}
0
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Proof (2/2)
Proof of the theorem

We have shown that for all w,
Fw) < g(w) = F(w' ™) + VA ) (w - w4 2w w3
g: is minimized by w'; it can be rewritten gi(w) = ge(w') + 5|lw — w'||3. Then,
Fw') < ge(w') = gew’) — 5w — w3
= f(w' ™) + VAW T) T (w —w ) S w - w TR - éHW* — w3
<o w - w R w3

By summing from t =1 to T, we have a telescopic sum

.
T(rWT) = ) < D2 Fw) — £ < Slw —wlllE = £ w" —wT B,

t=1
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Introduction of a few optimization principles

An important inequality for smooth and p-strongly convex functions

If Vf is L-Lipschitz continuous and f p-strongly convex

f(w)
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Introduction of a few optimization principles

Proposition
When f is p-strongly convex, differentiable and V£ is L-Lipschitz, the
gradient descent algorithm with step-size 1/L produces iterates such that

u)t Llw® — w*||3

f(wf)—f*g(l—Z .

We call that a linear convergence rate (even though it has an
exponential form).
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Proof

We start from an inequality from the previous proof
Fw') < FwW ™ D+ viw ™ )T (w —w ) + Zjw' —w'
t—1H2 _

<pp b= w -

2, and thus

In addition, we have that f(w') > f* + £[jw’ — w*

= wt - w3

Iw' —wil <
< (1-5) Iw —wt R,
Finally,

t * L t * 12

Fw') = £ < < w — w3
* 012
< (1 g)f Lljw” — w|l3

- L 2
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The stochastic (sub)gradient descent algorithm

Consider now the minimization of an expectation

min f(w) = Ex[¢(x, w)],

weRP

To simplify, we assume that for all x, w — ¢(x,w) is differentiable, but
everything here is true for nonsmooth functions.

Algorithm
At iteration t,
@ Randomly draw one example x; from the training set;

o Update the current iterate

wi— wi™l— NeVwl(Xe, We_1).
@ Perform online averaging of the iterates (optional)

\Xlt — (1 — ’}/t)wt_l + 'tht.
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The stochastic (sub)gradient descent algorithm

There are various learning rates strategies (constant, varying step-sizes),
and averaging strategies. Depending on the problem assumptions and
choice of n;, 7, classical convergence rates may be obtained (see
Nemirovsky et al., 2009)

o f(W!) — f* = O(1//t) for convex problems;
o f(W') — * = O(1/t) for strongly-convex ones;

Remarks

@ The convergence rates are not that great, but the complexity
per-iteration is small (1 gradient evaluation for minimizing an
empirical risk versus n for the batch algorithm).

@ When the amount of data is infinite, the method minimizes the
expected risk.

@ Choosing a good learning rate automatically is an open problem.
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Randomized incremental algorithms (1/3)

Consider now the minimization of a large finite sum of smooth convex

functions:
min — E fi(w
welRP N

A class of algorithms with low per-iteration complexity have been
recently introduced that enjoy exponential (aka, linear) convergence
rates for strongly-convex problems, e.g., SAG (Schmidt et al., 2013)

SAG algorithm

n -1 . . .
t t—1 Y z : t . t Vf;(wt ) if /= It
<— _ — . 5 =
v — with 5, { yit otherwise
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Randomized incremental algorithms (2/3)

Consider now the minimization of a large finite sum of smooth convex
functions:

M 2
il fi(w) + =
min — E + 5 lwliz,

A class of algorithms with low per-iteration complexity have been
recently developed that enjoy exponential convergence rates for
strongly-convex problems, e.g., MISO/Finito (Mairal, 2015; Defazio et
al., 2015; Lin et al., 2015)

Basic MISO/Finito algorithm (requires n > 2L/u)

1 _ Vi(wih) if i=i
t—1 t—1 t ! ‘
w w Mn(ylt Yi, ) with y; { yffl otherwise

see also SDCA (Shalev-Shwartz and Zhang, 2012).
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Randomized incremental algorithms (3/3)

Many of these techniques are in fact performing SGD-types of steps

t

wh — wt

-1 N8t

where E[g:|w;_1] = Vf(w;_1), but where the estimator of the gradient
has lower variance than in SGD (see SVRG [Johnson and Zhang, 2013]).

