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A brief recap on kernel methods

 A way to achieve non-linear classification (or other data analysis) by using a 
kernel that computes inner products of data after non-linear transformation
► Given the transformation, we can derive the kernel function.

 Conversely, if a kernel is positive definite, it is known to compute a dot-
product in a (not necessarily finite dimensional) feature space 
► Given the kernel, we can determine the feature mapping function.

Φ:  x → φ(x)

k (x1, x2)=〈ϕ(x1),ϕ(x2)〉



A brief recap on kernel methods

 Most often we start with data in a vector space, and map it to another feature 
space to allow for non-linear classification in the original space, using linear 
classification in the feature space

 Kernels can also be used to represent non-vectorial data, and to make them 
amenable to linear classification (or other linear data analysis) techniques

 For example, suppose we want to classify sets of points in a vector space, 
where the size of each set may vary

 We can define a representation of sets by concatenating the mean and 
variance of the set in each dimension

► Fixed size representation of sets in 2d dimensions
► Use kernel to compare different sets:

k (X 1, X2)=〈ϕ(X 1),ϕ(X 2)〉

X={x1, x2,... , xN } with xi∈Rd

ϕ(X )=(mean (X )
var (X ) )



Fisher kernels

 Proposed by Jaakkola & Haussler, “Exploiting generative models in 
discriminative classifiers”,In Advances in Neural Information Processing 
Systems 11, 1998

 Motivated by the need to represent variably sized objects in a vector space, 
such as sequences, sets, trees, graphs, etc., such that they become 
amenable to be used with linear classifiers, and other data analysis tools 

 A generic method to define kernels over arbitrary data types based on 
generative statistical models.
► Define a probability distribution over the items we want to represent

p( x ;θ) , x∈X , θ∈RD



Fisher kernels

 Given a generative data model 

 Represent data x in X by means of the gradient of the data log-likelihood, or 
“Fisher score”:

 Define a kernel over X by taking the scaled inner product between the Fisher 
score vectors: 

 Where F is the Fisher information matrix F:

 F is positive definite since

g(x)=∇ θ ln p(x) ,
g(x)∈RD

p(x ;θ) , x∈X , θ∈RD

k (x , y)=g(x)
T F−1 g( y)

F=Ep (x ) [g(x)g(x)T ]

αT F α=Ep (x) [(g(x)T α)2 ]>0



Fisher kernels

 The Fisher score has zero mean under the generative model

 Therefore, the Fisher information matrix is the covariance matrix of the Fisher 
score under the generative model

E p(x)[g(x)]=∫x
p (x) ∂

∂θ
ln p(x)

=∫x
p (x)

1
p(x)

∂
∂θ

p (x)

=∫x

∂
∂θ

p (x)

= ∂
∂θ∫x

p (x)

= ∂
∂θ

1

=0

F=Ep (x ) [g(x)g(x)T ]



Fisher vector

 Since F is positive definite we can decompose its inverse as 

 Therefore, we can write the kernel as 

► Where phi is known as the Fisher vector

 From this explicit finite-dimensional data embedding it follows immediately 
that the Fisher kernel is a positive-semidefinite 

 Since F is covariance of Fisher score, normalization by L makes the Fisher 
vector have unit covariance matrix under p(x)

F−1
=LT L

ϕ(xi)=L g(xi)

k (xi , x j)=g(xi)
T F−1 g(x j)=ϕ(xi)

T
ϕ(x j)



Normalization with inverse Fisher information matrix

 Gradient of log-likelihood w.r.t. parameters

 Fisher information matrix 

 Normalized Fisher kernel 
► Renders Fisher kernel invariant for parametrization 

 Consider different parametrization given by some invertible function 

 Jacobian matrix relating the parametrizations

 Gradient of log-likelihood w.r.t. new parameters

 Fisher information matrix 

 Normalized Fisher kernel 

Fθ=∫ g(x)g(x)
T p(x)dx

λ= f (θ)

g(x)=∇ θ ln p(x)

k (x1, x2)=g(x1)
T Fθ

−1 g(x2)

[J ]ij=
∂θ j

∂ λi

h(x)=∇ λ ln p(x)=J ∇θ ln p(x)=J g(x)

h(x1)
T Fλ

−1h(x2)=g(x1)
T JT

(JFθ J
T
)
−1 J g(x2)

Fλ=∫ h(x)h(x)
T p(x)dx=J F θJ

T

=g(x1)
T J T J−T F θ

−1 J−1 J g(x2)

