Homework exercises Advanced Learning Models 2016-2017

Jakob Verbeek \& Julien Mairal
INRIA Grenoble - Université Grenoble-Alpes

January 11, 2017

Exercise 1: Fisher kernel for univariate Gaussian density

Suppose a univariate Gaussian density model $p(x)=\mathcal{N}\left(x ; \mu, \sigma^{2}\right)$.

1. Compute the partial derivatives $\frac{\partial \ln p(x)}{\partial \mu}$ and $\frac{\partial \ln p(x)}{\partial \sigma}$.

Let $g(x)$ be the two dimensional gradient vector that concatenates the two partial derivatives.
2. Compute the Fisher information matrix $F=\int_{x} p(x) g(x) g(x)^{\top}$.
3. Show that $\int_{x} p(x) g(x)=0$.
4. Compute the Fisher vector $h=F^{-\frac{1}{2}} g$.

Exercise 2: Fisher kernel for univariate Gaussian mixture density

Suppose a univariate Gaussian mixture density model $p(x)=\sum_{i=1}^{K} w_{i} \mathcal{N}\left(x ; \mu_{i}, \sigma_{i}^{2}\right)$. Where the mixing weights are parameterized as $w_{i}=\exp \left(\alpha_{i}\right) / \sum_{j=1}^{K} \exp \left(\alpha_{j}\right)$.

1. Compute the partial derivatives $\frac{\partial \ln p(x)}{\partial \mu_{i}}$, and similar for σ_{i} and α_{i}.

Let $g(x)$ be the $3 K$ dimensional gradient vector that concatenates these partial derivatives. Denote the Fisher information matrix $F=\int_{x} p(x) g(x) g(x)^{\top}$. Assume that the posteriors $p(i \mid x)=w_{i} \mathcal{N}\left(x ; \mu_{i}, \sigma_{i}^{2}\right) / p(x)$ are sharply peaked, i.e. close to one for a single i and close to zero for all others. Decompose F into 3×3 blocks, corresponding to the w_{i}, μ_{i} and σ_{i}.
2. Show that F is block diagonal.
3. Show that the μ and σ blocks are diagonal, and give the diagonal entries.

Fix $\alpha_{K}=0$ to remove a redundant degree of freedom from the α_{i}, and let $\tilde{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{K-1}\right)$. Let $\tilde{g}(x)=\nabla_{\tilde{\alpha}} \ln p(x)$ be the gradient with respect to $\tilde{\alpha}$, and similarly let \tilde{F} be the Fisher information matrix with respect to $\tilde{\alpha}$.
4. Show that the Fisher kernel with respect to $\tilde{\alpha}$ can be written as $\tilde{g}(x)^{\top} \tilde{F}^{-1} \tilde{g}(y)=\phi(x)^{\top} \phi(y)$ where $\phi(x)$ is a K dimensional vector.

Exercise 3: Variational bound on marginal likelihood

Suppose the following mixture distribution $p(x)=\sum_{i=1}^{K} p(z=i) p(x \mid z=i)$. The entropy of a discrete distribution q is defined as $H(q)=\sum_{i=1}^{K} q_{i} \ln q_{i}$, where we use the shorthand $q_{i}=q(z=i)$. The Kullback Leibler divergence between distributions p and q is defined as $D(q \| p)=\sum_{i=1}^{K} q_{i}\left(\ln q_{i}-\ln p_{i}\right)$. Assume all q_{i} and p_{i} are strictly positive.

1. Show that $F \equiv \ln p(x)-D(q(z) \| p(z \mid x)) \leq \ln p(x)$.
2. Show that $F=H(q(z))+\sum_{i=1}^{K} q(z=i)[\ln p(z=i)+\ln p(x \mid z=i)]$.
3. Show that $F=\sum_{i=1}^{K} q(z=i)[\ln p(x \mid z=i)]-D(q(z) \| p(z))$.

Exercise 4: Positive definite kernels

Which of these kernels are positive definite? You need to provide a proof for all cases

1. $K(x, y)=1 /(1-x y)$ with $\mathcal{X}=(-1,1)$;
2. $K(x, y)=\max (x, y)$ with $\mathcal{X}=[0,1]$;
3. $K(x, y)=\cos (x+y)$ with $\mathcal{X}=\mathbb{R}$;
4. $K(x, y)=\cos (x-y)$ with $\mathcal{X}=\mathbb{R}$;
5. $K(x, y)=G C D(x, y)$ (greatest common divisor) with $\mathcal{X}=\mathbb{N}$;

