Advanced Learning Models

Jakob Verbeek
jakob.verbeek@inria.fr

December 10, 2015
http://lear.inrialpes.fr/people/mairal/teaching/2015-2016/MSIAM/
informatics mathematics

Course content

- Lecture 1
- Introduction
- Linear classification
- Non-linear classification with kernels
- Kernel-trick more generally
- Bias-variance decomposition
- Lectures 2,3,4 (Julien Mairal)
- Theory on kernels
- Lectures 5,6 (Jakob Verbeek)
- Fisher kernel
- Convolutional and recurrent neural networks

Course content

- From classic linear learning problems

Course content

- To current practical learning problems

Course content

- Extend well understood linear statistical learning techniques to realworld complicated, structured and high-dimensional data (images, text, time series, graphs, distributions, permutations, ...)
- Kernels: basic theory and kernel design
- Neural networks: learning convolutional and recurrent architectures

Learning predictive models from data

- Given training data labeled for two or more classes

Learning predictive models from data

- Given training data labeled for two or more classes
- Determine a decision surface that separates those classes

Learning predictive models from data

- Given training data labeled for two or more classes
- Determine a decision surface that separates those classes
- Use that surface to predict the class membership of new data

Recommender systems

- Given a dataset of users and the movies they liked
- Predict which other movies a given user would also like

EBrowse

Continue Watching

Mad Men: Season 3: Ep. 2 - Love Among .-

Top Picks for You

Instant Queue

Recommender systems

- Given a dataset of queries and click-through data
- Predict which are the most relevant pages for a given query

Google

Natural Language Processing

- Given a text, predict its topic
- Given an email, predict whether it is spam
- Given a text, predict its translation in another language
- Etc.

Tumor classification for prognosis

- Given the expression of genes in a new tumor, predict the development over the next 5 years

Molecule classification for drug design

- Given a candidate molecule, predict whether it is active against a certain condition

Gene expression clustering

- Are there groups of breast tumors with similar gene expression profile?

Audio understaning

- Given an audio stream, predict which song is played

Image Inpainting

- Complete an image with missing parts
- predict each image patch, as a linear combination of dictionary elements

Image Inpainting

- Complete an image with missing parts
- predict each image patch, as a linear combination of dictionary elements

Image Inpainting

Image super resolution

- Given an image, predict a high-resolution version of it
- Predictions per-patch, ensure spatial consistency

Classification examples in category-level recognition

- Given an image, predict if labels are relevant or not
- For example: Person = yes, TV = yes, car = no, ...

Classification examples in category-level recognition

- Category localization: predict bounding box coordinates for each object

Classification examples in category-level recognition

- Semantic segmentation: classify pixels to categories (multi-class)
- Impose spatial smoothness by Markov random field models.

Video understanding

- Given a video: predict the type of event that is shown: birthday party

Video understanding

- Given a video: predict spatio-temporal location of an action, eg drinking

Image captioning

- Given an image: predict a natural language description

a brown dog is running through the grass

Advanced learning models

- Each of these examples involves complex objects/large numbers of features for a restricted number of samples
- Intuitively, observing all these characteristics should allow us to predict or understand complex mechanisms
- But it also means that we should use very rich model classes that can capture a wealth of complex dependencies
- Introduces a risk of overfitting: modeling co-incidental structure in the data
- However, this wealth of features can cause trouble in statistical learning
- This course
- Modeling complex data structures with kernels and neural networks
- Regularization to avoid overfitting

Course content

- Introduction
- Linear classification
- Non-linear classification with kernels
- Kernel-trick more generally
- Bias-variance decomposition

Binary linear classifier

- Decision function is linear in the features: $f(x)=w^{T} x+b$
- Classification based on the sign of $f(x)$
- Decision surface is ($\mathrm{d}-1$) dimensional hyper-plane orthogonal to w
- Offset from origin is determined by b
- We drop offset b , absorb it in x and w
 $x \leftarrow\left(x^{T} 1\right)^{T}$ $w \leftarrow\left(w^{T} b\right)^{T}$
- We will now consider the two most commonly used linear classifiers
- Logistic discriminant
- Support vector machines