Typically, these methods have the convergence rate

oo (e (3 1)))

and their complexity per-iteration is independent of n! In addition, they
are often almost parameter-free (theoretical values for their learning
rates work in practice).
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Large-scale learning with linear models

Conclusion

@ we know how to deal with huge-scale problems when the models are
linear;

@ significant progress has been made during the last 3-4 years;

@ all of this is also useful to learn with kernels!
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e Open Problems and Research Topics

@ Large-scale learning with kernels

@ Nystrom approximations
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Nystrom approximations [Williams and Seeger, 2002] (1/14)

Consider a dataset x3,...,X, in X with a p.d. kernel K: X x X — R.
Call H its RKHS and ¢ : X — H the mapping such that

K(X, X/) = <QD(X), SD(XI»’H
A natural approximation consists of representing each data point x; as a
linear combination of a few anchor points f; in H:

d
~ B
j=1

Then,

{p(x), ¢

22

H

d
Z fi, fiyn = B(x) GB(X').
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Nystrom approximations (2/14)

Then, we have

(0(x), p(x ) = B(x) TGB(X) = (1h(x), Y(xX'))ge,
with
(x) = GY?B(x).

In practice, the anchor points f; in H and the coordinates 3 are learned
by minimizing the least square error in ‘H

n d

o Do) = > Bif;
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Nystrom approximations (3/14)
Note that the problem
2

d
Lmin > |le(x) ;501 :

5UGR i=1 j=1 o

is equivalent, after developing the quadratic function, to

n d d
i S -2 3 Blh el Y Bibalh.

Bjer =1 j=1 jl=1
or also
n d
f mti‘:]GH § -2 E BU j + § BIJ/BI/
’ﬁ,-jeR i=1 j=1 jl=1
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Nystrom approximations (4/14)

Then, call [K¢lj = (£, i)y and f(x;) = [A(x), - .., fa(x;)] in R, The
problem may be rewritten as

n
i —28 f(x; TK:3.
ﬁ»n?;:]GHZ '6’ (X ) + BI fﬁn
ﬁl_eRd i=1

and by minimizing with respect to all 3; with f fixed, we have that
B: = K- 1f(x;) (assuming K to be invertible to simplify), which leads to

max Zf(x )KL (%))

fi,.. de'H

Consider an optimal solution f* and perform the eigenvalue
decomposition of Ks« = UAUT. Then, define the functions

(g7 (x),...,g5(x)] = A~ 1/2yT£*(x). The functions g; are points in the
RKHS 7 (as linear combinations of entries of f*).
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Nystrom approximations (5/14)

By construction

[Ke-1i = (&f &7 0w

d d
1 1
= U]t ——= [U]k/fk*>
(v S i )
1 1 ¢
= [U]4i [Vl (55 )
VAjv Ay k,%; ! *
1 01 ¢
= = (U] [U] k1 [K ] ke
V Ajj Ay k’kZ:l !
1 1 -
=—————u; Kqu
= _]:l'
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Nystrom approximations (6/14)
Then, Kg+ =1 and g* is also a solution of the problem
max > f(x;) K7 (%),

A, fgEH 4
1ye-mld i1

since
F(xi) TKRHF(xi) = F*(x;) TUATTU T £*(x;))
=g (xi) g (xi) = g"(x1) " Kg'g" (xi),
and also a solution of the problem
d n
max ZZgj(x,-)2 stt. g L gk for k#j.

s Bd EH 2 £
81)--,8d =1 =1
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Nystrom approximations (6/14)
Then, Kg+ =1 and g* is also a solution of the problem
max > f(x;) K7 (%),

A, fgEH 4
1ye-mld i1

since
F(xi) TKRHF(xi) = F*(x;) TUATTU T £*(x;))
=g (xi) g (xi) = g"(x1) " Kg'g" (xi),
and also a solution of the problem
d n
max ZZgj(x,-)2 stt. g L gk for k#j.

s Bd EH 2 £
81)--,8d =1 =1

This is the kernel PCA formulation!
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Nystrom approximations (7/14)

First recipe with kernel PCA

Given a dataset of n training points xi,...,X, in X,
e randomly choose a subset Z = [x,,, ..., Xz, ] of m < n training
points;

@ compute the m x m kernel matrix Kz 7.

o perform kernel PCA to find the d < m largest principal directions
(parametrized by d vectors aj in R™);

Then, every point x in X may be approximated by

Y(x) = B(x) = [gf(x). ... g3 (x)]"

m
g aiK xz, g ale Xz,

i=1
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Nystrom approximations (8/14)

o The complexity of training is O(m?®) (eig decomposition) + O(m?)
kernel evaluations.