Exercise 5: Kernel LDA

Fisher's linear discriminant analysis (LDA) is a method for supervised binary classification of finitedimensional vectors. Given two sets of points $\mathcal{S}_{1}=\left\{x_{1}^{1}, \ldots, x_{n_{1}}^{1}\right\}$ and $\mathcal{S}_{2}=\left\{x_{1}^{2}, \ldots, x_{n_{2}}^{2}\right\}$ in \mathbb{R}^{p}, let us denote by $m_{i}=\frac{1}{n_{i}} \sum_{j=1}^{l_{i}} x_{j}^{i}$, and by:

$$
\begin{align*}
S_{B} & =\left(m_{1}-m_{2}\right)\left(m_{1}-m_{2}\right)^{\top}, \tag{1}\\
S_{W} & =\sum_{i=1,2} \sum_{x \in \mathcal{S}_{i}}\left(x-m_{i}\right)\left(x-m_{i}\right)^{\top}, \tag{2}
\end{align*}
$$

the between and within class scatter matrices, respectively. LDA constructs the function

$$
f_{w}(x)=w^{\top} x
$$

where w is the vector which maximizes

$$
J(w)=\frac{w^{\top} S_{B} w}{w^{\top} S_{W} w}
$$

1. Why does it make sense to maximize $J(w)$? What do we expect to find? (you can take as example the case where the two sets \mathcal{S}_{1} and \mathcal{S}_{2} form two clusters, e.g., two Gaussians).
2. We want to extend LDA to the feature space \mathcal{H} induced by a positive definite kernel K by the relations $K\left(x, x^{\prime}\right)=<\Phi(x), \Phi\left(x^{\prime}\right)>_{\mathcal{H}}$. For a vector $w \in \mathcal{H}$ that is a linear combination of the form

$$
w=\sum_{i=1,2} \sum_{j=1}^{n_{i}} \alpha_{j}^{i} \Phi\left(x_{j}^{i}\right),
$$

express $J(w)$ and $f_{w}(x)$ as a function of α and K.

Exercise 6: Rademacher complexity

A Rademacher variable is a random variables σ that can take two possible values, -1 and +1 , with equal probability $1 / 2$.

1. Let $\left(u_{1}, u_{2}, \ldots, u_{N}\right)$ be N vectors in a Hilbert space endowed with an inner product $<.$, . \rangle, and let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}$ be N independent Rademacher variables. Show that:

$$
\mathbb{E}\left(\sum_{i=1}^{N} \sum_{j=1}^{N} \sigma_{i} \sigma_{j}<u_{i}, u_{j}>\right)=\sum_{i=1}^{N}\left\|u_{i}\right\|^{2}
$$

2. Let K be a positive definite kernel on a space $\mathcal{X}, \mathcal{H}_{K}$ denote the associated reproducing kernel Hilbert space, and $B_{R}=\left\{f \in \mathcal{H}_{K},\|f\|_{\mathcal{H}_{K}} \leq R\right\}$. Let a set of points $\mathcal{S}=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N}\right)$ with $\mathbf{x}_{i} \in \mathcal{X}$ $(i=1, \ldots, N)$, and let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}$ be N independent Rademacher variables. Show that:

$$
\mathbb{E} \sup _{f \in B_{R}}\left|\sum_{i=1}^{N} \sigma_{i} f\left(\mathbf{x}_{i}\right)\right| \leq R \sqrt{\sum_{i=1}^{N} K\left(\mathbf{x}_{i}, \mathbf{x}_{i}\right)} .
$$

Exercise 7: Conditionally positive definite kernels

Let \mathcal{X} be a set. A function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is called conditionally positive definite (c.p.d.) if and only if it is symmetric and satisfies:

$$
\sum_{i, j=1}^{n} a_{i} a_{j} k\left(x_{i}, x_{j}\right) \geq 0
$$

for any $n \in \mathbb{N}, x_{1}, x_{2}, \ldots, x_{n} \in \mathcal{X}^{n}$ and $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}^{n}$ with $\sum_{i=1}^{n} a_{i}=0$.

1. Show that a positive definite (p.d.) function is c.p.d.
2. Is a constant function p.d.? Is it c.p.d.?
3. If \mathcal{X} is a Hilbert space, then is $k(x, y)=-\|x-y\|^{2}$ p.d.? Is it c.p.d.?
4. Let \mathcal{X} be a nonempty set, and $x_{0} \in \mathcal{X}$ a point. For any function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$, let $\tilde{k}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be the function defined by:

$$
\tilde{k}(x, y)=k(x, y)-k\left(x_{0}, x\right)-k\left(x_{0}, y\right)+k\left(x_{0}, x_{0}\right)
$$

Show that k is c.p.d. if and only if \tilde{k} is p.d.
5. Let k be a c.p.d. kernel on \mathcal{X} such that $k(x, x)=0$ for any $x \in \mathcal{X}$. Show that there exists a Hilbert space \mathcal{H} and a mapping $\Phi: \mathcal{X} \rightarrow \mathcal{H}$ such that, for any $x, y \in \mathcal{X}$,

$$
k(x, y)=-\|\Phi(x)-\Phi(y)\|^{2} .
$$

6. Show that if k is c.p.d., then the function $\exp (t k(x, y))$ is p.d. for all $t \geq 0$
7. Conversely, show that if the function $\exp (t k(x, y))$ is p.d. for any $t \geq 0$, then k is c.p.d.