Common loss functions for classification

- Assign class label using

$$
y=\operatorname{sign}(f(x))
$$

- Zero-One loss: $L\left(y_{i}, f\left(x_{i}\right)\right)=\left[y_{i} f\left(x_{i}\right) \leq 0\right]$
- Hinge loss:
$L\left(y_{i}, f\left(x_{i}\right)\right)=\max \left(0,1-y_{i} f\left(x_{i}\right)\right)$
$L\left(y_{i}, f\left(x_{i}\right)\right)=\log _{2}\left(1+e^{-y_{i} f\left(x_{i}\right)}\right)$
- Logistic loss:

Common loss functions for classification

- Assign class label using

$$
y=\operatorname{sign}(f(x))
$$

- Zero-One loss: $L\left(y_{i}, f\left(x_{i}\right)\right)=\left[y_{i} f\left(x_{i}\right) \leq 0\right]$
$\begin{array}{ll}\text { - Hinge loss: } & L\left(y_{i}, f\left(x_{i}\right)\right)=\max \left(0,1-y_{i} f\left(x_{i}\right)\right) \\ \text { - Logistic loss: } & L\left(y_{i}, f\left(x_{i}\right)\right)=\log _{2}\left(1+e^{-y_{i} f\left(x_{i}\right)}\right)\end{array}$
- The zero-one loss counts the number of misclassifications, which is the "ideal" empirical loss.
- Discontinuity at zero makes optimization intractable.
- Hinge and logistic loss provide continuous and convex upperbounds
- Combined with convex penalties to prevent overfitting this leads to convex objective functions, for which global optima can be found.

Logistic discriminant classifier

- Map linear score function to class probabilities with sigmoid

$$
p(y=+1 \mid x)=\sigma\left(w^{T} x\right)
$$

- For binary classification problem, we have by definition

$$
p(y=-1 \mid x)=1-p(y=+1 \mid x)
$$

- Exercise: show that $p(y=-1 \mid x)=\sigma\left(-w^{T} x\right)$

$$
\sigma(z)=\frac{1}{1+\exp (-z)}
$$

Logistic discriminant classifier

- Map linear score function to class probabilities with sigmoid.
- The class boundary at $f(x)=0$, or equivalently $p(y \mid x)=1 / 2$.
- Soft transition between class assignment along decision boundary.

Logistic discriminant classifier

- Probability of class y given by sigmoid of score function times label

$$
p(y \mid x)=\sigma\left(y w^{T} x\right)
$$

- Log-likelihood of correct classification of i.i.d. data in training set

$$
\begin{aligned}
\log \prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right) & =\sum_{i=1}^{n} \log p\left(y_{i} \mid x_{i}\right) \\
& =\sum_{i=1}^{n} \log \sigma\left(y_{i} w^{T} x_{i}\right) \\
& =-\sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} w^{T} x_{i}\right)\right) \\
& =-\sum_{i=1}^{n} L_{\text {logistic }}\left(y_{i}, w^{T} x_{i}\right)
\end{aligned}
$$

- We have obtained the logistic loss as negative log-likelihood

Logistic discriminant estimation

- Estimate classifier from data by minimizing, e.g. L2, penalized loss:
- Penalty reduces risk of overfitting

$$
\begin{aligned}
& \min _{w} \sum_{i=1}^{n} L\left(y_{i}, w^{T} x_{i}\right)+\lambda \frac{1}{2} w^{T} w \\
= & \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} w^{T} x_{i}\right)\right)+\lambda \frac{1}{2} w^{T} w
\end{aligned}
$$

- Exercise 1: derive the gradient of the loss

$$
\frac{\partial L\left(y_{i}, w^{T} x_{i}\right)}{\partial w}=-y_{i}\left(1-p\left(y_{i} \mid x_{i}\right)\right) x_{i}
$$

- Exercise 2: Show that this is a convex optimization problem

Logistic discriminant estimation

- Estimate classifier from data by minimizing, e.g. L2, penalized loss:

$$
\begin{aligned}
& \min _{w} \sum_{i=1}^{n} L\left(y_{i}, w^{T} x_{i}\right)+\lambda \frac{1}{2} w^{T} w \\
= & \min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} w^{T} x_{i}\right)\right)+\lambda \frac{1}{2} w^{T} w
\end{aligned}
$$

- Exercise: Show that this is a convex optimization problem
- Calculate gradient of loss w.r.t. w

$$
\frac{\partial L\left(y, w^{T} x\right)}{\partial w}=-y x \frac{1}{1+\exp \left(y w^{T} x\right)}
$$