=g(x1)
T F θ

−1 g(x2)

=k (x1, x2)



Data-adaptive kernel design

 Fisher vector given by linear projection of gradient

 Fisher kernel is dot-product over Fisher vectors

 Parameters of the model p(x) estimated from data
► Structure typically determined manually in advance 

 Data characteristics captured by Fisher vector depend on data used to train 
the generative model 

 Semi-automatic data-driven kernel design instead of predominant completely 
manual design

ϕ(x)=F−1 /2
∇ θ ln p(x)

k (xi , x j)=ϕ(xi)
T
ϕ(x j)



Fisher kernels: example with Gaussian data model

 Let lambda be the inverse variance, i.e. precision, parameter

 The partial derivatives are found to be

p(x)=N (x ;μ ,λ)=√λ /(2π)exp [−1
2

λ(x−μ)2]

θ=(μ ,λ)
T

ln p(x)=
1
2

ln λ−
1
2

ln (2π)−
1
2

λ(x−μ)2

∂ ln p(x)
∂μ

=λ(x−μ)
∂ ln p (x)

∂λ
=

1
2

[λ−1
−(x−μ)

2 ]



Fisher kernels: example with Gaussian data model

 The partial derivatives are found to be

 Using central 3rd and 4th Gaussian moment, we get Fisher Information matrix 

 The Fisher vector is then 

∂ ln p(x)
∂μ

=λ(x−μ)
∂ ln p (x)

∂λ
=

1
2

[λ−1
−(x−μ)

2 ]

F=(
λ 0

0
1
2

λ
−2)

ϕ(x)=(
(x−μ)/σ

1

√2
(1−(x−μ)

2
/σ

2 ))

E p[(x−μ)
3
]=0

E p[(x−μ)
4
]=3σ

4



Fisher kernels: example with Gaussian data model

 Now suppose an i.i.d. data model over a set of data points

 Then the Fisher vector is given by the sum of Fisher vectors of the points
► Encodes the discrepancy in the first and second order moment of the data 

w.r.t. those of the model

► Where

p(x)=N (x ;μ ,λ)=√λ /(2π)exp [−1
2

λ(x−μ)2]
p(X)=p(x1,. .. , xN)=∏i=1

N
p(xi)

ϕ(X )=∑i=1

N
ϕ(xi)=N ( (μ̂−μ)/σ

(σ
2
−σ̂

2 )/ (σ2√2 ))

μ̂=
1
N ∑i=1

N
xi σ̂

2
=

1
N
∑i=1

N
(xi−μ)

2



Fisher kernels – relation to generative classification

 Suppose we make use of generative model for classification via Bayes' rule
► Where x is the data to be classified, and y is the discrete class label

and

 Classification with the Fisher kernel obtained using the marginal distribution 
p(x) is at least as powerful as classification with Bayes' rule.

 This becomes useful when the class conditional models are poorly estimated, 
either due to bias or variance type of errors.

 In practice often used without class-conditional models, but direct generative 
model for the marginal distribution on X.

p( y∣x)= p( x∣y) p( y)/ p( x) ,

p( x)=∑k=1

K
p( y=k ) p(x∣y=k )

p( x∣y)= p(x ;θy) ,

p( y=k )=πk=
exp(αk )

∑k '=1

K
exp(αk ' )



Fisher kernels – relation to generative classification

 Consider the Fisher score vector with respect to the marginal distribution on X

 In particular for the alpha that model the class prior probabilities we have

∇θ ln p(x)=
1

p( x)
∇θ∑k=1

K
p(x , y=k )

=
1

p( x)
∑k=1

K
p( x , y=k )∇θ ln p(x , y=k )

=∑k=1

K
p( y=k∣x) [∇θ ln p( y=k )+∇θ ln p(x∣y=k ) ]

∂ ln p( x)
∂αk

= p( y=k∣x)−πk



Fisher kernels – relation to generative classification

 First K elements in Fisher score given by class posteriors minus a constant

 Consider discriminative multi-class classifier, for the k-th class
► Let the weight vector be zero, except for the k-th position where it is one 
► Let the bias term be equal to the prior probability of that class 

 Then

and thus

 Thus the Fisher kernel based classifier can implement classification via 
Bayes' rule, and generalizes it to other classification functions.

f k ( x)=wk
T g ( x)+bk= p( y=k∣x)

g(x)=∇ θ ln p(x)=( p( y=1∣x)−π1,... , p( y=K∣x)−πK , ... )

argmaxk f k (x)=argmax k p( y=k∣x)



Challenging factors in object recognition

 Intra-class appearance variation 
► Objects deformation due to pose
► Transparency: e.g. bottles
► Sub-categories: boat = ferry + yacht +...

