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Exercise 1: Fisher kernel for univariate Gaussian density

Suppose a univariate Gaussian density model p(x) = N (x;µ, σ2).

1. Compute the partial derivatives ∂ ln p(x)
∂µ and ∂ ln p(x)

∂σ .

Let g(x) be the two dimensional gradient vector that concatenates the two partial derivatives.

2. Compute the Fisher information matrix F =
∫
x
p(x)g(x)g(x)>.

3. Show that
∫
x
p(x)g(x) = 0.

4. Compute the Fisher vector h = F−
1
2 g.

Exercise 2: Fisher kernel for univariate Gaussian mixture density

Suppose a univariate Gaussian mixture density model p(x) =
∑K
i=1 wiN (x;µi, σ

2
i ). Where the mixing

weights are parameterized as wi = exp(αi)/
∑K
j=1 exp(αj).

1. Compute the partial derivatives ∂ ln p(x)
∂µi

, and similar for σi and αi.

Let g(x) be the 3K dimensional gradient vector that concatenates these partial derivatives. Denote the
Fisher information matrix F =

∫
x
p(x)g(x)g(x)>. Assume that the posteriors p(i|x) = wiN (x;µi, σ

2
i )/p(x)

are sharply peaked, i.e. close to one for a single i and close to zero for all others. Decompose F into 3 × 3
blocks, corresponding to the wi, µi and σi.

2. Show that F is block diagonal.

3. Show that the µ and σ blocks are diagonal, and give the diagonal entries.

Fix αK = 0 to remove a redundant degree of freedom from the αi, and let α̃ = (α1, . . . , αK−1). Let
g̃(x) = ∇α̃ ln p(x) be the gradient with respect to α̃ , and similarly let F̃ be the Fisher information matrix
with respect to α̃.

4. Show that the Fisher kernel with respect to α̃ can be written as g̃(x)>F̃−1g̃(y) = φ(x)>φ(y) where
φ(x) is a K dimensional vector.
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Exercise 3: Variational bound on marginal likelihood

Suppose the following mixture distribution p(x) =
∑K
i=1 p(z = i)p(x|z = i). The entropy of a discrete

distribution q is defined as H(q) =
∑K
i=1 qi ln qi, where we use the shorthand qi = q(z = i). The Kullback

Leibler divergence between distributions p and q is defined as D(q||p) =
∑K
i=1 qi (ln qi − ln pi). Assume all

qi and pi are strictly positive.

1. Show that F ≡ ln p(x)−D (q(z)||p(z|x)) ≤ ln p(x).

2. Show that F = H(q(z)) +
∑K
i=1 q(z = i) [ln p(z = i) + ln p(x|z = i)].

3. Show that F =
∑K
i=1 q(z = i) [ln p(x|z = i)]−D (q(z)||p(z)).

Exercise 4: Positive definite kernels

Which of these kernels are positive definite? You need to provide a proof for all cases
1. K(x, y) = 1/(1− xy) with X = (−1, 1);
2. K(x, y) = max(x, y) with X = [0, 1];
3. K(x, y) = cos(x+ y) with X = R;
4. K(x, y) = cos(x− y) with X = R;
5. K(x, y) = GCD(x, y) (greatest common divisor) with X = N;

Exercise 5: Kernel LDA

Fisher’s linear discriminant analysis (LDA) is a method for supervised binary classification of finite-
dimensional vectors. Given two sets of points S1 =

{
x11, . . . , x

1
n1

}
and S2 =

{
x21, . . . , x

2
n2

}
in Rp, let us

denote by mi = 1
ni

∑li
j=1 x

i
j , and by:

SB = (m1 −m2)(m1 −m2)> , (1)

SW =
∑
i=1,2

∑
x∈Si

(x−mi)(x−mi)
> , (2)

the between and within class scatter matrices, respectively. LDA constructs the function

fw(x) = w>x ,

where w is the vector which maximizes

J(w) =
w>SBw

w>SWw
.

1. Why does it make sense to maximize J(w)? What do we expect to find? (you can take as example
the case where the two sets S1 and S2 form two clusters, e.g., two Gaussians).

2. We want to extend LDA to the feature space H induced by a positive definite kernel K by the relations
K(x, x′) =< Φ(x),Φ(x′) >H . For a vector w ∈ H that is a linear combination of the form

w =
∑
i=1,2

ni∑
j=1

αijΦ(xij) ,

express J(w) and fw(x) as a function of α and K.
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Exercise 6: Rademacher complexity

A Rademacher variable is a random variables σ that can take two possible values, −1 and +1, with equal
probability 1/2.

1. Let (u1, u2, . . . , uN ) be N vectors in a Hilbert space endowed with an inner product < ., . >, and let
σ1, σ2, . . . , σN be N independent Rademacher variables. Show that:

E

 N∑
i=1

N∑
j=1

σiσj < ui, uj >

 =

N∑
i=1

‖ui ‖2 .

2. Let K be a positive definite kernel on a space X , HK denote the associated reproducing kernel
Hilbert space, and BR = {f ∈ HK , ‖ f ‖HK

≤ R}. Let a set of points S = (x1,x2, . . . ,xN ) with xi ∈ X
(i = 1, . . . , N), and let σ1, σ2, . . . , σN be N independent Rademacher variables. Show that:

E sup
f∈BR

∣∣∣∣∣
N∑
i=1

σif (xi)

∣∣∣∣∣ ≤ R
√√√√ N∑

i=1

K (xi,xi) .

Exercise 7: Conditionally positive definite kernels
Let X be a set. A function k : X ×X → R is called conditionally positive definite (c.p.d.) if and only if it is
symmetric and satisfies:

n∑
i,j=1

aiajk(xi, xj) ≥ 0

for any n ∈ N, x1, x2, . . . , xn ∈ Xn and a1, a2, . . . , an ∈ Rn with
∑n
i=1 ai = 0 .

1. Show that a positive definite (p.d.) function is c.p.d.
2. Is a constant function p.d.? Is it c.p.d.?
3. If X is a Hilbert space, then is k(x, y) = −||x− y||2 p.d.? Is it c.p.d.?
4. Let X be a nonempty set, and x0 ∈ X a point. For any function k : X × X → R, let k̃ : X × X → R

be the function defined by:

k̃(x, y) = k(x, y)− k(x0, x)− k(x0, y) + k(x0, x0).

Show that k is c.p.d. if and only if k̃ is p.d.
5. Let k be a c.p.d. kernel on X such that k(x, x) = 0 for any x ∈ X . Show that there exists a Hilbert

space H and a mapping Φ : X → H such that, for any x, y ∈ X ,

k(x, y) = −||Φ(x)− Φ(y)||2.

6. Show that if k is c.p.d., then the function exp(tk(x, y)) is p.d. for all t ≥ 0
7. Conversely, show that if the function exp(tk(x, y)) is p.d. for any t ≥ 0, then k is c.p.d.
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