- Calculate Hessian of Loss w.r.t. w

$$
\begin{aligned}
H(L) & =y x\left(\frac{1}{1+\exp \left(y w^{T} x\right)}\right)^{2} \exp \left(y w^{T} x\right) y x^{T} \\
& =\sigma\left(y w^{T} x\right) \sigma\left(-y w^{T} x\right) x x^{T}
\end{aligned}
$$

Logistic discriminant estimation

- Consider arbitrary w with non-zero norm

$$
\begin{aligned}
w^{T} H(L) w & =w^{T}\left(\sigma\left(y w^{T} x\right) \sigma\left(-y w^{T} x\right) x x^{T}\right) w \\
& =\sigma\left(y w^{T} x\right) \sigma\left(-y w^{T} x\right)\left(w^{T} x\right)^{2} \geq 0
\end{aligned}
$$

- Hessian is semi-positive definite, thus L is convex in w.
- Squared L2 norm also convex in w.

Logistic discriminant estimation

- Solve objective function using first or second order methods

$$
\min _{w} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i w}^{T} x_{i}\right)\right)+\lambda \frac{1}{2} w^{T} w
$$

- E.g. using gradient descent, conjugate gradient descent,...
- Stochastic gradient descent for large-scale problems
- Recall the gradient

$$
\frac{\partial L\left(y_{i}, w^{T} x_{i}\right)}{\partial w}=-y_{i}\left(1-p\left(y_{i} \mid x_{i}\right)\right) x_{i}
$$

- Consider gradient descent, starting from w=0
- Each step we add to w a linear combination of the data points
- Magnitude of weight given by probability of misclassification
- Sign of weight given by the label
- The optimal wis a linear combination of the data samples
- L2 regularization term does not change this property

Support Vector Machines

- Find linear function to separate positive and negative examples
- Which function best separates the samples ?
- Function inducing the largest margin

Support vector machines

- Without loss of generality, define function value at margin as +/- 1
- Now constrain w to that all points fall on correct side of the margin:

$$
y_{i}\left(w^{T} x_{i}+b\right) \geq 1
$$

- By construction we have that the "support vectors", the ones that define the margin, have function values

$$
w^{T} x_{i}+b=y_{i}
$$

- Express the size of the margin in terms of w.

Support vector machines

- Let's consider a support vector x from the positive class $f(x)=w^{T} x+b=1$
- Let z be its projection on the decision plane
- Since w is normal vector to the decision plane, we have $z=x-\alpha w$
- and since z is on the decision plane $f(z)=w^{T}(x-\alpha w)+b=0$
- Solve for alpha

$$
\begin{gathered}
w^{T}(x-\alpha w)+b=0 \\
w^{T} x+b-\alpha w^{T} w=0 \\
\alpha w^{T} w=1 \\
\alpha=\frac{1}{\|w\|_{2}^{2}}
\end{gathered}
$$

- Margin is twice distance from x to z

$$
\begin{gathered}
\|x-z\|_{2}=\|x-(x-\alpha w)\|_{2} \\
\|\alpha w\|_{2}=\alpha\|w\|_{2} \\
\frac{\|w\|_{2}}{\|w\|_{2}^{2}}=\frac{1}{\|w\|_{2}}
\end{gathered}
$$

Support vector machines

- To find the maximum-margin separating hyperplane, we
- Maximize the margin, while ensuring correct classification
- Minimize the norm of w, s.t. $\quad \forall_{i}: \quad y_{i}\left(w^{T} x_{i}+b\right) \geq 1$
- Solve using quadratic program with linear inequality constraints over $p+1$ variables

$$
\begin{gathered}
\operatorname{argmin}_{w, b} \frac{1}{2} w^{T} w \\
\text { subject to } y_{i}\left(w^{T} x_{i}+b\right) \geq 1
\end{gathered}
$$

Support vector machines: inseperable classes

- For non-separable classes we incorporate hinge-loss

$$
L\left(y_{i}, f\left(x_{i}\right)\right)=\max \left(0,1-y_{i} f\left(x_{i}\right)\right)
$$

- Recall: convex and piecewise linear upper bound on zero/one loss.
- Zero if point on the correct side of the margin
- Otherwise given by absolute difference from score at margin