 Scene composition 
► Heavy occlusions: e.g. tables and chairs
► Clutter: coincidental image content present

 Imaging conditions 
► viewpoint, scale, illumination



Representing images as “bags of features”

 Global rigid representation likely to be affected by nuisance factors such as 
deformation, (self-)occlusion, clutter, etc.

 Instead consider local image regions, or “patches”, on which some 
representation is computed that is (partially) invariant to imaging conditions 
such as viewpoint, illumination, scale, etc.
► Local patterns more likely to be preserved, or at least some of them

 Patch extraction and description stage
► Patch sampling from image on dense multi-scale grid, or interest points
► Descriptor computation: SIFT, HOG, LBP, color names, …

 Set of local descriptors characterizes the image (or video, or speech, or ...)

 Feature aggregation stage
► Global image signature computed 
► Can be classified or used for matching

 See e.g. Schmid & Mohr, PAMI, 1997.



Local descriptor based image representations

 SIFT patch description most popular
► 4x4 spatial grid
► 8 bin orientation histogram
► Lowe, IJCV, 2004

 Coding stage: embed local descriptors, typically in higher dimensional space
► For example: assignment to cluster indices

 Pooling stage: aggregate per-patch embeddings
► For example: sum pooling

Φ(X )=∑i=1

N
ϕ(xi)

X={x1, ... , xN }

ϕ(xi)



The “bag of visual words” representation

 Offline clustering of many descriptors from many training images

 Encoding a new image:

– Compute local descriptors, assign to cluster
– Count histogram of descriptors in each cluster

 Sum pooling of “1-hot encoding” of local descriptors

[5, 2, 3] [3, 6, 1]

ϕ(xi)=[0,. .. ,0,1,0, ... ,0] h=∑i
ϕ(xi)



Example visual words found by clustering

Airplanes

Motorbikes

Faces

Wild Cats

Leafs

People

Bikes



Application of FV for bag-of-words image-representation

 Bag of word (BoW) representation
► Map every descriptor to a cluster / visual word index 

 Model visual word indices with i.i.d. multinomial 

► Likelihood of N i.i.d. indices:

► Fisher vector given by gradient
 i.e. BoW histogram + constant

p(wi=k )=
expαk

∑k '
expαk '

=πk

∂ ln p(w1: N )

∂αk
=∑i=1

N ∂ ln p(w i)

∂αk
=hk−N πk

wi∈{1, ... , K }

p(w1 : N)=∏i=1

N
p(wi)
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Fisher vector GMM representation: Motivation 

• Suppose we want to refine a given visual vocabulary to obtain a 
richer image representation

• Bag-of-word histogram stores # patches assigned to each word
– Need more words to refine the representation
– But this directly increases the computational cost
– And leads to many empty bins: redundancy

0
0

2

0

0
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Fisher vector GMM representation: Motivation

• Feature vector quantization is computationally expensive 
• To extract visual word histogram for a new image

– Compute distance of each local descriptor to each k-means center 
– run-time O(NKD) : linear in

• N: nr. of feature vectors ~ 104 per image
• K: nr. of clusters ~ 103 for recognition
• D: nr. of dimensions ~ 102 (SIFT)

• So in total in the order of 109 multiplications 

per image to obtain a histogram of size 1000

• Can this be done more efficiently ?!
– Yes, extract more than just a visual word histogram from a given 

clustering
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Fisher vector representation in a nutshell

• Instead, the Fisher Vector for GMM also records the mean and 
variance of the points per dimension in each cell

– More information for same # visual words 
– Does not increase computational time significantly 
– Leads to high-dimensional feature vectors

 Even when the counts are the same,

 the position and variance of the points in the cell can vary



Application of FV for Gaussian mixture model of local features

 Gaussian mixture models for local image descriptors
[Perronnin & Dance, CVPR 2007]

► State-of-the-art feature pooling for image/video classification/retrieval

 Offline: Train k-component GMM on collection of local features

 Each mixture component corresponds to a visual word
► Parameters of each component: mean, variance, mixing weight
► We use diagonal covariance matrix for simplicity