@ The complexity of encoding a point x is O(md) (matrix vector
multiplication) + O(m) kernel evaluations.

(a) exact feature space (b) dense approx.
U(x)

Images courtesy of Vedaldi and Zisserman [2012]
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Nystrom approximations (9/14)

The main issue with kernel PCA is the encoding time, which depends
linearly of m. A popular alternative is instead to select the anchor points
among the training data points Xi,...,X,. Then, choose

ﬂ = QD(XZ1)7 e fd = QO(XZd).

Second recipe with random point sampling

Given a dataset of n training points x1,...,X, in X,
e randomly choose a subset Z =[x, ...,X;,] of d training points;
@ compute the d x d kernel matrix Kz z.

Then, a new point x is encoded as

¥(x) = KY2B(x) = KYSKZ4 F(x)
= K22 [K (%21, ). . ., K(%z5,%)]
_K_1/2sz
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Nystrom approximations (10/14)

o The complexity of training is O(d?) (eig decomposition) + O(d?)
kernel evaluations.

o The complexity of encoding a point x is O(d?) (matrix vector
multiplication) + O(d) kernel evaluations.

(b) dense approx. (d) Nystrom's approx.

Images courtesy of Vedaldi and Zisserman [2012]
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Nystrom approximations (11/14)

The encoding time is now low, but the (random) choice of anchor points
is not clever. Better approximation can be obtained with a greedy
algorithm that iteratively selects one column at a time with largest
residual (Bach and Jordan, 2002; Smola and Shélkopf, 2000).

At iteration k, assume that Z = [z1,. .., zx]; then, the residual for a
data point x encoded with k anchor points fi,..., f is
k
min x) — |12,
SRk [o(x) ;BJ ill%

which is equal to

le ()13 — F(x) "KF (%),
and since f; = ¢(xz) for all j, the data point x; with largest residual is
the one that maximizes

K(xi,x;) — KXi,ZKE,lZszxi'
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Nystrom approximations (12/14)
This brings us to the following algorithm

Third recipe with greedy anchor point selection
Initialize Z = 0. For k=1,...,d do
o data point selection

7y < argmax K(xj,X;) — Kx,-,ZKE,lZKZ,x,-;
ie{1,...,n}

o update the set Z
Z + [Z,Zk].

A naive implementation is slow (O(j?n + j3) at every iteration). To get
a reasonable complexity, one has to use simple linear algebra tricks (see
next slide).
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Nystrom approximations (13/14)

K= 1

Kzz Kz, ]} Kz +ibb" —1b
[Zz][Zz]

1
S
Kz,Z Kz,z 1bT % ’
s is the Schur complement s = K, , — K, 7K, ZKZ,z, and
b=K;%Kz..
@ the matrix K[Z 22,2 €@n be obtained from K}}Z and Kz, in

O(j?) float operations; for that we need to always keep into
memory the j x n matrix Kz x.

e computing the matrix K[z ; x from Kz x requires n kernel
evaluations;

o the quantity K 7, Z]K[Z 212, Z]K[Z 2], €an be computed from
Kx,-,ZKZ,ZKZ,X,- in O(j) float operations.

The total training complexity is O(d?n) float operations and O(dn)
kernel evaluations
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Nystrom approximations (14/14)

Concluding remarks

@ The last technique is equivalent to computing an incomplete
Cholesky factorization of the kernel matrix (Bach and Jordan, 2002;
Fine and Scheinberg, 2001);

@ The techniques we have seen produce low-rank approximations of
the kernel matrix K ~ LLT;

e When X = RY, it is also possible to synthesize training points
z1,...,2z4 and use anchor points ©(z1),...,¢(z4), e.g., with a
K-means algorithms.

Julien Mairal (Inria) 519/564



QOutline

e Open Problems and Research Topics

@ Large-scale learning with kernels

@ Random Fourier features
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Random Fourier features [Rahimi and Recht, 2007] (1/5)

A large class of approximations for shift-invariant kernels are based on
sampling techniques. Consider a real-valued positive-definite continuous
translation-invariant kernel K(x,y) = x(x —y) with x : R — R. Then,
if £(0) = 1, Bochner theorem tells us that x is a valid characteristic
function for some probability measure

K(z) = Ew[e™ 7.