Support vector machines: inseperable classes

- Minimize penalized loss function

$$
\min _{w, b} \quad \lambda \frac{1}{2} w^{T} w+\sum_{i} \max \left(0,1-y_{i}\left(w^{T} x_{i}+b\right)\right)
$$

- Quadratic function, plus piecewise linear functions.
- Can again be transformed to a quadratic program
- Define "slack variables" that measure the loss for each data point
- Should be non-negative, and at least as large as the loss

$$
\begin{gathered}
\min _{w, b,\left\{\xi_{i}\right]} \quad \lambda \frac{1}{2} w^{T} w+\sum_{i} \xi_{i} \\
\text { subject to } \forall_{i}: \xi_{i} \geq 0 \text { and } \xi_{i} \geq 1-y_{i}\left(w^{T} x_{i}+b\right)
\end{gathered}
$$

Support vector machines: solution

- Minimize penalized loss function

$$
\begin{gathered}
\min _{w, b,\left[\xi_{\xi}\right]} \lambda \frac{1}{2} w^{T} w+\sum_{i} \xi_{i} \\
\text { subject to } \forall_{i}: \xi_{i} \geq 0 \text { and } \xi_{i} \geq 1-y_{i}\left(w^{T} x_{i}+b\right)
\end{gathered}
$$

- Solution for w will be a linear combination of the input data
- Split w into a part inside and outside the span of the data

$$
w=w_{p}+w_{o} \quad \forall_{i}: w_{o}^{T} x_{i}=0 \quad w_{p}=\sum_{i} \alpha_{i} x_{i}
$$

- Only norm of w depends on part of w outside the data span
- Note that

$$
w^{T} w=w_{p}^{T} w_{p}+w_{o}^{T} w_{o} \geq w_{p}^{T} w_{p}
$$

- Therefore optimal w is a linear combination of the data
- This is a special case of the more general "representer theorem"

Dealing with more than two classes

- So far, we have only considered the, useful, case for two classes
- E.g., is this email spam or not?
- Many practical problems have more classes
- E.g., which fruit is placed on the supermarket weight scale: apple, orange, or banana?
- First idea: construction from multiple binary classifiers
- Learn binary "base" classifiers independently
- One vs rest approach:
- Train: 1 vs (2 \& 3), 2 vs (1 \& 3), 3 vs (1 \& 2)
- Issue: regions claimed by several classes

Dealing with more than two classes

- One vs one approach:
- Train: 1 vs 2, and 1 vs 3, and 2 vs 3
- Issue: conflicts in some regions

Dealing with more than two classes

- Instead: define a separate linear score function for each class

$$
f_{k}(x)=w_{k}^{T} x
$$

- Assign sample to the class of the function with maximum value

$$
y=\arg \max _{k} f_{k}(x)
$$

- Exercise 1: give the expression for points \mathcal{R}_{i} where two classes have equal score
- Exercise 2: show that the set of points
 assigned to a class is convex
- If two points are assigned to a class, then all points on connecting line are also assigned to that class.

Multi-class logistic discriminant classifier

- Map score functions to class probabilities with "soft-max"

$$
f_{k}(x)=w_{k}^{T} x \quad p(y=c \mid x)=\frac{\exp \left(f_{c}(x)\right)}{\sum_{k=1}^{K} \exp \left(f_{k}(x)\right)}
$$

- The class probability estimates are non-negative, and sum to one.
- Relative probability of classes changes exponentially with the difference in the linear score functions

$$
\frac{p(y=c \mid x)}{p(y=k \mid x)}=\frac{\exp \left(f_{c}(x)\right)}{\exp \left(f_{k}(x)\right)}=\exp \left(f_{c}(x)-f_{k}(x)\right)
$$

- For any given pair of classes, they are equally likely on a hyperplane in the feature space

Multi-class logistic discriminant: estimation

- Consider the likelihood of correct classification of i.i.d. data in training set

$$
\begin{aligned}
& \log \prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right)=\sum_{i=1}^{n} \log p\left(y_{i} \mid x_{i}\right) \\
& =\sum_{i=1}^{n}\left(f_{y_{i}}\left(x_{i}\right)-\log \sum_{k=1}^{K} \exp \left(f_{k}\left(x_{i}\right)\right)\right)
\end{aligned}
$$

- As before, we define loss function as negative log-likelihood

$$
L\left(y,\left\{f_{k}(x)\right\}\right)=-f_{y}(x)+\log \sum_{k=1}^{K} \exp \left(f_{k}(x)\right)
$$