 Coordinates assumed independent, locally per Gaussian

p(x)=∑k=1

K
πk N (x ;μk ,σk)



Application of FV for Gaussian mixture model of local features

 Model local image features with Gaussian mixture model

 Fisher vector representation: gradient of log-likelihood 
► For the means and variances we have:

► Soft-assignments given by component posteriors

F−1/2
∇μk

ln p(x1 :N)=
1

√πk
∑n=1

N
p(k∣xn)

(xn−μk)
σk

F−1/2
∇σ k

ln p(x1 :N)=
1

√2πk

∑n=1

N

p(k∣xn){(xn−μk)
2

σk
2 −1}

p(k∣xn)=
πk N (xn;μk ,σk)

p(xn)

p(x)=∑k=1

K
πk N (x ;μk ,σk)



Application of FV for Gaussian mixture model of local features

 Fisher vector components give the difference between the data mean 
predicted by the model and observed in the data, and similar for variance.

 For the gradient w.r.t. the mean

► where

 Similar for the gradient w.r.t. the variance

► where

F−1/2
∇μk

ln p(x1 :N)=
1

√πk
∑n=1

N
p(k∣xn)

(xn−μk)
σk

=
nk

σk √πk
(μ̂k−μk )

F−1/2
∇σ k

ln p(x1 :N)=
1

√2πk

∑n=1

N

p(k∣xn){(xn−μk)
2

σk
2 −1}= nk

σk
2
√2πk

(σ̂k
2
−σk

2 )

nk=∑n=1

N
p(k∣xn) μ̂k=nk

−1∑n=1

N
p(k∣xn)xn

σ̂k
2
=nk

−1∑n=1

N
p(k∣xn)(xn−μk)

2



Image representation using Fisher kernels

 Data representation

 In total K(1+2D) dimensional representation, since for each visual 
word / Gaussian we have
► Mixing weight (1 scalar)
► Mean (D dimensions)
► Variances (D dimensions, since single variance per dimension)

 Gradient with respect to mixing weights often dropped in practice 
since it adds little discriminative information for classification.
► Results in 2KD dimensional image descriptor

G(X ,Θ)=F−1/2( ∂ L
∂α1

, ... ,
∂ L
∂αK

, ∇μ1
L, ... ,∇μK

L , ∇σ 1
L, ... , ∇σK

L )
T



Illustration of gradient w.r.t. means of Gaussians



BoW and FV from a function approximation viewpoint

 Let us consider uni-dimensional descriptors: vocabulary 
quantizes real line

 For both BoW and FV the representation of an image is 
obtained by sum-pooling the representations of descriptors.
► Ensemble of descriptors sampled in an image
► Representation of single descriptor

 One-of-k encoding for BoW
 For FV concatenate per-visual word gradients of form

 Linear function of sum-pooled descriptor encodings is a sum 
of linear functions of individual descriptor encodings:

Φ(X )=∑i=1

N
ϕ(xi)

X={x1, ... , xN }

ϕ(xi)=[0,. .. ,0,1,0, ... ,0]

ϕ(xi)=(... , p(k∣xi)[1 (xi−μk)
σk

(xi−μk)
2−σk

2

σk
2 ] , ...)

wT
Φ(X )=∑i=1

N
wT

ϕ(xi)



From a function approximation viewpoint

 Consider the score of a single descriptor for BoW
► If assigned to k-th visual word then 
► Thus: constant score for all descriptors assigned to a visual word

wT
ϕ(x i)=wk

Each cell corresponds to a visual word



From a function approximation viewpoint

 Consider the same for FV, and assume soft-assignment is “hard”
► Thus: assume for one value of k we have 
► If assigned to the k-th visual word:

 Note that        is no longer a scalar but a vector
► Thus: score is a second-order polynomial of the descriptor x, for 

descriptors assigned to a given visual word.

wT ϕ(x i)=wk
T [1 (xi−μk)

σk

(xi−μk)
2
−σk

2

σk
2 ]

p(k∣xi)≈1

wk



From a function approximation viewpoint

 Consider that we want to approximate a true classification function 
(green) based on either BoW (blue) or FV (red) representation
► Weights for BoW and FV representation fitted by least squares to 

optimally match the target function

 Better approximation with FV 
► Local second order approximation, instead of local zero-order
► Smooth transition from one visual word to the next



Fisher vectors: classification performance VOC'07
 Yearly evaluation from 2005 to 2012 for image classification 



Fisher vectors: classification performance VOC'07

• Fisher vector representation yields better performance for a 
given number of Gaussians / visual words than Bag-of-words.