Remember indeed that, with the right assumptions on &,

1 o iwTx _—iwT
K(x—y)= 2n) /Rd R(w)e™ *e Ydw,

and the probability measure admits a density p(w)

(non-negative, real-valued, sum to 1 since k(0) = 1).
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Random Fourier features (2/5)
Then,

1 ~ I'T _I'T
n(x—y)_(zﬂ)d/Rd/s(w)ew *em™ Ydw

= /Rd p(w) cos(w'x —w'y)dw
= / p(w) (cos(wa) cos(w'y) + sin(w ' x) sin(wTy)) dw

L

= EWNP(W)7bNu[O727T] [\fZ cos(w ' x + b)v2 cos(w 'y + b)]

2cos (w'x+ b)cos(w'y + b)dwdb (exercise)
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Random Fourier features (3/5)

Random Fourier features recipe
@ Compute the Fourier transform of the kernel % and define the
probability density p(w) = A(w)/(27);
@ Draw d i.i.d. samples wy,...,wy from p and d i.i.d. samples
bi, ..., by from the uniform distribution on [0, 27];

o define the mapping

9 T
x = (x) = \/; [cos(wlTx + by), ..., cos(w)x + bd)} .
Then, we have that

K(x —y) = ((x), (y))re-

The two quantities are equal in expectation.
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Random Fourier features (4/5)

Theorem, [Rahimi and Recht, 2007]
On any compact subset X’ of R™, for all € > 0,

4(m+2) ,
e

i 2 de?
P | sup [n(x—y) — (6(x), b(3)sel > ] < o ()’

x,yeX

where ag = ]EWNP(W)[WTW] is the second moment of the Fourier
transform of k.

Remarks
@ The convergence is uniform, not data dependent;
o Take the sequence ¢4 = Iog‘gd) opdiam(X); Then the term on the
right converges to zero when d grows to infinity;

@ Prediction functions with Random Fourier features are not in H.
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Random Fourier features (5/5)

Ingredients of the proof
o For a fixed pair of points x,y, Hoeffding's inequality says that

P[[s(x —y) = (). b(y))ae| > €] < 2675

~~

f(xy)

o Consider a net (set of balls of radius r) that covers
Xa ={x—y:(x,y) € X} with at most T = (4diam(X’)/r)™ balls.
@ Apply the Hoeffding's inequality to the centers x; — y; of the balls;

@ Use a basic union bound
2
P |:SUpf(X,,y, = :| ZP[ xl7yl g < 2TeidT

@ Glue things together: control the probability for points (x,y) inside
each ball, and adjust the radius r (a bit technical).
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New challenges
We have seen two classes of kernel approximation techniques. Several
challenges remain
@ make random Fourier features data dependent (e.g., Bach, 2015);
@ make these approximation techniques data and task dependent;
@ reduce the number of dimensions;

o find more explicit approximate feature maps dedicated to useful
kernel [e.g., Vedaldi and Zisserman, 2012];
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Outline

© Kernels and RKHS

© Kernel Methods: Supervised Learning
© Kernel Methods: Unsupervised Learning
@ The Kernel Jungle

© Open Problems and Research Topics

@ “Deep” learning with kernels
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e Open Problems and Research Topics

@ “Deep” learning with kernels
@ Motivation
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Deep learning with kernels

Main question

@ in some fields producing large amounts of labeled data (notably in
computer vision), kernel methods are not performing as well as
multilayer neural networks. Why? How to improve kernel methods?

Possible angles of attack
@ are multilayer neural networks close to a kernel machine?

@ building multilayer kernels with successful principles from multilayer
neural networks (successful="convolutional” or “recurrent”).

o perform end-to-end-learning with kernels (crafting the kernel);

Perspectives

@ build multilayer architectures that are easy to regularize and that
may work without (or with less) supervision.