- Estimate model by means of penalized empirical risk

$$
\min _{w} \sum_{i=1}^{n} L\left(y_{i},\left\{f_{k}\left(x_{i}\right)\right\}\right)+\lambda \frac{1}{2} \sum_{k=1}^{K} w_{k}^{T} w_{k}
$$

Multi-class logistic discriminant: estimation

- Derivative of loss function has an intuitive interpretation
- Focus on points with poor classification, w is linear combination of x's

$$
\begin{aligned}
L & =\sum_{i=1}^{n} L\left(y_{i},\left\{f_{k}\left(x_{i}\right)\right\}\right) \\
\frac{\partial L}{\partial w_{k}} & =\sum_{i=1}^{n}\left(\left[y_{i}=k\right]-p\left(y_{i}=k \mid x_{i}\right)\right) x_{i}
\end{aligned}
$$

- Gradient is zero when $\sum_{i=1}^{n}\left[y_{i}=k\right] x_{i}=\sum_{i=1}^{n} p\left(y_{i}=k \mid x_{i}\right) x_{i}$
- If x also contains the constant 1 as last element then empirical count of each class matches expected count.

$$
\sum_{i=1}^{n}\left[y_{i}=k\right]=\sum_{i=1}^{n} p\left(y_{i}=k \mid x_{i}\right)
$$

- Therefore, for each class $1^{\text {st }}$ order moment matches for empirical distribution and the model's class conditional distribution.

$$
\frac{\sum_{i=1}^{n}\left[y_{i}=k\right] x_{i}}{\sum_{i=1}^{n}\left[y_{i}=k\right]}=\frac{\sum_{i=1}^{n} p\left(y_{i}=k \mid x_{i}\right) x_{i}}{\sum_{i=1}^{n} p\left(y_{i}=k \mid x_{i}\right)}
$$

Summary of linear classifiers

- Two most widely used binary linear classifiers:
- Logistic discriminant, also considered the extension to >2 classes.
- Support vector machines, similar multi-class extensions exist.
- Both minimize convex upper bounds on the $0 / 1$ loss
- In both cases the optimal weight vector w is a linear combination of the data points

$$
w=\sum_{i=1}^{n} \alpha_{i} x_{i}
$$

- Therefore, we only need the inner-products between data points to use linear classifiers. This also holds for the optimization of w.

$$
\begin{gathered}
f(x)=w^{T} x+b \\
=\sum_{i=1}^{n} \alpha_{i}\left(x_{i}^{T} x\right)+b
\end{gathered}
$$

Course content

- Introduction
- Linear classification
- Non-linear classification with kernels
- Kernel-trick more generally
- Bias-variance decomposition

Nonlinear Classification

- So far we just considered linear classifiers.
- Obviously limits the problems that can be addressed.
- What to do it the data is not linearly separable?

- Similar to what we considered last week for regression with higherorder polynomials, we can do linear classification on non-linear features. For example augment map the data to R^{2} by adding x^{2}.

Non-linear feature mappings for classification

- Map the original input space to some higher-dimensional feature space where the training set is separable
- Data occupies a (non-linear) subspace of dimension equal to the original space.
- Which features could separate this 2dimensional data linearly ?

Slide credit: Andrew Moore

Non-linear feature mappings for classification

- Remember that for classification we only need dot-products.
- Let's calculate the dot-product explicitly for our example.
- New dot-product easily computed from the original one.

Non-linear feature mappings for classification

- Suppose we also want to keep the original features to still be able to implement linear functions
- Again efficient computation in 6d, roughly at cost of 2d dot-product

$$
k(x, y)=\varphi(x)^{T} \varphi(y)=?
$$

$$
=1+2 \mathrm{x}^{T} y+\left(x^{T} y\right)^{2}
$$

$$
=\left(x^{T} y+1\right)^{2}
$$

$\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x})$

Non-linear feature mappings for classification

- What happens if we do the same for higher dimensional data
- Which feature vector $\varphi(x)$ corresponds to it ?

