Homework exercises Advanced Learning Models 2016-2017

Jakob Verbeek & Julien Mairal INRIA Grenoble – Université Grenoble-Alpes

January 11, 2017

Exercise 1: Fisher kernel for univariate Gaussian density

Suppose a univariate Gaussian density model $p(x) = \mathcal{N}(x; \mu, \sigma^2)$.

1. Compute the partial derivatives $\frac{\partial \ln p(x)}{\partial \mu}$ and $\frac{\partial \ln p(x)}{\partial \sigma}$.

Let g(x) be the two dimensional gradient vector that concatenates the two partial derivatives.

- **2.** Compute the Fisher information matrix $F = \int_x p(x)g(x)g(x)^\top$.
- **3.** Show that $\int_x p(x)g(x) = 0$.
- **4.** Compute the Fisher vector $h = F^{-\frac{1}{2}}g$.

Exercise 2: Fisher kernel for univariate Gaussian mixture density

Suppose a univariate Gaussian mixture density model $p(x) = \sum_{i=1}^{K} w_i \mathcal{N}(x; \mu_i, \sigma_i^2)$. Where the mixing weights are parameterized as $w_i = \exp(\alpha_i) / \sum_{j=1}^{K} \exp(\alpha_j)$.

1. Compute the partial derivatives $\frac{\partial \ln p(x)}{\partial \mu_i}$, and similar for σ_i and α_i .

Let g(x) be the 3K dimensional gradient vector that concatenates these partial derivatives. Denote the Fisher information matrix $F = \int_x p(x)g(x)g(x)^{\top}$. Assume that the posteriors $p(i|x) = w_i \mathcal{N}(x; \mu_i, \sigma_i^2)/p(x)$ are sharply peaked, i.e. close to one for a single *i* and close to zero for all others. Decompose F into 3×3 blocks, corresponding to the w_i, μ_i and σ_i .

- **2.** Show that F is block diagonal.
- **3.** Show that the μ and σ blocks are diagonal, and give the diagonal entries.

Fix $\alpha_K = 0$ to remove a redundant degree of freedom from the α_i , and let $\tilde{\alpha} = (\alpha_1, \ldots, \alpha_{K-1})$. Let $\tilde{g}(x) = \nabla_{\tilde{\alpha}} \ln p(x)$ be the gradient with respect to $\tilde{\alpha}$, and similarly let \tilde{F} be the Fisher information matrix with respect to $\tilde{\alpha}$.

4. Show that the Fisher kernel with respect to $\tilde{\alpha}$ can be written as $\tilde{g}(x)^{\top} \tilde{F}^{-1} \tilde{g}(y) = \phi(x)^{\top} \phi(y)$ where $\phi(x)$ is a K dimensional vector.

Exercise 3: Variational bound on marginal likelihood

Suppose the following mixture distribution $p(x) = \sum_{i=1}^{K} p(z=i)p(x|z=i)$. The entropy of a discrete distribution q is defined as $H(q) = \sum_{i=1}^{K} q_i \ln q_i$, where we use the shorthand $q_i = q(z=i)$. The Kullback Leibler divergence between distributions p and q is defined as $D(q||p) = \sum_{i=1}^{K} q_i (\ln q_i - \ln p_i)$. Assume all q_i and p_i are strictly positive.

- 1. Show that $F \equiv \ln p(x) D(q(z)||p(z|x)) \le \ln p(x)$.
- **2.** Show that $F = H(q(z)) + \sum_{i=1}^{K} q(z=i) [\ln p(z=i) + \ln p(x|z=i)].$
- **3.** Show that $F = \sum_{i=1}^{K} q(z=i) \left[\ln p(x|z=i) \right] D(q(z)||p(z)).$

Exercise 4: Positive definite kernels

Which of these kernels are positive definite? You need to provide a proof for all cases

- **1.** K(x,y) = 1/(1-xy) with $\mathcal{X} = (-1,1);$
- **2.** $K(x,y) = \max(x,y)$ with $\mathcal{X} = [0,1];$
- **3.** $K(x,y) = \cos(x+y)$ with $\mathcal{X} = \mathbb{R}$;
- 4. $K(x,y) = \cos(x-y)$ with $\mathcal{X} = \mathbb{R}$;
- 5. K(x,y) = GCD(x,y) (greatest common divisor) with $\mathcal{X} = \mathbb{N}$;