@ build versatile architectures to process structured data.
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Classical criticisms of kernel methods

@ lack of adaptivity to data?
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Classical criticisms of kernel methods

@ lack of adaptivity to data?
if necessary, use kernels for probabilistic models;

o lack of adaptivity to the task (end-to-end learning)?
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Classical criticisms of kernel methods
@ lack of adaptivity to data?
if necessary, use kernels for probabilistic models;

o lack of adaptivity to the task (end-to-end learning)?
most critical point, important open problem;

@ kernel methods are glorified template matching algorithms?
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Classical criticisms of kernel methods
@ lack of adaptivity to data?
if necessary, use kernels for probabilistic models;

o lack of adaptivity to the task (end-to-end learning)?
most critical point, important open problem;

@ kernel methods are glorified template matching algorithms?
irrelevant, only true for Gaussian kernel with o too small;

77

zga;K(x;,x) ~ ZZ/ KX )K(x,-,x).

The representer theorem simply tells us that the prediction function f
lies in a subspace spanned by the data (nothing to do with the
“template-matching” Nadaraya-Watson estimator on the right).

The a;'s do not have the same sign as the y;’s in general.

The theorem also applies to the last layer of neural networks...
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e Open Problems and Research Topics

@ “Deep” learning with kernels

@ “Deep” feature maps
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Links between kernels and neural networks

A large class of kernels on RP may be defined as an expectation

K(x,y) = Ewls(w'x)s(w'y)],

where s : R — R is a nonlinear function. Then, approximating the
expectation by a finite sum vyields

d
1
K(x,y) = QZS( w/ x)s(w/y) = (¥(x), ¥(y))pe;
j=1
where 1)(x) may be interpreted as a one-layer neural network.

Example

Any shift-invariant kernel with random Fourier features!

2 T
P(x) = \/; [cos(wirx + by), ..., cos(w)x + bd)} .



Links between kernels and neural networks

A large class of kernels on RP may be defined as an expectation
K(x,y) = Ew[s(w'x)s(wy)],

where s : R — R is a nonlinear function.

Example

The Gaussian kernel on the hypersphere:

m
1 2 2 1 2 1 2
e—wx—y|2:< 22> / o rlx—wl3 o= L ly-wl3 4,
o WeRm

— [ plwpe A '
weR™m

1 2
X — w
e 2tz Ydw,

where p(w) is the density of the multivariate normal distribution

N(0,02/41).
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Links between kernels and neural networks

Example, arc-cosine kernels

Cho and Saul, 2009 have proposed a collection of kernels defined as
Kiey) =2 [ plw)s(wx)s(w"y)dw,
weRm

for x,y on the hyper-sphere S™~! and p(w) is the density of the
multivariate normal distribution A/(0,1). Interestingly, the non-linearity s
are typical ones from the neural network literature.

o s(u) = max(0, u) (rectified linear units) leads to
Ki(x,y) = sin(0) + (7 — 0) cos(#) with 6 = cos~*(xy);
o s(u) = max(0, u)? (squared rectified linear units) leads to
Ka(x,y) = 3sin(0) cos(6) + (7 — 0)(1 + 2 cos?(0));

e and also a general formula for s(u) = max(0, u)P, with d > 0.
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Links between kernels and neural networks

= grc-cosinel
= Qrc-cosine2
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Links between kernels and neural networks

We have seen that some kernels admit an interpretation as one-layer
neural networks with random weights and infinite number of neurons.

Another common features between neural networks and kernel method is
the composition of feature maps [Cho and Saul, 2009].

Consider kernels with the form

Ki(x,y) = & ([leo(x) 1705 l0(¥) 2205 (P0(X); oY) 70) = (p1(X), p1(¥)) 215

e.g., linear, polynomial, Gaussian, arc-cosine with @g(x) = x.
Then, it is easy to obtain a new kernel K, by composition:

Ka(x,¥) = £ (lo1(3) 1241 o1 (W) 131> (01(%), p1(Y)) #1) = (p2(x), 02(¥)) 12

and recursively build multilayer kernels.
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e Open Problems and Research Topics

@ “Deep” learning with kernels

@ Convolutional kernel networks
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Motivation

We have made explicit some links between neural networks
(approximation by linear operations followed by pointwise non-linearities,
and composition of feature maps leading to multilayer kernels).

However, one important ingredient in the kernel world is still missing:

The main deep learning success, convolutional neural networks, is able to

@ learn local structures in images (local stationarity);

@ learn how to combine these local structures into mid and high-level
ones (spatial composition).
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Motivation

We have made explicit some links between neural networks
(approximation by linear operations followed by pointwise non-linearities,
and composition of feature maps leading to multilayer kernels).