$$
k(x, y)=\left(x^{T} y+1\right)^{2}=1+2 x^{T} y+\left(x^{T} y\right)^{2}
$$

- First term, encodes an additional 1 in each feature vector
- Second term, encodes scaling of the original features by sqrt(2)
- Let's consider the third term $\left(x^{T} y\right)^{2}=\left(x_{1} y_{1}+\ldots+x_{D} y_{D}\right)^{2}$

$$
\begin{aligned}
& =\sum_{d=1}^{D}\left(x_{d} y_{d}\right)^{2}+2 \sum_{d=1}^{D-1} \sum_{i=d+1}^{D}\left(x_{d} y_{d}\right)\left(x_{i} y_{i}\right) \\
& =\sum_{d=1}^{D} x_{d}^{2} y_{d}^{2}+2 \sum_{d=1}^{D-1} \sum_{i=d+1}^{D}\left(x_{d} x_{i}\right)\left(y_{d} y_{i}\right)
\end{aligned}
$$

- In total we have $1+2 \mathrm{D}+\mathrm{D}(\mathrm{D}-1) / 2$ features !
- But computed as efficiently as dot-product in original space

$$
\varphi(x)=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \ldots, \sqrt{2} x_{D}, x_{1}^{2}, x_{2}^{2}, \ldots, x_{D}^{2}, \sqrt{2} x_{1} x_{2}, \ldots, \sqrt{2} x_{1} x_{D}, \ldots, \sqrt{2} x_{D-1} x_{D}\right)^{T}
$$

Nonlinear classification with kernels

- The kernel trick: instead of explicitly computing the feature transformation $\boldsymbol{\varphi}(\mathbf{x})$, define a kernel function K such that

$$
\mathrm{K}\left(\mathbf{x}_{\mathrm{i}}, \mathbf{x}_{\mathrm{j}}\right)=\boldsymbol{\varphi}\left(\mathbf{x}_{\mathrm{i}}\right) \cdot \boldsymbol{\varphi}\left(\mathbf{x}_{\mathrm{j}}\right)
$$

- This allows us to obtain nonlinear classification in the original space:

$$
\begin{aligned}
f(x) & =b+w^{T} \varphi(x) \\
& =b+\sum_{i} \alpha_{i} \varphi(x)^{T} \varphi\left(x_{i}\right) \\
& =b+\sum_{i} \alpha_{i} k\left(x, x_{i}\right) \\
& =b+\alpha^{T} k(x, .)
\end{aligned}
$$

$$
\begin{aligned}
w^{T} w & =\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} \varphi\left(x_{i}\right)^{T} \varphi\left(x_{j}\right) \\
& =\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} k\left(x_{i}, x_{j}\right) \\
& =\alpha^{T} K \alpha
\end{aligned}
$$

Summary of classification

- Linear classifiers learned by minimizing convex cost functions
- Logistic loss: smooth objective, minimized using gradient descent, etc.
- Hinge loss: piecewise linear objective, quadratic programming
- Both require only computing inner product between data points
- Non-linear classification can be done with linear classifiers over new features that are non-linear functions of the original features
- Kernel functions efficiently compute inner products in (very) highdimensional spaces, can even be infinite dimensional.
- Using kernel functions non-linear classification has drawbacks
- Requires storing the data with non-zero weights, memory cost
- Kernel evaluations for test point may be computationally expensive

Course content

- Introduction
- Linear classification
- Non-linear classification with kernels
- Kernel-trick more generally
- Bias-variance decomposition

Representation by pairwise comparisons

- We can think of a kernel function as a pairwise comparison function

$$
K: X \times X \rightarrow R
$$

- Represent a set of n data points by the $\mathrm{n} \times \mathrm{n}$ matrix $[K]_{i j}=K\left(x_{i}, x_{j}\right)$
- Always an $\mathrm{n} \times \mathrm{n}$ matrix, whatever the nature of the data
- Same algorithms will work for any type of data: images, text...
- Modularity between the choice of K and the choice of algorithms.
- Poor scalability with respect to the data size (squared in n).
- We will restrict attention to a specific class of kernels.