Exercise 5: Kernel LDA

Fisher's linear discriminant analysis (LDA) is a method for supervised binary classification of finitedimensional vectors. Given two sets of points $S_1 = \{x_1^1, \ldots, x_{n_1}^1\}$ and $S_2 = \{x_1^2, \ldots, x_{n_2}^2\}$ in \mathbb{R}^p , let us denote by $m_i = \frac{1}{n_i} \sum_{j=1}^{l_i} x_j^i$, and by:

$$S_B = (m_1 - m_2)(m_1 - m_2)^{\top}, \qquad (1)$$

$$S_W = \sum_{i=1,2} \sum_{x \in S_i} (x - m_i) (x - m_i)^\top,$$
(2)

the between and within class scatter matrices, respectively. LDA constructs the function

$$f_w(x) = w^\top x$$

where w is the vector which maximizes

$$J(w) = \frac{w^\top S_B w}{w^\top S_W w}$$

1. Why does it make sense to maximize J(w)? What do we expect to find? (you can take as example the case where the two sets S_1 and S_2 form two clusters, e.g., two Gaussians).

2. We want to extend LDA to the feature space \mathcal{H} induced by a positive definite kernel K by the relations $K(x, x') = \langle \Phi(x), \Phi(x') \rangle_{\mathcal{H}}$. For a vector $w \in \mathcal{H}$ that is a linear combination of the form

$$w = \sum_{i=1,2} \sum_{j=1}^{n_i} \alpha_j^i \Phi(x_j^i) \,,$$

express J(w) and $f_w(x)$ as a function of α and K.

Exercise 6: Rademacher complexity

A Rademacher variable is a random variables σ that can take two possible values, -1 and +1, with equal probability 1/2.

1. Let (u_1, u_2, \ldots, u_N) be N vectors in a Hilbert space endowed with an inner product $\langle ., . \rangle$, and let $\sigma_1, \sigma_2, \ldots, \sigma_N$ be N independent Rademacher variables. Show that:

$$\mathbb{E}\left(\sum_{i=1}^{N}\sum_{j=1}^{N}\sigma_{i}\sigma_{j} < u_{i}, u_{j} > \right) = \sum_{i=1}^{N} \|u_{i}\|^{2}$$

2. Let K be a positive definite kernel on a space \mathcal{X} , \mathcal{H}_K denote the associated reproducing kernel Hilbert space, and $B_R = \{f \in \mathcal{H}_K, \|f\|_{\mathcal{H}_K} \leq R\}$. Let a set of points $\mathcal{S} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$ with $\mathbf{x}_i \in \mathcal{X}$ $(i = 1, \dots, N)$, and let $\sigma_1, \sigma_2, \dots, \sigma_N$ be N independent Rademacher variables. Show that:

$$\mathbb{E}\sup_{f\in B_{R}}\left|\sum_{i=1}^{N}\sigma_{i}f\left(\mathbf{x}_{i}\right)\right|\leq R\sqrt{\sum_{i=1}^{N}K\left(\mathbf{x}_{i},\mathbf{x}_{i}\right)}.$$

Exercise 7: Conditionally positive definite kernels

Let \mathcal{X} be a set. A function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called *conditionally positive definite* (c.p.d.) if and only if it is symmetric and satisfies:

$$\sum_{i,j=1}^{n} a_i a_j k(x_i, x_j) \ge 0$$

for any $n \in \mathbb{N}, x_1, x_2, \dots, x_n \in \mathcal{X}^n$ and $a_1, a_2, \dots, a_n \in \mathbb{R}^n$ with $\sum_{i=1}^n a_i = 0$.

1. Show that a positive definite (p.d.) function is c.p.d.

2. Is a constant function p.d.? Is it c.p.d.?

3. If \mathcal{X} is a Hilbert space, then is $k(x, y) = -||x - y||^2$ p.d.? Is it c.p.d.?

4. Let \mathcal{X} be a nonempty set, and $x_0 \in \mathcal{X}$ a point. For any function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, let $\tilde{k} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be the function defined by:

$$\hat{k}(x,y) = k(x,y) - k(x_0,x) - k(x_0,y) + k(x_0,x_0)$$

Show that k is c.p.d. if and only if \tilde{k} is p.d.

5. Let k be a c.p.d. kernel on \mathcal{X} such that k(x, x) = 0 for any $x \in \mathcal{X}$. Show that there exists a Hilbert space \mathcal{H} and a mapping $\Phi : \mathcal{X} \to \mathcal{H}$ such that, for any $x, y \in \mathcal{X}$,

$$k(x,y) = -||\Phi(x) - \Phi(y)||^2$$

6. Show that if k is c.p.d., then the function $\exp(tk(x, y))$ is p.d. for all $t \ge 0$

7. Conversely, show that if the function $\exp(tk(x, y))$ is p.d. for any $t \ge 0$, then k is c.p.d.