However, one important ingredient in the kernel world is still missing:

The main deep learning success, convolutional neural networks, is able to

@ learn local structures in images (local stationarity);

@ learn how to combine these local structures into mid and high-level
ones (spatial composition).

From a tutorial of Y. LeCun, quoting Stuart Geman “the world is
compositional or there is a God”.
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Motivation

ion

Low-Level Mid-Level| [High-Level| Trainable
Feature Feature Feature Classifier
r i L

Figure : Picture from Yann Lecun’s tutorial, based on [Zeiler and Fergus, 2013].
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Convolutional kernel networks

A few words about convolutional kernel networks [Mairal et al., 2014]

@ Unsupervised representation of images based on a multilayer kernel,
along with a finite-dimensional embedding 1, which is a new type
of convolutional neural network;

@ State-of-the-art results for image retrieval [Paulin et al., 2016];

@ New principles to perform end-to-end supervised learning with
multilayer kernels (unpublished yet).
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Convolutional kernel networks
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Main properties of CKNs

@ CKNs are organized in a multi-layer fashion.
@ Each layer produces an image feature map.

An image feature map i is a function ¢ : Q — H, where Q C [0, 1]?
is a set of “coordinates” and ‘H is a Hilbert space.

Concretely, these are similar to feature maps of CNNs.
o Each layer defines a kernel between patches of the previous layer.

@ The approximation scheme requires learning each layer sequentially,
and can be interpreted as a CNN layer with a different objective.
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Image feature maps and convolutional kernels

An image feature map ¢ is a function ¢ : Q — H, where Q C [0,1]? is a
set of “coordinates” in the image and H is a Hilbert space.

It is possible to define a convolutional kernel between ¢ and ¢’

1 /1|2 ~ T
K(p, @) = Z Z le(2)]4 HSD,(Z,)HH ef”ﬁllzfz ||ze*ﬁ||ap(z)fgo (z )||§{7
z2eQ 2/ e

@ when S is large, K is invariant to the positions z and Z’.

@ when 3 is small, only features placed at the same location z = 2/
are compared to each other.

The kernel is inspired from the kernel descriptors of Bo et al., 2011.
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Image feature maps and convolutional kernels

An image feature map ¢ is a function ¢ : Q — H, where Q C [0,1]? is a
set of “coordinates” in the image and H is a Hilbert space.

It is possible to define a convolutional kernel between ¢ and ¢’

1 /1|2 ~ T
K(p, @) = Z Z le(2)]4 HSD,(Z,)HH ef”ﬁllzfz ||ze*ﬁ||ap(z)fgo (z )||§{7
z2eQ 2/ e

The kernel can be defined on patches

2 ~ ~
Z Z ||S0(U + Z)HH H(p/(ul + Z/)HH e_jfHz_z'Hze‘ﬁ”@(U-i—Z)‘cp’(u’—f—z')H%—t7
zcP 2 eP

where P is a patch shape and u, u’ are locations in Q.
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Zoom on the zero-th layer

Before we build a hierarchy, we can specify two simple zero-th layer
feature maps .

Gradient map

Ho=R? and ¢p(z) is the two-dimensional gradient of the image at
pixel z. Then, the quantity [l¢o(z)l|3, is the gradient intensity,
and @g(z) is its orientation [cos(#),sin(0)].

Patch map

o associates to a location z an image patch of size m x m centered
2 ~ 5 o a

at z. Then, Ho = R™, and $p(z) is a contrast-normalized version of

the patch.
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Multilayer kernels

Let us consider a set of coordinates Q,_1 and a Hilbert space H,_1. We
build a new set Q4 and a new Hilbert space H as follows:

@ choose a patch shape Py and a set of coordinates Q4 such that for
each z, in € corresponds to a patch in £,_; centered at z.

o call Ki the kernel of the previous slide on the “patch” feature

maps Py — Hy-1 (with parameters Sy, 0k). We denote by Hy the
Hilbert space for which the p.d. kernel K| is reproducing.

An image represented by a feature map @y—1 : Qx—1 — Hy-1 at layer k-1

is now encoded in the k-th layer as g : Qi — Hy, where @i (zx) is the
representation in Hy of the patch of 1 centered at z.
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Convolutional kernel networks
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Optimization

Key approximation

When x and y are on the sphere,

ez g, o [s(zTx)s(zTy)),

where s(u) x e “22t2% and p(z) is the density of the multivariate

normal distribution A(0, (a/4)l1). Then,

2
L lx-ylB Z”J s(2]y).

Instead of random sampling, z; and 7; are learned on training data:

2
n

l}]l: E e 2a2||Xl YI||2 _ E 775 Z yl)

i=1
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Approximation principles
We proceed by recursion, with the approximation holding for k = 0.