Positive definite kernels

- Definition: A positive definite kernel on the set X is a function

$$
K: X \times X \rightarrow R
$$

which is symmetric:

$$
\forall\left(x, x^{\prime}\right) \in X^{2}: \quad K\left(x, x^{\prime}\right)=K\left(x^{\prime}, x\right)
$$

and which satisfies

$$
\begin{gathered}
\forall n \in N \\
\forall\left(x_{1}, \ldots, x_{n}\right) \in R^{n} \text { and }\left(a_{1}, \ldots, a_{n}\right) \in R^{n} \\
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} K\left(x_{i}, x_{j}\right) \geq 0
\end{gathered}
$$

- Equivalently, a kernel K is positive definite if and only if, for any n and any set of n points, the similarity matrix K is positive semidefinite:

$$
a^{T} K a \geq 0
$$

The simplest positive definite kernel

- Lemma: The kernel function defined by the inner product over vectors is a positive definite kernel.
- This kernel is known as the "linear kernel"

$$
\begin{gathered}
K: X \times X \rightarrow R \\
\forall\left(x, x^{\prime}\right) \in X^{2}: \quad K\left(x, x^{\prime}\right)=x^{T} x^{\prime}
\end{gathered}
$$

- Proof
- Symmetry: $K\left(x, x^{\prime}\right)=x^{T} x^{\prime}=\left(x^{\prime}\right)^{T} x=K\left(x^{\prime}, x\right)$
- Positive definiteness:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} K\left(x_{i}, x_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} x_{i}^{T} x_{j}=\left\|\sum_{i=1}^{n} a_{i} x_{i}\right\|_{2}^{2} \geq 0
$$

More generally: for any embedding function

- Lemma: The kernel function defined by the inner product over data points embedded in a vector space by a function φ is a positive definite kernel.

$$
\begin{gathered}
K: X \times X \rightarrow R \\
\forall\left(x, x^{\prime}\right) \in X^{2}: \quad K\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{H}
\end{gathered}
$$

- Proof
- Symmetry: $K\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{H}=\left\langle\varphi\left(x^{\prime}\right), \varphi(x)\right\rangle_{H}=K\left(x^{\prime}, x\right)$
- Positive definiteness:

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j} K\left(x_{i}, x_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} a_{j}\left\langle\varphi\left(x_{i}\right), \varphi\left(x_{j}\right)\right\rangle_{H}=\left\|\sum_{i=1}^{n} a_{i} \varphi\left(x_{i}\right)\right\|_{H}^{2} \geq 0
$$

Conversely: Kernels as inner products

- Theorem (Aronszajn,1950)
K is a positive definite kernel on the set X if and only if there exists a Hilbert space H and a mapping

$$
\Phi: X \rightarrow H
$$

such that for any x and x^{\prime} in X

$$
K\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{H}
$$

- Establishes the correspondence between kernels and representations.

The kernel trick

- Choosing a p.d. kernel K on a set X amounts to embedding the data in a Hilbert space: there exists a Hilbert space H and a mapping
$\Phi: X \rightarrow H$
such that for all x and x^{\prime} in X

$$
k\left(x, x^{\prime}\right)=\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{H .}
$$

- This mapping might not be explicitly given, nor convenient to work with in practice, e.g. for very large or even infinite dimensions.
- The "trick" is to work implicitly in the feature space H by means of kernel evaluations.

The kernel trick

- Any algorithm to process finite dimensional vectors that can be expressed only in terms of pairwise inner products can be applied to potentially infinite-dimensional vectors in the feature space of a p.d. kernel by replacing each inner product evaluation by a kernel evaluation.
- This statement is trivially true, since the kernel computes the inner product in the associated RKHS.
- The practical implications of this "trick" are important.
- Vectors in the feature space are only manipulated implicitly, through pairwise inner products, there is no need to explicitly represent any data in the feature space.

Example 1: computing distances in the feature space

$$
\begin{aligned}
d_{k}\left(x, x^{\prime}\right)^{2} & =\left\|\varphi(x)-\varphi\left(x^{\prime}\right)\right\|_{H}^{2} \\
& =\left\langle\varphi(x)-\varphi\left(x^{\prime}\right), \varphi(x)-\varphi\left(x^{\prime}\right)\right\rangle_{H} \\
& =\langle\varphi(x), \varphi(x)\rangle_{H}+\left\langle\varphi\left(x^{\prime}\right), \varphi\left(x^{\prime}\right)\right\rangle_{H}-2\left\langle\varphi(x), \varphi\left(x^{\prime}\right)\right\rangle_{H} \\
& =k(x, x)+k\left(x^{\prime}, x^{\prime}\right)-2 \mathrm{k}\left(x, x^{\prime}\right)
\end{aligned}
$$

Distance for the Gaussian kernel

- The Gaussian kernel with bandwidth sigma is given by

$$
k\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|_{2} /\left(2 \sigma^{2}\right)\right)
$$