• For a fixed dimensionality Fisher vectors perform better, and are 
more efficient to compute



Normalization of the Fisher vector

 Inverse Fisher information matrix F
► Renders FV invariant for re-parametrization
► Linear projection, analytical approximation for MoG gives diagonal matrix

[Sanchez, Perronnin, Mensink, Verbeek IJCV'13]

 Power-normalization, applied independently per dimension
► Renders Fisher vector less sparse

[Perronnin, Sanchez, Mensink, ECCV'10]
► Corrects for poor independence assumption on local descriptors

[Cinbis, Verbeek, Schmid, PAMI'15]

 L2-normalization
► Makes representation invariant to number of local features
► Among other Lp norms the most effective with linear classifier

[Sanchez, Perronnin, Mensink, Verbeek IJCV'13]

F=E[g (x)g(x)
T
]

f (x)=F−1/2 g(x)

f (x)← sign(f (x ))|f (x)|
ρ

0<ρ<1

f (x)←
f (x)

√ f (x)
T f (x)



Effect of power and L2 normalization in practice

 Classification results on the PASCAL VOC 2007 benchmark dataset.

 Regular dense sampling of local SIFT descriptors in the image
► PCA projected to 64 dimensions to de-correlate and compress

 Using mixture of 256 Gaussians over the SIFT descriptors
► FV dimensionality: 2*64*256 = 32 * 1024

Power 
Nomalization

L2 
normalization

Performance 
(mAP)

Improvement 
over baseline

No No 51.5 0

Yes No 59.8 8.3

No Yes 57.3 5.8

Yes Yes 61.8 10.3



PCA dimension reduction of local descriptors

 We use diagonal covariance model

 Dimensions might be correlated

 Apply PCA projection to
► De-correlate features
► Reduce dimension of final FV

 FV with 256 Gaussians over local 

SIFT descriptors of dimension 128

Results on PASCAL VOC’07:



Example applications: Fine-grained classification

 Winning INRIA+Xerox system at FGComp’13:
http://sites.google.com/site/fgcomp2013
► multiple low-level descriptors: SIFT, color, etc.
► Fisher Vector embedding

[Gosselin, Murray, Jégou, Perronnin, “Revisiting the Fisher vector for fine-
grained classification”, PRL’14.]

 Many other successful uses of FVs for fine-grained recognition
► Rodriguez and Larlus, “Predicting an object location using a global image 

representation”, ICCV’13.
► Gavves, Fernando, Snoek, Smeulders, Tuytelaars, “Fine-Grained 

Categorization by Alignments”, ICCV’13
► Murray, Perronnin, “Generalized Max Pooling”, CVPR’14.

aircraft (100) birds (83) cars (196) dogs (120) shoes (70)



Example applications: object detection

 ImageNet’13 detection: http://www.image-net.org/challenges/LSVRC/2013/

 Winning system by University of Amsterdam 
► region proposals with selective search
► Fisher Vector embedding
► Fast Local Area Independent Representation (FLAIR)

Van de Sande, Snoek, Smeulders, “Fisher and VLAD with FLAIR”, 
CVPR’14.

http://sites.google.com/site/fgcomp2013


Example applications: face verification

 Face track description:
► track face
► extract SIFT descriptors
► encode using Fisher vectors
► pool at face track level

Parkhi, Simonyan, Veldaldi, Zisserman, “A compact and discriminative 
face track descriptor”, CVPR’14.

 New state-of-the-art results on the YouTube faces dataset



Example: action recognition and localization

 THUMOS action recognition challenge 2013 & 2014

http://crcv.ucf.edu/ICCV13-Action-Workshop

 Winning systems by INRIA-LEAR
► improved dense trajectory video features
► Fisher Vector embedding

Wang, Oneata, Verbeek and Schmid, “A robust and efficient 
video representation for action recognition”, IJCV’15.



Bag-of-words vs. Fisher vector representation

 Bag-of-words image representation
► k-means clustering
► histogram of visual word counts, K dimensions

 Fisher vector image representation
► GMM clustering
► Local first and second order moments, 2KD dimensions

 For a given dimension of the representation
► FV needs less clusters, and is faster to compute
► FV gives better performance since it is a smoother function of 

the local descriptors.

 Power and L2 normalizations effective for both representations
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