Main ingredients for approximating K(¢k-1, ©}_1)-

@ replace 1 by its finite-dimensional approximation t_1;

Lillz—2|3 1 || dkr (@)~ (2)||2
~ Z |1k-1(z HzH”L/’k (7)) Hz o “e e

Z7Z/EQk,1

@ use the finite-dimensional approximation of the Gaussian kernel

Z gk(Z)TCI/((Z/)e_@HZ_Z HZ,

2,2/ €Q
@ approximate the remaining Gaussian kernel

2y (2 e e) (X ),

ueQ) " z€Q 2'eQy
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Zoom between layers k-1 and k

Gaussian filtering
+ downsampling
= pooling
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Application to image retrieval

@ Encoding of interest points with CKN + VLAD.

@ Possible inputs:

Results (mAP or true positives in top-4 for UKB)

Method \ Dataset Holidays | UKB | Oxford
VLAD+SIFT [Jegou et al., 2012] 63.4 3.47 -
VLAD++ [Arandjelovic and Zissermann, 2013] 64.6 - 55.5
CNN [Babenko et al., 2014] 79.3 3.56 54.5
CNN2 [Gong et al., 2014] 80.2 - -
Sum-pooling VGG [Babenko et al., 2015] 80.2 3.65 53.1
Ours (vanilla, high-dimensional) 79.3 3.76 49.8
Ours + PCA 4096 + whitening 82.9 3.77 47.2

Julien Mairal (Inria)
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What about image classification?

First proof of concept was evaluated on classical “deep learning”

datasets. without data augmentation or data pre-processing;

Tr. |CNN|Scat-1 |Scat-2| CKN-GM1 | CKN-GM2 | CKN-PM1 | CKN-PM2 132]| 28 [29]

size| [25] | [8] | [8] | (12/50) | (12/400) | (200) | (50/200)

300|7.18| 4.7 5.6 4.39 4.24 5.98 4.15 NA

1K [ 3.21| 2.3 2.6 2.60 2.05 3.23 2.76 NA

2K (253 1.3 1.8 1.85 1.51 1.97 2.28 NA

5K | 1.52 | 1.03 1.4 1.41 1.21 1.41 1.56 NA

10K | 0.85| 0.88 1 1.17 0.88 1.18 1.10 NA

20K | 0.76 | 0.79 | 0.58 0.89 0.60 0.83 0.77 NA

40K | 0.65| 0.74 | 0.53 0.68 0.51 0.64 0.58 NA

60K | 0.53| 0.70 0.4 0.58 0.39 0.63 0.53 0.47‘0.45‘0.53
Table : Test error in % for various approaches on the MNIST dataset.

Method [ [12] | [27]] [18] [[23]] ] | [17] | [32] [CKN-GM|CKN-PM|CKN-CO

CIFAR-10/82.0/82.2|188.32|79.6| NA |83.96|84.87| 74.84 78.30 82.18

STL-10 |60.1/58.7| NA [51.5(/64.5| 62.3 | NA 60.04 60.25 62.32

Table : Classification accuracy in % on CIFAR-10 and STL-10.

Julien Mairal (Inria)
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Current Perspectives

Engineering effort helps

@ higher (huge)-dimensional models may be learned; they give about
86% on CIFAR-10 (~ 88% with data augmentation);

Supervision helps

@ preliminary supervised models are already close to 90% (single
model, no data augmentation);

Future challenges
@ video data;
@ structured data, sequences, graphs;
@ theory and faster algorithms;

@ finish supervision.
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Conclusion of the course
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What we saw

@ Basic definitions of p.d. kernels and RKHS
@ How to use RKHS in machine learning

@ The importance of the choice of kernels, and how to include “prior
knowledge” there.

Several approaches for kernel design (there are many!)

Review of kernels for strings and on graphs

Recent research topics about kernel methods
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What we did not see

@ How to automatize the process of kernel design (kernel selection?
kernel optimization?)

@ How to deal with non p.d. kernels

@ Bayesian view of kernel methods, called Gaussian processes.
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