- In the feature space, all points are embedded on the unit sphere since

$$
k(x, x)=\|\varphi(x)\|_{H}^{2}=1
$$

- The distance in the feature space between x and x^{\prime} is given by

$$
d_{k}\left(x, x^{\prime}\right)=\sqrt{2\left[1-\exp \left(-\left\|x-x^{\prime}\right\|^{2} /\left(2 \sigma^{2}\right)\right)\right]}
$$

Example 2: distance between a point and a set

- Let S be a finite set of points in $\mathrm{X}: \quad S=\left(x_{1}, \cdots, x_{n}\right)$
- How to define and compute the similarity between any point x in X and the set S?
- The following is a simple approach:
- Map all points to the feature space
- Summarize S by the barycenter of the points $m=\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)$
- Define the distance between x and S as

$$
d_{k}(x, S)=\|\varphi(x)-m\|_{H}
$$

Example 2: distance between a point and a set

$$
\begin{aligned}
d_{k}(x, S) & =\|\varphi(x)-m\|_{H} \\
& =\left\|\varphi(x)-\frac{1}{n} \sum_{i=1}^{n} \varphi\left(x_{i}\right)\right\|_{H} \\
& =\sqrt{k(x, x)-\frac{2}{n} \sum_{i=1}^{n} k\left(x, x_{i}\right)+\frac{1}{n^{2}} \sum_{i, j=1}^{n} k\left(x_{i}, x_{j}\right)}
\end{aligned}
$$

Uni-dimensional illustration

- Let $S=\{2,3\}$, plot $f(x)=d(x, S)$.

Linear kernel

Gaussian kernel, with $\sigma=1$

Gaussian kernel, with $\sigma=0.2$

2D illustration

- Let $S=\left\{(1,1)^{\prime},(1,2)^{\prime},(2,2)^{\prime}\right\}$, plot $f(x)=d(x, S)$.

Gaussian kernel, with $\sigma=1$ with $\sigma=0.2$

Application to discrimination

- Consider a set of points from positive class $P=\left\{(1,1)^{\prime},(1,2)^{\prime}\right\}$
- And a set of points from the negative class $\mathrm{N}=\left\{(1,3)^{\prime},(2,2)^{\prime}\right\}$
- Plot $f(x)=d_{k}(x, P)^{2}-d_{k}(x, N)^{2}$

$$
\begin{aligned}
& =\left\|\varphi(x)-m_{P}\right\|_{H}^{2}-\left\|\varphi(x)-m_{N}\right\|_{H}^{2} \\
& =\frac{2}{n} \sum_{x_{i} \in N} k\left(x, x_{i}\right)-\frac{2}{n} \sum_{x_{i} \in P} k\left(x, x_{i}\right)+\mathrm{constant}
\end{aligned}
$$

Linear kernel

Gaussian kernel, with $\sigma=1$

Gaussian kernel, with $\sigma=0.2$

Example 3: centering data in feature space

- Let S be a set of n points in X.
- Let K be the kernel matrix generated by the p.d. kernel $\mathrm{k}(.,$.$) .$
- Let m be the barycenter in the feature space of the points in S .
- How to compute the kernel matrix when the points are centered on m ?

Example 3: centering data in feature space

- Substitution of the barycenter gives

$$
\begin{aligned}
h\left(x_{i}, x_{j}\right) & =\left\langle\varphi\left(x_{i}\right)-m, \varphi\left(x_{j}\right)-m\right\rangle_{H} \\
& =\left\langle\varphi\left(x_{i}\right), \varphi\left(x_{j}\right)\right\rangle_{H}-\left\langle m, \varphi\left(x_{i}\right)+\varphi\left(x_{j}\right)\right\rangle_{H}+\langle m, m\rangle_{H} \\
& =k\left(x_{i}, x_{j}\right)-\frac{1}{n} \sum_{k=1}^{n}\left(k\left(x_{i}, x_{k}\right)+k\left(x_{k}, x_{j}\right)\right)+\frac{1}{n^{2}} \sum_{k, l=1}^{n} k\left(x_{k}, x_{l}\right)
\end{aligned}
$$

- Or, in matrix notation we get

$$
H=K-K U-U K+U K U=(I-U) K(I-U)
$$

where for all i, j :
$U_{i, j}=1 / n$

